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Drought is a serious threat for sustainable agriculture. Barley represents a species
well adapted to environmental stresses including drought. To elucidate the adaptive
mechanism of barley on transcriptional level we evaluated transcriptomic changes of two
contrasting barley cultivars upon drought using the microarray technique on the level of
leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated
vs. non-treated plants were identified. Both genotypes revealed tissue dehydration
under drought conditions as shown at water saturation deficit and osmotic potential
data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor
under the same ambient conditions. Performed analysis showed that Amulet enhanced
expression of genes related to active plant growth and development, while Tadmor
regarding the stimulated genes revealed conservative, water saving strategy. Common
reactions of both genotypes and tissues included an induction of genes encoding
several stress-responsive signaling proteins, transcription factors as well as effector
genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar
effectively stimulated mainly the expression of genes encoding proteins and enzymes
involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis
and transport. The crown specific reaction of tolerant cultivar was an enhanced
expression of genes encoding proteins and enzymes involved in cell wall lignification,
ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with
genes for numerous jasmonate induced proteins.
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INTRODUCTION

Drought, a primary threat for sustainable agriculture, is
responsible for the largest loses of plant production at a global
scale (Boyer, 1982; Araus et al., 2008). In addition, considering
projected climatic changes, we can presume that impact of this
stressor on agricultural production will escalate in the future
(Beddington et al., 2011; Field, 2012). In negative contrast with
this phenomenon, there is a rapid growth of human population,
which is anticipated to overcome nine billion people in the
horizon of 40 years (Bruinsma, 2009; Godfray et al., 2010;
Gregory and George, 2011). To ensure food security during
comming years, it will be necessary to breed crop cultivars
capable to withstand longer periods of water withholding while
maintaining good yields in such adverse conditions.

Tolerance relies on the inherent ability of the plant to sustain
growth (likely at a reduced rate) even when the conditions
are unfavorable for the maintenance of basic plant processes
(Peleg et al., 2011). Unfortunately, drought tolerance is a very
complex trait including series of physiological and biochemical
responses (Cattivelli et al., 2008). To be more complicated,
breeding efforts are targeted to gain good yield potential under
water scarcity instead of simple surviving. Therefore, creating
tolerant genotypes is great challenge for genetic engineering
(Cattivelli et al., 2008).

Great efforts were recently dedicated to elucidation of
mechanisms involved in drought tolerance. Genes coded
for proteins related to osmoregulation (11-pyrroline-5-
carboxylate synthetase, glycine betaine), mitigating oxidative
damage (superoxide dismutase, glutathione S-transferase),
ionic balance (AtHKT1, AtNHX1 transporters) or genes coded
for proteins with regulatory and signaling function (DREB,
NAC transcriptional factors) were described (Peleg et al., 2011)
and succesfully used to conferring drought tolerance by their
transferring into different plant species (Pellegrineschi et al.,
2002, 2004; Umezawa et al., 2006). However, despite this
progress, there is still the limited knowledge about mechanisms
that would allow crop plants to achieve good yield potential
under water shortage.

Barley is one of the model organisms for genetic and
physiological studies, exhibiting by dint of genotypes variability a
wide flexibility in adaptation to environmental conditions (Nevo,
1992). Considering the harvesting area, it is the fourth most
planted crop worldwide (Faostat, 2016), with a great impact
for livestock production, brewing and food industries. It is
cultivated in many developing countries, where it is often exposed
to extreme drought, which significantly affects its production
(Ceccarelli, 1994). Elucidation of mechanisms which facilitate
barley to survive under dehydration stress could lead to better
understanding of genetic bases linked to plant adaptability
to drought in general, and, therefore, enables more efficient
manners of breeding methods utilization in drought tolerance
improvement. One possible way to achieve such goal is genome-
scale expression profiling via microarray technology.

DNA microarrays found a broad range of applications in
monitoring of expression changes in plants after exposure to
various stresses (Kawasaki et al., 2001; Seki et al., 2001; Thimm

et al., 2001; Kawaura et al., 2006; Ding et al., 2009; Zhu et al.,
2013). Over the years, several experiments targeting to use of
microarrays in drought-treated barley were also reported (Ozturk
et al., 2002; Atienza et al., 2004; Guo et al., 2007; Talamè et al.,
2007; Tommasini et al., 2008; Guo et al., 2009). However, most of
these works operated with single genotypes (Ozturk et al., 2002;
Atienza et al., 2004; Talamè et al., 2007; Tommasini et al., 2008),
thus they lack a needful contrast between tolerant and susceptible
cultivars, which is essential to differentiation of tolerance-related
genes from those commonly responsive to drought. An issue
connected with selected works (Ozturk et al., 2002; Atienza et al.,
2004; Talamè et al., 2007) was also a fact, that authors often
applied short dehydration intervals instead of longer drought
periods, more characteristic for field conditions. On the other
hand, experiments designed as multi-varietal (Guo et al., 2007,
2009) were oriented on latter developmental stages. Nevertheless,
logical assumption would be, that barley plants are the most
predisposed to drought in the early developmental stages, thus,
monitoring of expression changes which come to progress after
drought exposure should be targeted to these growth phases.
What is general to the above mentioned works is the fact that
neither of them evaluated the variation of expression profiles in
different plant tissues of drought-treated plants, i.e., that DNA
or RNA hybridized on microarray was isolated from only one
plant tissue and almost exclusively from leaves (Ozturk et al.,
2002; Guo et al., 2007; Talamè et al., 2007; Guo et al., 2009).
In the studies focused on plant responses to drought stress
at the gene level, changes have been neglected in crowns, a
body which has for cereals significantly greater importance than
individual leaves, because it differentiates the individual tillers
and, unlike single leaves, it cannot be replaced. Importance
to study transcript patterns alterations in crown was recently
confirmed in experiments with cold and freezing stress (Winfield
et al., 2010; Janská et al., 2011). However, until now, there is no
manuscript reporting crown importance in coping with water
stress.

In this article, we present a series of microarray experiments
in an arrangement with two contrasting barley genotypes
exposed to drought, where each genotype RNAs were isolated
from leaves and crowns separately. This approach could bring
completely new insight into barley drought defense mechanism
via elucidation of crown role in drought survival.

