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Effects of nitrogen (N) deficiency and sucrose (Suc) addition on regulation of anthocyanin
biosynthesis and their relationship were investigated in this study. Radish sprouts
subjected to N deficiency had 50% higher anthocyanin accumulation than when grown
in Hoagland solution (a nutrient medium with all macronutrients). The contents of
endogenous soluble sugars (Suc, fructose, and glucose) in the hypocotyls were also
markedly increased by N limitation, with Suc showing the highest increase. Inhibition
of carbohydrate biosynthesis by addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea
(DCMU) also eliminated N deficiency-induced anthocyanin accumulation. The latter
was further supported by the expression of anthocyanin biosynthesis related genes
and decreased activities of nitrate reductase in the presence of Suc. Together our
results indicate that N deficiency-induced anthocyanin accumulation was, at least partly,
dependent on the increase of the soluble sugar, especially Suc. This work is the
first comprehensive study on relationship between N deficiency and sugar content on
anthocyanin accumulation in the hypocotyls of radish sprouts.
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INTRODUCTION

Anthocyanins represent a large class of flavonoids due to the wide range of chemical structures
derived from their synthesis (Andersen et al., 2010). As a natural pigment, anthocyanins provide
pigmentation, from red and orange to purple and blue in fruits, seeds and leaves (Zhang and
Furusaki, 1999). Besides, anthocyanins are responsible for diverse functions in plants, such as
attracting pollinators in petals, aiding seed dispersal (Landi et al., 2015). Anthocyanins can also
be important as feeding deterrents, as a producer of photoprotective screens against ultraviolet
irradiation damage (Winkel-Shirley, 2001) and as antioxidant molecules protecting against damage
by reactive oxygen species (Nagata et al., 2003). These properties have made them to be the focus of
research, in which their benefits for human health were also explored. Identified health promoting
effects of anthocyanins include stimulating visual acuity and reducing retinal damage (Giampieri
et al., 2015), decreasing expression of inflammatory biomarkers (Samadi et al., 2015), diminishing
risk of type-2 diabetes mellitus (Guo and Ling, 2015), reducing weight gain (Titta et al., 2010), anti-
cancerogenic activity (Forbes-Hernandez et al., 2015) as well as remaining bio-accessible during
digestion (Olejnik et al., 2016).
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Such diverse and important functions of anthocyanins inspire
people to investigate how they are synthesized and by which
signaling pathway their synthesis is regulated. By now, it has been
shown that anthocyanins are synthesized by phenylpropanoid
pathway in which phenylalanine ammonia-lyase (PAL) catalyzes
the deamination of phenylalanine to produce precursors (Huang
et al., 2010). The subsequent enzymes are chalcone synthase
(CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase
(F3H), dihydroflavonol4-reductase (DFR), leucoanthocyanidin
dioxygenase (LDOX), anthocyanidin synthase (ANS), and
UDP-glycose: flavonoid-3-O-glycosyltransferase (UFGT; Passeri
et al., 2016). Despite of the distinct biosynthetic pathway
of anthocyanins, the regulation of their biosynthesis is very
complicated, as the content of anthocyanins in plant tissues
could be modulated by various environmental factors, such
as UV irradiation, phytohormones, salinity, excessive light,
heating, phosphate limitation and diverse biotic stresses (Park
et al., 2013; de Aguiar Cipriano et al., 2015; Su et al.,
2016).

It has been established that nitrogen deficiency could increase
the anthocyanin content in different plant tissues (Lea et al., 2007)
by regulating the transcript levels of anthocyanin biosynthesis-
related genes (PAL, CHS, F3H, DFR, LDOX, and UFGT),
positive and negative transcription factors (MYBs, small R3-MYB
transcription factors; Nemie-Feyissa et al., 2014; Soubeyrand
et al., 2014). In addition, high sucrose concentration has also
been identified as an efficient environmental factor strongly
inducing the anthocyanin accumulation (Nagira and Ozeki,
2004; Ram et al., 2011). In addition to the high expression
levels of anthocyanin biosynthesis-related genes (Hara et al.,
2004; Solfanelli et al., 2006) sucrose-induction of anthocyanin
was related to high osmotic potential in the culture medium
(Solfanelli et al., 2006). Besides, results from Loreti et al. (2008)
indicate a crosstalk between sucrose and hormones (gibberellins,
jasmonate and abscisic acid) in anthocyanin biosynthesis (Loreti
et al., 2008).

Although effects of nitrogen and sucrose, together or separate,
on regulation of anthocyanin biosynthesis have been largely
studied, few of the reports focused on the relationship between
sucrose and nitrogen in regulating the pathway of anthocyanin
biosynthesis. In this study, we investigate their relationship
in regulation of anthocyanin biosynthesis and results showed
that increased soluble sugar, especially Suc, contributed to N
deficiency-induced anthocyanin accumulation.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and
Treatments
Red skin radish (Raphanus savitus L. var. “Cherry Belle”) seeds
were soaked in deionized water for about 12 h, and then put
in moist gauze to germinate. One-day-old uniform seeds were
selected and laid on gauze in plastic containers containing
deionized water. Containers were maintained in an incubator
(Zhejiang United Saifu Laboratory Instrument Co., Ltd., Ningbo,
China) in dark at 25◦C for another 48 h. Then the sprouts

were treated with different solutions and transferred into another
incubator with white light (100 µmol·m−2

·s−1) for another 24 or
48 h.