MATERIALS AND METHODS

Plant Material and Stress Treatment
The seeds of two barley (Hordeum vulgare L.) cultivars, Amulet
(Amu; a spring barley variety, originating from the Czech
Republic) and Tadmor (Tad; a two-row barley selected from the
Syrian landrace Arabi Aswad), which are differentially sensitive
to drought, were obtained from Mendel University in Brno
(CZE). The seeds were germinated for 2 days at 24◦C in the
dark; then the seedlings were grown in pots (bottom diameter
13 cm, upper diameter 21 cm, height 20 cm) filled with soil (a
mixture of Alfisol with manure and sand, 6: 2: 1) at 25◦C/20◦C
(light/dark, 14 h/10 h, irradiation intensity 350 µmol·m−2

·s−1
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FIGURE 1 | Soil water content expressed relative to 100% maximum water capacity during the growth of two barleys (Amu and Tad). In the ninth day of
growth one-half of the pots were withheld from water for the next 8 days (WS). The arrows show the day of sampling plants from well-watered (WW) and
water-stressed (WS) conditions which it was for both treatments when the plants reached the stage of a fully developed leaf 2.

provided by a high-pressure sodium lamp + incandescent bulb)
in a growth chamber (Tyler, type T-16/4, Budapest, Hungary) for
the next 9 days. The soil was maintained at 70% of maximum
water capacity (MWC), with watering of the pots each day to
maintain a constant weight (5,500 g). Next, one-half of the pots
were kept under the same conditions until the plants reached
the stage of a fully developed second leaf (well-watered, WW).
The remaining half of the pots were withheld from water for
the next 8 days (water-stress, WS) until the plants had reached
the same growth stage as in the WW treatment (Figure 1).
When the plants reached the stage of a fully developed leaf 2,
the five crowns and five leaf 2 were sampled from five plants
grown in five different pots with the same treatment (WW or
WS) for determination of water-relationship parameters in three
repetitions. The same number of samples was taken for abscisic
acid (ABA) determination as well as dehydrin protein analysis.
The experiment was two times repeated. The plants (the second
leaf and crown separately) were sampled from both conditions
(WW and WS), in order to measure their water-relationship
parameters. The plant tissues used for determination of ABA
level, content of dehydrins, and transcription activities were
snap-frozen in liquid nitrogen and stored at−80◦C.

Expression Profiling
The plant tissue was snap-frozen in liquid nitrogen and stored
at −80◦C, before being used for RNA extraction based on the
TRIZOL reagent (Invitrogen, Carlsbad, CA, USA). The RNA
was purified by passing through an RNeasy column in the
presence of DNase (Qiagen, Hilden, Germany). RNA quality
was assessed by both agarose gel electrophoresis and analysis
in an Agilent 2100 Bioanalyzer (Agilent Technologies, USA).
Each biological sample was represented by three independent
replicates, each of which consisted of a bulk of four seedlings.
Each RNA sample was hybridized to the Affymetrix 22 K
Barley1 GeneChip Genome Array (Close et al., 2004). GeneChip R©

hybridization quality was ensured by using standard controls

supplied by manufacturer, and B2 oligonucleotides were added
to each hybridization cocktail. PolyA controls (lys, phe, thr, dap)
and hybridization controls (BioB, BioC, BioD and Cre) were used
to monitor labeling and hybridization. Freely available software
R (R Core Team, 2015) and associated library packages were
employed for statistical computing. Raw data from microarrays
were subjected to preprocessing analysis incorporating functions
from Affy package library (Gautier et al., 2004), with emphasis
on boxplots, density plots and Bland-Altman plot modification
(MVA plot). Subsequently, Robust Multi-array Average method
(RMA; Irizarry et al., 2003) from the same library was
implemented for normalization. With the aid of this algorithm,
background noise and processing artifacts were eliminated.
Alongside, an iterative median polishing procedure summarized
the data and generated a single expression value for each probe
set. After normalization, repeated data verification was made by
tools from initial analysis. Arrays exclusively meeting the criteria
as recommended by manufacturer were submitted to further
evaluation.

Differentially expressed genes (DEGs, |log2-fold| ≥ 2)
were identified via linear model for microarray analysis from
Limma library package (Smyth, 2005). Using this model,
pairwise analysis of individual samples against all others was
accomplished, considering P-value < 0.05 as threshold of
expression differences significance. Duplication discarding
procedure provided reduction of redundant probe sets to unique
records, which figured in repeated RMA as a restriction criterion.
To reach comprehensive classification of mutual interactions
across observed samples, expression values matching sorted
probe sets were tested using principal component analysis
(PCA) from a map library package (Lucas, 2014). Enhanced
heat map (gplots library; Warnes et al., 2015) combined with
hierarchical clustering was involved in manifesting disparity
within RNA samples originated from drought-treated plants.
Log2-transformed differences in transcription activity of
described samples over parallel controls were color-scaled
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based on expression strength and clustered as measurement
of similarity. In probe sets arising of aforesaid comparison,
searching was done for numbers of genes specific or common
to distinct stressed samples. Differentially expressed genes
specific/common to singly treated samples was visualized using
quad-set Venn diagrams (VennDiagram; Chen, 2013).

The linear model combined with moderate F statistics (Smyth,
2005) was used to identify genes with variety-specific response
to drought, i.e., genes with a strong response to drought in one
variety and low response in the second variety. The resulting
variety-specific response was plotted as a scatter plot. Genes that
do not respond to stress or respond similarly in both varieties are
located in the origin, whereas variety-specific responding genes
are located outside the origin.

Annotation of differentially expressed genes was mediated by
Plexdb annotation tool. Consensus sequences of selected probes
were blasted against Uniref90 (last release) using blastx with
maximum e-value of 1e-4.

Water Content, Water Saturation Deficit,
and Osmotic Potential Assessment
The water content (WC, % of water weight to fresh weight)
was measured in the crowns (under-ground bases (nodes) of
plants), and the second leaves for both treatments. Moreover,
the water saturation deficit (WSD) and osmotic potential (OP)
were measured in leaf 2. OP was determined psychrometrically
from the leaf sap, using a Wescor HR-33 microvoltmeter (USA)
with C52 sample chambers. Results were expressed in MPa,
determined by reference to calibration solutions of NaCl. WSD
was determined in cut leaf segments (1 cm length) which were
rapidly weighted (FW), then water-saturated in a wet sheet of
foam, and weighted after 3 h (W3) and 6 h (W6), and finally
after drying at 90◦C (DW). WSD was calculated by Slavík
(1974): WSD (%) = [(2W3 – W6 – FW)]/[(2W3 – W6 –
DW)]× 100.

Abscisic Acid and Assessment of
Dehydrin Proteins
The samples for (±) ABA analysis were homogenized and
extracted into distilled water (0.1 g FW/1 ml H2O), shaken for
16 h under cold (4–5◦C) and dark conditions, and processed
by indirect ELISA according to Asch (2000). For each sample,
we used three replicates on a microtitre plate. An extinction
photometer SUNRISE Remote (Tecan, Germany) was used to
measure color intensity of the final product at 405 nm, and the
ABA concentration was calculated.

The dehydrin extraction as well as the 1D SDS-PAGE and
immunoblots analyses were performed according to Vítámvás
et al. (2007). Proteins were separated by SDS-PAGE on 10%
gels (Laemmli, 1970; Multigel-Long, 24 well comb, Whatman
Biometra). About 3 µg of soluble proteins (upon boiling)
extracted from crowns and leaves were loaded on gels. To
compare intensities of different samples on different membranes,
calibration samples with different load (cca 1:5 of crown tissue)
were added on gels as well. Precision Plus Protein All Blue
Standards, mixture of ten blue-stained recombinant proteins (10,

15, 20, 25, 37, 50, 75, 100, 150, 250 kDa) were also added to gels.
Gels were stained by Bio-Safe Coomassie (Bio-Rad) to obtain
sample load controls. The relative accumulation of dehydrins
was determined densitometrically using Quantity One software
(Bio-Rad, v. 4.6.2., Munich, Germany).

Statistical Analysis (WC, WSD, OP, ABA,
and Dehydrin Proteins)
Results were expressed as averages calculated from six repetitions,
and compared using a T-test, ANOVA analysis, and Duncan’s
multiple range test at the 0.05 level (Statistica v. 10 software,
StatSoft, Tulsa, OK, USA).

RESULTS

Water Content, Water Saturation Deficit,
and Osmotic Potential
Water content significantly decreased in all parts of plants under
WS (water stress) conditions (Figure 2A). Reduction of WC was
greater in the crowns than in the leaves. However, Tad retained
significantly higher WC in the leaves and crowns than Amu did
in WS plants. WSD increased and OP decreased in the second
leaf in both varieties after WS conditions. WSD was higher and
OP was lower in Amu than in Tad (Figures 2B,C).

These results showed that both varieties reached water scarcity
under WS conditions. However, Tad lost less water and suffered
lower water deficit than Amu.

ABA Content and Dehydrin Accumulation
The content of ABA significantly increased in both varieties
under WS conditions. The level of ABA increased much more in
Tad than Amu, although its lower content in Tad control plants
(Figure 2D) indicating the important signaling role of ABA in the
adaptation to drought stress.

Among DEGs, two were presented that encode key enzymes
participating in ABA biosynthesis, 9-cis-epoxycarotenoid
dioxygenases NCED9 (at1g78390.1) and NCED4 (at4g19170.1).
These two genes, however, show different trend of expression
(see Table 1). NCED9 significantly increased its expression in
leaves of both genotypes with Amu having the higher level, while
NCED4 lowered its expression in leaves of both genotypes and
such decline was stronger in Amu. Although in both cold and
drought stress ABA seems to play a central role in the basal stress
response, the mechanisms which ABA is regulated might differ.
For example the NCED4 gene was up-regulated in cold stress
treatment in our previous study (Janská et al., 2014).

Immunoblot analysis of leaf and crown samples revealed
five detectable dehydrin bands of different molecular weights:
82, 28, 25, 20, and 18 kDa (Figure 3A). In all samples, the
most abundant dehydrin protein was 80 kDa, corresponding to
dehydrin 5 (Kosová et al., 2010). The composition of individual
dehydrins was different in the two varieties. For example, the
25 kDa dehydrin was characterized in Tad, whereas the 28 kDa
dehydrin was found in Amu. The relative content of dehydrins
was higher in the crowns than in leaves in both varieties, and the
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FIGURE 2 | (A) Water content (WC) in leaf and crown, (B) water saturation deficit (WSD), (C) osmotic potential (OP) and (D) abscisic acid content (ABA in leaves of
two barleys (Amu and Tad) from well-watered (WW) and water-stressed (WS) conditions. Error bars represent mean ± standard deviation. The means with the same
letters above the bar are not significantly different.

TABLE 1 | Differentially expressed genes (DEG)s encoding ABA biosynthetic enzymes.

IDa Log2 FCb Affymetrix annotationc AGId

Amuleaf Amucrown Tadleaf Tadcrown

HT11N18r_s_at 3.548 0.654 1.106 −0.281 viviparous-14 protein at1g78390.1

Contig4988_at −2.232 0.049 −1.151 0.445 9-cis-epoxycarotenoid dioxygenase at4g19170.1

aAffymetrix 22 K Barley1 GeneChip Genome Array probe ID. bLog2 transformed fold change of treated samples against parallel controls. cMicroarray manufacturer
(Affymetrix) annotation of individual IDs. dArabidopsis locus identifier corresponding to individual IDs.

density of all dehydrins was higher in the crowns of Amu than
those of Tad in WS conditions (Figure 3B).

In treated barley plants we identified 16 genes encoding
dehydrins which compared to the non-treated plants were
significantly expressed (see Table 2). Based on the expression
changes, we can conclude that in the crowns Amu exhibited
higher expression of dehydrin-encoding genes than Tad did.
However, significant difference between the cultivars was
recorded only for genes encoding dehydrins 5 (at3g50970.1) and

10 (at3g50970.1; at2g21490.1). Tad exhibited higher expression of
certain dehydrin-encoding genes in leaves compared to Amu.

Global Comparison of Expression
Profiles
To investigate mutual interactions within dataset, pairwise
analysis of every sample combination was performed
followed by PCA of RMA subjected expression values
matching DEGs (|log2-fold| ≥ 2, P ≤ 0.05). As is evident
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FIGURE 3 | (A) Coomassie stained gel (left) and protein gel blot (right) showing proteins soluble upon boiling and dehydrin protein accumulation, respectively.
Proteins were separated by SDS-PAGE on 10% gels [11 × 12 cm (w × l), 24 well comb]. About 3 µg of crown (C) and leaf (L) proteins soluble upon boiling were
loaded on the gels. St represents the Precision Plus Protein All Blue Prestained Protein Standards, mixture of ten blue-stained recombinant proteins (10, 15, 20, 25,
37, 50, 75, 100, 150, 250 kD). R represents calibration samples (1:5 of crown tissue) for comparison intensities of different membranes. (B) Dehydrin protein density
in leaf and crown of two barleys (Amu and Tad) from well-watered (WW) and water-stress (WS) conditions. Error bars represent mean ± standard deviation. The
means with the same letters above the bar are not significantly different.

from PCA (Supplementary Figure 1) the distinction of
biological replicates within individual samples represents a
smaller component of total variance than variability across
observed samples, thus adding further confirmation of data
quality.

Differentially Expressed Genes (DEGs)
Susceptible variety Amu exhibited higher number of DEGs as
a response to drought stress (Figure 4). Moreover, Amu has
responded to stress more strongly in crown tissue (727) than
in the leaf tissue (651), while Tad has been characterized by an
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TABLE 2 | Differentially expressed genes encoding dehydrins.

IDa Log2 FCb Affy.anot.c Structural typed AGIe

Amu leaf Amu crown Tad leaf Tad crown

Contig1701_s_at 6.187 7.436 6.826 5.989 Dhn 2 YnSKm at3g50980.1

Contig1721_at 5.218 7.554 6.159 6.132 Dhn 2 YnSKm at5g66400.1

Contig1724_s_at 8.082 7.589 8.091 6.984 Dhn 3 YnSKm at5g66400.1

Contig1713_s_at 7.854 8.426 7.693 7.071 Dhn 4 YnSKm at5g66400.1

Contig1717_s_at∗ 0.622 3.228 1.363 1.111 Dhn 5 Kn at3g50970.1

HVSMEa0006I22r2_s_at 0.393 4.775 2.036 3.699 Dhn 5 Kn at3g50970.1

Contig1708_s_at 0.311 2.767 0.261 3.113 Dhn 6 YnSKm at4g01985.1

Contig1709_at 7.493 7.551 7.307 6.527 Dhn 7 YnSKm at5g66400.1

Contig1725_s_at 7.367 9.022 7.305 7.168 Dhn 8 SKn at5g66400.1

Contig2855_at 1.159 0.763 0.772 −0.504 Dhn 8 SKn at1g20440.1

Contig1718_s_at 5.163 5.324 4.024 4.247 Dhn 9 YnSKm at3g50980.1

Dhn10(Morex)_s_at∗ 6.473 6.989 4.208 3.790 Dhn 10 YnSKm at3g50970.1

Contig13753_at∗ 5.343 6.502 3.499 2.955 Dhn 10 YnSKm at2g21490.1

Contig10207_s_at 0.704 1.644 −0.139 1.076 Dhn 11 YnSKm at5g66400.1

Dhn12(Morex)_at −0.176 −0.197 1.698 0.573 Dhn 12 YnSKm at5g66400.2

Contig15845_s_at 0.131 0.136 1.611 0.195 Dhn 12 YnSKm at5g66400.2

aAffymetrix 22 K Barley1 GeneChip Genome Array probe ID. bLog2 transformed fold change of treated samples against parallel controls. cMicroarray manufacturer
(Affymetrix) annotation of individual IDs. dStructural type of individual dehydrins. eArabidopsis locus identifier corresponding to individual IDs.

FIGURE 4 | Quad-set Venn diagram displaying numbers of genes, which were differentially transcribed between control and drought stress
condition. Overlapping, exclusive regions in diagram correspond to DEGs common or specific to single treated samples. Numbers above sample names represents
total tally of DEGs recorded in single treated samples on chosen level of significance.

inverse relationship (leaf – 489, crown – 360). Eighty DEGs were
common to all treated samples (Figure 5).

DEGs Common to All Treated Samples
Of the 80 DEGs common to all treated samples, [65 up-
regulated, 14 down-regulated, 1 inversely regulated (Figure 5,
Supplementary Table 1)], there we found four overrepresented
groups: those DEGs associated with ABA (17 genes), water
deprivation (11 genes) and osmotic stress (16 genes) and those
encoding lipid transfer proteins (LTPs, 8 genes) that point
out to the central role of ABA and osmotic regulation in the

face of drought stress independent of the genotype tolerance
level.

Abscisic acid is the key mediator of dehydration signaling
and is also involved in responses to other abiotic stress response
pathways including salt stress or cold (e.g., Ding et al., 2013). This
is true mainly for group of genes encoding dehydrins strongly
up-regulated and overrepresented in this category, esp. DHN5,
7 and 10 as annotated for barley [DHNs 5, 2, 3 (at5g66400.1)
and DHN1 (at3g50970.1) as annotated for Arabidopsis thaliana].
Among DEGs commonly up-regulated in all treatments and
genotypes, P5CS (delta1-pyrroline-5-carboxylate synthase
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FIGURE 5 | Expression disparity and cluster analysis of genes, which were differentially expressed between control and drought stress condition.
DEGs common to all treated samples were used, unknown, and hypothetical proteins were excluded from analysis. The color saturation reflects the fold change as
visualized in color key. T is Tadmor, A is Amulet, L is leaf and C is crown.
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FIGURE 6 | Genes differentially expressed in Tad relative to Amu: (A) enhanced expression in leaf, (B) reduced expression in crown, (C) reduced expression in
leaf (D) enhanced expression in crown. Horizontal axis corresponds to expression values of individual genes in crowns, while on vertical axis, there are expression
differences recorded in leaves.

1, at2g39800.4) important for proline biosynthesis or ADC
(at4g34710.2, arginine decarboxylase 2) involved in the first
step of polyamine synthesis were represented. Down-regulation
of aquaporins (at3g53420.2) is an important step in water
retention.

From the group of LTPs, the most overrepresented LTP4
(at5g59310.1) is also strongly induced by ABA and localized to
the cell wall.

The other two overrepresented functional categories, osmotic
stress and water deprivation combines genes from both the
ABA-regulated and LTPs groups, excluded genes coded for
ABA signaling pathway inhibitors NF-X-like 1 (at1g10170.1)
and protein phosphatase 2CA (PP2C, at3g11410.1). PP2C hub
allows the coordinated activation of ABA and energy signaling,
strengthening the stress response through the cooperation of two
key and complementary pathways (Rodrigues et al., 2013).

Protein phosphatase 2C (PP2C) is known to act
antagonistically to MAPKKK kinase cascade and SnRK involved
in ABA-mediated signaling and signal transduction from
plasmalemma to nucleus. It is known that ABA receptor PYR1
activated by ABA inhibits PP2C (Park et al., 2009). Differential
phosphorylation of PP2C under drought with respect to control
conditions was found in drought-treated wheat (Zhang et al.,
2014).

Differentially Expressed Genes Responding
Differently in the Tolerant Variety Relative to the
Susceptible Variety
Using the linear model in combination with moderated
F statistics we identified DEGs responding differently in

the tolerant genotype relative to the susceptible variety
(Figures 6A–D). We presume that modulated expression of
such genes is a factor, which provides the tolerant cultivar a
competitive advantage over the susceptible one under water
scarcity.

Genes Whose Expression Is Enhanced in Tad
Relative to Amu in Leaves
First group of 90 DEGs (28 unknown) covers probe sets
whose expression is enhanced in Tad relative to Amu in
leaf tissue (Figure 6A, Supplementary Table 2). These genes
are profusely represented by those encoding various classes
of heat shock proteins [HSPs: 2x HSP17.9 (at5g59720.1), 6x
HSP17.8 (at5g12020.1), 2x HSP40 (at3g44110.1, at1g56300.1),
2x HSP70 (at3g12580.1), 2x HSP80 (at5g56010.1), 1x HSP100
(at2g25140.1)]. Small HSPs as well as HSP70 and HSP100
are well known as drought-responsive (Ristic et al., 1998;
Grigorova et al., 2011a,b). We also detected gene encoding
TPR-repeat protein (at1g62740.1), which is an important
component of protein–protein interactions and coordinates
HSP70 and HSP90 co-chaperone activity (Song and Masison,
2005).

Another genes represented encode proteins similar to
zinc finger protein (at5g64920.1) and myb-related protein
(at4g39250.1). Expression of these proteins frequently followed
water deprivation and sometimes they alleviated drought impact
or conferred desiccation tolerance (Martin and Paz-Ares, 1997;
Takatsuji, 1998; Mukhopadhyay et al., 2004; Cominelli et al.,
2005; Dai et al., 2007; Xu et al., 2008; Ding et al., 2009; Qin et al.,
2012).
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Among genes enhanced in Tad relative to Amu in
leaves, there were also those encoding enzymes acting in
sulfur metabolism (adenosine 5′-phosphosulfate reductase
(APR; at4g04610.1), cysteine synthase (CSase; at3g22460.1),
homocysteine S-methyltransferase-3 (HMT-3; at3g63250.1,
at3g63250.2). Tad also achieved higher expression level of genes
encoding proteins related to lipid biosynthesis or transport as
well as to cutin formation (GDSL-motif lipase/hydrolase-like
protein; protein (GDSL; at5g55050.1), lipid transfer protein (LTP;
at4g12480.1). It was proved that changes in lipid composition
may help to maintain membrane integrity and preserve cell
compartmentation under water shortage (Blum and Ebercon,
1981; Quartacci et al., 1995; Aziz and Larher, 1998; Toumi et al.,
2008). A positive relation between cutin content and drought
tolerance was also observed (Yang et al., 2011).

Higher transcription activity of genes encoding purple acid
phosphatase (PAP; at1g52940.1) and ferritin (at3g56090.1) in
Tad can be credited to their ROS scavenging activities. PAP
from Arabidopsis plants was described to accumulate in response
to phosphate starvation, ABA, salt stress and oxidative stress
(del Pozo et al., 1999). In addition, it was confirmed that
mitochondrial PAP reduced ROS, which alleviated osmotic stress
in soybean plants (Li et al., 2008). Increased ferritin activity
followed after drought exposure was also described (Jiang et al.,
2012; Xu and Huang, 2012; DeLaat et al., 2014).

Better ability to cope with water scarcity could be also credited
to an over-expression of probe sets encoding receptor protein
kinase (at3g51550.1), or peptidyl-prolyl cis-trans isomerases
(PPs FKBP77 (at3g25230.2), which were described as drought
responsive (Guo et al., 2009). In leaves, Tad also effectively
employed genes encoding glutamate decarboxylase (GAD;
at2g02000.1) and anthranilate-synthase (AS) alpha 1 subunit
(at3g55870.1). GAD drives a conversion of glutamic acid to
γ-aminobutyric acid. Experiment with two contrasting wheat
cultivars showed an importance of this non-protein amino acid
for desiccation tolerance acquisition (Saeedipour and Moradi,
2012).

Genes Whose Expression Is Reduced in Tad Relative
to Amu in Leaves
Within a group of genes whose expression was reduced in
Tad relative to Amu in leaves [95 DEGs (30 unknown),
Figure 6C, Supplementary Table 4], there were those encoding
jasmonate induced-proteins [unspecified JIP (at3g51430.2)
and JIP60 (at5g01280.1)]. JIP60 is involved in translation
regulation or processes such as leaf senescence or programmed
cell death (Sembdner and Parthier, 1993; Chaudhry et al.,
1994).

Co-inhibition of phenylalanine ammonia-lyase (at2g37040.1),
chalcone synthase (at5g13930.1) and bZIP protein HY5
(at5g11260.1) by Tad lead us to a suggestion about anthocyanins
accumulation blocking in Tad or its stimulation in Amu.
Tad also showed reduced expression of genes encoding
proteins connected to secondary cell wall properties [cellulase
(at3g44990.1), cellulase synthase OsCsIE1 (at1g55850.1),
expansin (at1g69530.2), O-methyltransferase ZRP4 (OMT ZRP4;
at4g35160.1)].

In a group of leaf specific transcripts whose expression
is reduced in Tad relative to Amu, there are several genes
encoding photosynthesis-related proteins [chlorophyll a/b
WCAB precursor (at2g34420.1), chlorophyll a/b protein 25
(at2g34420.1), light-inducible protein CPRF-2 (at5g28770.2)] as
well as genes encoding gibberellin and cytokinin biosynthesis
enzymes [kaurene synthase (at1g79460.1) and cytokinin oxidase
(at1g75450.1)].

Genes Whose Expression Is Enhanced in Tad
Relative to Amu in Crowns
Among genes whose expression was enhanced in Tad relative
to Amu crowns (40 DEGs (13 unknown), Figure 6D,
Supplementary Table 5), the most abundant were transcripts
encoding jasmonate induced proteins [JIPs; 32.6 kDa JIP
(at1g19715.3), 32.7 kDa JIP (at1g19715.3), 23 kDa JIP, unspecified
JIP, thionin (at1g66100.1), thionin Osthi (at2g15010.1), 12-
oxophytodienoate reductase (OPR; at1g76680.1)]. Jasmonates is
a group of plant hormones widely influencing physiological and
developmental processes within plants. In addition, they perform
a key role in response to stress of both biotic and abiotic nature
(Santino et al., 2013). In plants, jasmonates can induce de novo
synthesis of proteins (JIP – jasmonate induced proteins).

Similarly to leaves, even within crown tissue, there were
overrepresented transcripts encoding proteins involved in or
connected to cell wall properties [(LTP; at4g12500.1), caffeic acid
O-methyltransferase (COMT; at5g54160.1), shikimate kinase
(at2g21940.5)]. A higher number of transcripts encoding these
proteins within crown suggests, that tissue tolerance relies on cell
wall modification processes. As noted, LTPs proteins participate
not only in lipid transport, but play an important role in cutin
digestion as well. This polymer represents a matrix for a lipophilic
barrier and ensures various functions in plants (Pollard et al.,
2008). Cutin beneficial effects on drought tolerance have been
described previously (Chen et al., 2011; Seo and Park, 2011;
Al-Abdallat et al., 2014).

Crowns of tolerant genotype also showed high transcriptional
activity of gene encoding DNA-binding protein ABF2
(at1g80840.1), a basic domain/leucine zipper transcription
factor that cooperatively regulates ABRE-dependent ABA
signaling involved in tolerance to drought and other stresses
(Kim et al., 2004; Fujita et al., 2005; Yoshida et al., 2010).
ABF2 and other master transcriptional factors are induced by
dehydration, high salinity, or ABA treatment in vegetative tissues
(Fujita et al., 2005), and their gain-of-function mutants showed
lower drought stress tolerance (Kim et al., 2004; Fujita et al.,
2005).

In the crown of Tad, there was also the higher level of
genes encoding proteins associated with nucleosome remodeling
[Histone H3 (at5g65360.1), H4 (at5g59970.1)].

Genes Whose Expression Is Reduced in
Tad Relative to Amu in Crowns
Among crown-specific transcripts whose expression is reduced
in Tad relative to Amu [39 DEGs (13 unknown), Figure 6B,
Supplementary Table 3], there were some genes encoding
HSPs such as HSP17 (at5g59720.1), HSP18 (at5g59720.1),
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HSP70 (at3g12580.1) and dehydrins [DHN 5 (at3g50970.1),
DHN10 (at3g50970.1, at2g21490.1)] as well as genes encoding
enzymes involved in carbohydrate metabolism [WSI76
(at1g09350.1), sucrose synthase 2 (SuSy2; at3g43190.1)].
Another gene reduced in Tad relative to Amu encodes cytosolic
aldehyde dehydrogenase RF2C (RF2C; at3g24503.1). This
cytosolic aldehyde dehydrogenase is involved in a biosynthesis
of ferulic acid, which has been documented to respond
positively to drought stimuli and to be more accumulated
in drought tolerant genotypes (Hura et al., 2007, 2008,
2009).

Lower transcription activity of genes encoding some proteins
with transcription regulation activities, such as MADS box
protein 5 (at1g69120.1) and methyl binding protein MBD108
(at5g35330.3) were also detected in Tad crowns (Figure 6B,
Supplementary Table 3). Transcriptional regulators are an
important component of plant response to abiotic stresses
including drought. Nevertheless, wide scale study of genes of
MADS-box family showed that some representatives are up-
regulated, while others are down-regulated upon drought (Arora
et al., 2007).

DISCUSSION

Drought tolerance is a very complex trait that relies on the
inherent ability of the plant to sustain growth (likely at a
reduced rate) even when the conditions are unfavorable for
the maintenance of basic plant processes (Peleg et al., 2011)
and includes series of physiological and biochemical responses
(Cattivelli et al., 2008). Therefore, creating tolerant genotypes is
great challenge for genetic engineering (Cattivelli et al., 2008).
Our goal was to bring the comprehensive overview of the most
important processes in barley water stress coping strategies
and to find out the role of crowns in barley drought stress
response.

Our results point out the central role of ABA and osmotic
regulation in the face of drought stress independent of the tissue
and genotype tolerance level in the transcriptomic and proteomic
level as well as on the ABA level in barley leaves and crowns.
ABA is the key mediator of dehydration signaling and is also
involved in responses to other abiotic stress response pathways
including salt stress or cold (e.g., Ding et al., 2013). This is true
mainly for group of genes encoding LEA (late embryogenesis
abundant) proteins including dehydrins strongly up-regulated in
the susceptible as well as tolerant cultivar. These proteins are well
documented to accumulate in plants affected by water scarcity,
where they prevent conformation changes of other proteins that
could lead to loss of their activity and under most severe drought
also to their denaturation or aggregation (Goyal et al., 2005). LEA
proteins accumulate in response to drought in all vegetative parts
of the plant, so it is not surprising that in our experiment, LEA
proteins encoding genes were strongly induced by stress in both
investigated tissues. However, the fact that some LEA protein-
encoding genes were strongly accumulated in leaf, while others in
crowns supports the hypothesis about importance of both leaves
and crowns in water deficit coping strategies. Dehydrin genes

including high-molecular Kn type dehydrin 5 (DHN5) as well
as low-molecular YxSKn type dehydrins found in immunoblots
(protein gel blots) are induced by ABA. Although Tad revealed
higher levels of ABA, dehydrin protein accumulation was lower
in Tad than in Amu.

Genes commonly responsive to drought were also represented
by those encoding HSP70 and PDI-like protein, which participate
in protein folding processes, including prevention of aggregation
of proteins into large potentially cytotoxic complexes. Similarly
to LEA, HSP70 and PDI-like protein encoding genes were
numerously observed to accumulate under dehydration (Cho and
Hong, 2006; Cho and Choi, 2009; Guo et al., 2009; Zhu et al.,
2014; Augustine et al., 2015). From the group of LTPs, the most
overrepresented LTP4 expressed differentially in all samples, is
also strongly induced by ABA and localized to the cell wall.
LTP4 is predicted to be a member of PR-14 pathogenesis-related
protein and involved in a wide range of abiotic stress responses
(Gao et al., 2015). Down-regulation of aquaporins is an important
step in water retention. This observation is similar to our previous
experiments with cold treatments in barley (Janská et al., 2014).

Among DEGs commonly up-regulated in all treatments and
genotypes, ADC, involved in the first step of polyamine synthesis,
P5CS important for proline biosynthesis or gene encoding
galactinol synthase, were represented. It has been observed, that
expression of ADC in drought treated plants led to several
positive changes, including membrane stabilization, an increase
in free proline content, an improvement of water use efficiency
and net photosynthesis and other processes that enhanced plant
tolerance of affected plants (Farooq et al., 2009). P5CS is linked to
a biosynthesis of an amino acid proline. Similarly to polyamines,
proline also acts in various tasks within drought-treated plants,
including photosynthesis (Szabados and Savoure, 2010). WSI76
is thought to encode galactinol synthase, which catalyzes the
first step in the biosynthesis of raffinose family oligosaccharides
(RFO) and has been found out to accumulate in seed and
vegetative part of plants after desiccation (Liu et al., 1998; Taji
et al., 2002; Li et al., 2011; Sun et al., 2013). Genes encoding WSI76
were shown to reach the highest expression level in leaf tissue of
Tad (Figure 5, Supplementary Table 1).

Our results point out the exceptional role of ABA in coping
with drought stress independent of tissue type and tolerance level
as well as important role of genes encoding proteins induced by
ABA and involved in osmotic adjustment such as LEA proteins
and genes encoding osmolyte biosynthesis enzymes.

Genes Whose Expression Is
Reduced/Enhanced in Tad Relatively to
Amu
There are some Tadmor specific transcriptional responses to
drought stress that could be the important components of the
complex response of the high drought stress tolerant cultivars.
Tadmor leaves remarkably enhanced expression of various classes
of heat shock proteins after drought treatment. Results of
some papers suggest that some HSPs could represent a possible
source of drought tolerance. For example, Grigorova et al.
(2011a) monitored an effect of combined drought-heat stress
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on the expression of selected HSPs in two contrasting wheat
cultivars and detected a higher accumulation of smHSPs in
drought tolerant genotypes. In addition, Guo et al. (2009)
in large scale expression profiling of three variously drought-
resistant cultivars, registered HSP17.8 as a specific response of
tolerant genotypes. On the contrary, authors recorded HSP17.9
in both tolerant and susceptible cultivar. Similarly, HSP70 was
reported to confer drought tolerance in plants (Cho and Choi,
2009). However, HSP70s are a variable group and not all
representatives are drought-responsive (Sarkar et al., 2013). In
barley, the gene encoding this protein was induced in both
tolerant and susceptible genotype (Guo et al., 2009). HSP80
was described to create complexes with HSP70 in Neurospora
crassa (Ouimet and Kapoor, 1998) and, as such, they could
be relevant in drought defense. Presence of HSP40s (DnaJ)
could be credited to their co-activity with HSP70s and their
capability to drive functional specificity of HSP70s (Cyr et al.,
1994). However, some papers also suggest HSP40s significance
for photosynthetic reactions (Chen et al., 2010). Thus these
proteins could significantly contribute to drought tolerance. We
also detected enhanced expression of gene encoding TPR-repeat
protein, which is an important component of protein–protein
interactions and coordinates HSP70 and HSP90 co-chaperone
activity (Song and Masison, 2005). Increased TPR activity upon
drought-stress is well documented (Rosado et al., 2006; Zhu et al.,
2013).

Our results support also the statement of Chan et al. (2013)
that certain steps in sulfur metabolism are of great importance
in drought stress signaling and response. Based on the above,
we deduced that one of the defense strategies of tolerant
cultivar facing water scarcity is an improved utilization of
sulfur.

It was proved that changes in lipid composition could
help to maintain membrane integrity and preserve cell
compartmentation under water shortage (Blum and Ebercon,
1981; Quartacci et al., 1995; Aziz and Larher, 1998; Toumi et al.,
2008) as well as a positive relation between cutin content and
drought tolerance (Yang et al., 2011). Because Tad also achieved
higher expression level of genes encoding proteins related to
lipid biosynthesis or transport as well as to cutin formation,
we suggest that increased activity of GDSL as well as LTPs in
response to drought could be another mechanism of tolerant
cultivar to cope with water scarcity.

The altered lipid metabolism is probably important drought
stress tolerance mechanism not only in leaves, but also in the
crowns. Besides gene encoding LTPs, two transcripts encoding
caffeic acid O-methyltransferase (COMT) were presented.
COMT was recently described as modulator of lignin content
and composition (Guo et al., 2001). There are also some
evidences about COMT contribution to drought tolerance (Hu
et al., 2009). Shikimate kinase, which expression was also
enhanced in Tad crowns after drought stress, plays a pivotal
role in the formation of aromatic secondary compounds in
plants and finally leads to the formation of, for example,
stilbenes, flavonoids, and lignins. Considering the above, our
assumption is that tolerant genotype efficiently utilizes and
modulates lignin biosynthesis. Such effort may result from an

endeavor to preserve tissue itself. Second alternative is that
crown alters lignin in order to strengthen roots endurance.
Observed roots lignification upon drought in several thesis
supports such hypothesis (Cruz et al., 1992; Vartanian et al.,
1994).

Tad crowns enhanced expression of genes connected to
jasmonate signaling such as small JIPs (JIP 32.6, JIP 32.7, JIP
23), OPR and thionins. JIP23 is the most abundant barley JA
induced protein and was reported to be localized specifically
in highly osmotically stressed cells (Hause et al., 1996). These
findings together with our results suggests its role in drought-
stress response of plants. OPR is an enzyme directly involved
in jasmonate biosynthesis and was recorded to enhance osmotic
and salt stress tolerance in Arabidopsis plants during seed
germination (Gu et al., 2008). Thionin represents one of the main
jasmonate-induced proteins usually documented as a response
to biotic stresses (Bohlmann et al., 1988; Carmona et al., 1993;
Molina et al., 1993; Epple et al., 1997; Muramoto et al., 2012).
Nevertheless, thionin up-regulation after drought exposure was
described as well (Ozturk et al., 2002).

In the crowns of Tad, there we found out enhanced expression
of genes encoding proteins associated with nucleosome
remodeling (histone H3 and H4). The altered expression of such
genes was described to be mechanism of barley freezing and cold
tolerance. Since the gene expression of such genes was altered
exclusively in the crown (Janská et al., 2011, 2014) and because
freezing similar to drought causes cell dehydration, we conclude
that differential expression of histones encoding genes might be
also one of the mechanisms that enables Tad to cope with water
stress.

Our results provide support to the proposal made by Fowler
and Thomashow (2002) that the selective repression of genes
is likely to represent a major component of the acclimation
response. We suggest this implication also for drought stress.
This is probably true for groups of genes promoting growth and
genes encoding proteins involved in programmed cell death or
senescence in the face of drought stress. Such genes could help
the tolerant genotypes to redirected the energy toward stress
adjustment mechanisms and prevent leaf senescence or death.
So, Tad negatively regulated genes encoding enzymes involved
in biosynthesis of gibberellin and cytokinin, phytohormones
inducing cell division and growth. That suggests expression of the
genes involved in active growth and development in Amu during
drought stress. On the other hand, Tad facing drought lowered
transcription of such genes in order to survive. Endeavor of Amu
for active growth facing drought is supported by higher activity
of pseudo-response regulator (PRR; at5g60100.2) encoding gene.
The PRR is a part of regulatory pathway, which (via CONSTANS
and VRN3/FT1 genes) can induce transition from the vegetative
to the reproductive phase under long day.

Also decreased transcription activity of genes for cellulase,
cellulase synthase and expansin indicates reduced cell wall
elongation in Tad contrary to Amu and therefore cessation of
plant growth in Tad. Some negative effect on plant growth
could also have a gene encoding NAC6 (at1g01720.1; Figure 6C,
Supplementary Table 4). This transcriptional factor was described
to induce drought tolerance (Nakashima et al., 2007, 2012).

Frontiers in Plant Science | www.frontiersin.org 12 December 2016 | Volume 7 | Article 1958

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01958 December 24, 2016 Time: 11:26 # 13

Svoboda et al. Barley’s Crown Drought Coping Strategy

However, such improvement was redeemed by a retarded growth
and a lower productivity of plants.

Drought leads to a repression of many genes related to
photosynthesis at transcriptional level (Chaves et al., 2009). This
is true also for our results. Repression of such genes may also
resulted from photosynthetic accommodation strategies of Tad,
such as reduced chlorophyll content (Tardy et al., 1998; Havaux
and Tardy, 1999).

Higher transcription of genes encoding JIP60 along with genes
for bowman-birk type trypsin inhibitor (at2g40070.2), subtilase
(at5g11940.1) and subtilisin-like proteinase (at5g11940.1), in
Tad relative to Amu (Figure 6C, Supplementary Table 4)
indicates leaf senescence or cell death processes in susceptible
genotype or their absence, possibly delaying in the tolerant
one. Delaying of leaf senescence was described as a mechanism
of drought tolerance acquisition (Rivero et al., 2007; Muchero
et al., 2013). Leaf senescence is also related to the changes in
peroxidase activities (Kar and Mishra, 1976). So, a diminution
of peroxidase (at5g05340.1) expression in Tad relative to
Amu (Figure 6C, Supplementary Table 4) could be explained
by an ability of resistant genotype to avoid or postpone
such drought consequences. On the other hand, peroxidase
repression in Tad can be a part of an oxidative burst
blocking or wilting precluding initiative (Lagrimini et al.,
1990).

Co-inhibition of phenylalanine ammonia-lyase, chalcone
synthase and bZIP protein HY5 by Tad lead us to a suggestion
about anthocyanins accumulation blocking in Tad or its
stimulation in Amu. Anthocyanins are well documented to
accumulate upon drought and to confer desiccation tolerance
(Chalker-Scott, 1999; Deeba et al., 2012; Nakabayashi et al.,
2014). In affected plants, anthocyanins probably function as
a barrier against photoinhibition. Considering such facts, one
would expect higher activity in Tad. Nevertheless, results of some
papers suggest that Tad is equipped by different mechanisms
which enable it to prevent photoinhibition (Tardy et al., 1998;
Havaux and Tardy, 1999). That could be a reason why Tad does
not accumulate transcripts which code for anthocyanin-related
proteins.

Recent studies reported an inhibition of root growth by
aldehyde dehydrogenase RF2C in rice plants (Chi et al., 2013),
which expression was reduced in Tad crowns relative to Amu in
our study. Therefore we suggest that Tad might either inhibits or
does not accumulate RF2C in order to sustain root growth.

CONCLUSION

Both genotypes revealed tissue dehydration under drought
conditions as shown at WSD and OP data; however, dehydration
was more severe in Amu than in Tad under the same ambient
conditions. It can be proposed that Tad adopts better water-
saving strategy under drought stress.

Both genotypes induced several genes coded for stress-
responsive signaling proteins (protein kinase HvPKABA1,
protein phosphatase 2C-like protein), transcription factors as
well as effector genes encoding proteins directly involved in stress

acclimation - ROS scavenging enzymes (peroxidase), Cor/Lea
genes (dehydrin DHN2-10, 12; LEA protein, cold acclimation
protein WCOR413, proline rich protein homolog WCOR518),
cold shock proteins, chaperones from HSP family (HSP70), PDI-
like protein (protein disulfide isomerase catalyzing formation of
disulfide bonds – role in redox homeostasis and protein folding –
conformation), lipid transfer proteins, enzymes involved in a
biosynthesis of stress-protective metabolites and osmolytes such
as proline (delta1-pyrroline-5-carboxylate synthetase – a key
enzyme in proline biosynthesis), and others.

Amu revealed under drought stress conditions a higher level
of transcripts associated with processes involved in an active
plant growth and development – PRR factor (psudo-response
regulator – a part of a regulatory pathway leading via CONSTANS
and VRN3/FT1 genes to induction of vegetative-to-reproductive
phase transition under long-day conditions, photosynthesis-
related proteins (chlorophyll a/b-binding proteins), cell wall
elongation (expansin, cellulase, cellulose synthase), biosynthesis
of growth-inducing phytohormones such as gibberellins (ent-
kaurene synthase). As a consequence of higher growth rate, Amu
reveals a more severe dehydration (higher WSD and lower OP
values) than Tad.

Tad reveals a conservative, water-saving strategy (lower WSD,
higher ABA) including a cessation of plant growth and an
enhanced cell wall lignification as indicated by an enhanced
biosynthesis of phenolic compounds (aromatic compounds –
shikimate kinase, chloroplast precursor; lignin – caffeic acid
O-methyltransferase) as well as other compounds with protective
functions.

Several dehydrin genes including high-molecular Kn type
dehydrin 5 (DHN5) as well as low-molecular YxSKn type
dehydrins found in immunoblots (protein gel blots) are induced
by ABA. Although Tad revealed higher levels of ABA, dehydrin
protein accumulation was lower in Tad than in Amu. Regarding
dehydrin transcripts, all drought-treated samples (Amu and
Tad leaves and crowns) revealed enhanced levels of dehydrin
transcripts with respect to control samples.

In leaf Tad effectively stimulates expression of genes encoding
proteins and enzymes involved in protein folding [molecular
chaperones (HSPs)], sulfur metabolism (APR, CSase, HMT-3),
ROS detoxification (PAP, ferritin), Lipid biosynthesis or transport
(GDSL, LTP), signal transduction (receptor protein kinase,
FKPB77) or amino acid biosynthesis (GAD and anthranilate-
synthase alpha 1 subunit).

In crowns, genes encoding proteins and enzymes involved
in cell wall lignification (COMT, shikimate kinase), ABRE-
dependent ABA signaling (ABF2), nucleosome remodeling
(histone H3, H4) were strongly stimulated in Tad along with
genes for numerous jasmonate induced proteins (OPR, thionin,
JIP23) suggesting the important role of crowns in water
deprivation response.
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