Nutrition Solution Preparation
One liter of Hoagland nutrition solution contains 945 mg
Ca(NO3)2·4H2O, 506 mg KNO3, 80 mg NH4NO3, 136 mg
KH2PO4, 493 mg MgSO4·7H2O, 13.9 mg FeSO4·7H2O,
18.65 mg EDTA-Na, 2.86 mg H3BO3, 1.81 mg MnCl2·4H2O,
0.22 mg ZnSO4·7H2O, 0.051 mg CuSO4·5H2O and 0.12 mg
Na2MoO4·2H2O. For N deficiency, when nutrition solution
was prepared, KNO3, Ca(NO3)24·H2O and NH4NO3 were
not used, while KCl, CaCl2 were added to keep the constant
concentration of K and Ca, and others were the same as normal
Hoagland nutrient solution. For P deficiency, KH2PO4 was
replaced by KCl, so that P was deficiency in the solution but K
was constant. For S deficiency, MgSO4 was replaced by MgCl2.
For K deficiency, KNO3 and KH2PO4 was not used, while more
NH4NO3 and NaH2PO4 were added to supplement N and P.
For Ca deficiency, Ca(NO3)24H2O was not used, while more
NH4NO3 was add to keep the constant N concentration. For Mg
deficiency, MgSO4 was not used. After preparation, the pH value
of all these solutions was adjusted to 6.0.

Anthocyanin Analysis
The determination of anthocyanin content in the radish
hypocotyls was according to the method developed by Su
et al. (2014), which involves measuring the absorbance (530) of
extracts.

Observation of the Hypocotyls Cross
Section
Hypocotyls of radish sprouts were transected by a blade and
observed under a stereoscopic microscope (Stemi 2000-C; Carl
Zeiss, Germany). Pictures were photographed on a color film
(Powershot A620, Canon Photo Film, Japan).

Quantitative and Real-Time RT-PCR
Analysis
Total RNA was extracted from radish hypocotyl samples using
Trizol extraction reagent (Invitrogen, Gaithersburg, MD, USA)
and high purity of RNA with ratio of 260/280 nm > 1.9 was
used. First-strand cDNA was synthesized in a 20 µL reaction
volume (Thermo Scientific, MD, Lithuania) containing 1 µL
of RevertAid M-MuLV reverse transcriptase and 1 µL of oligo
(dT)18 primer according to the manufacturer’s instructions.
A Mastercycler R© ep realplex real-time PCR system (ABI7500,
MD, USA) with Bestar R© SybrGreen qPCR mastermix (DBI,
Bioscience Inc., Germany) in a 20 µL reaction volume was used
to perform the real-time quantitative PCR reactions according to
user manual.

Primer Expressversion 3.0 (Applied Biosystems) was used to
design all PCR primers targeting actin, PAL, CHS, CHI, F3H,
DFR, LDOX, ANS, and UFGT (Su et al., 2014). All primers
(Supplementary Table 1) were synthesized by Genewiz Bio-
engineering Ltd. Company (Suzhou, China). The identification
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of PAL, F3H, ANS and UFGT in radish genes was based on using
their Arabidopsis orthologs for homology search in databank of
R. sativus available at http://bioinfo.bti.cornell.edu/radish (Shen
et al., 2013). The transcription levels were presented as values
compared to those of corresponding control samples, after
normalization to actin expression levels.

Contents of Soluble Proteins Analysis
Hypocotyl samples (0.05 g FW) were ground in a mortar with
liquid nitrogen, and the powder transferred with 3 mL of a
phosphate buffered solution (pH 7.0) into centrifuge tubes. After
15 min centrifugation at 13,000 g (4◦C), 0.1 mL of the supernatant
was combined with 5 mL of Coomassie brilliant blue G-250
solution. Two minutes later, the soluble protein content (mg g−1

FW) was determined at a wavelength of 595 nm.

Quantification of Soluble Sugar, Free
Amino Acids and Sucrose, Fructose and
Glucose
Fresh samples of the radish hypocotyls (1 g) were ground in a
mortar with 2.5 mL of distilled water. The homogenates were
centrifuged at 10,000 rpm for 15 min, and the supernatant was
used to analyze the contents of soluble sugar, free amino acid,
glucose (Glu), fructose (Fru) and sucrose (Suc). The soluble sugar
content was determined using the sulfuric acid anthrone method
with measurements conducted on a spectrophotometer (UV-
5200 spectrophotometer, Shanghai Metash Instruments Co., Ltd,
Shanghai, China) at a wavelength of 630 nm (Morris, 1948). Free
amino acids content was determined using the ninhydrin method
with measurements done at a wavelength of 570 nm (Moore and
Stein, 1948).

Glc, Fru, and Suc levels were determined by the method from
Gordon et al. (1997). Briefly, for the determination of Glc, the
extract was incubated with 200 µL of buffer (50 mM imidazole,
1 mM MgCl2, 0.75 mM NAD, 0.85 mM ATP) containing 0.04
unit of Glc-6-P dehydrogenase and 0.1 unit of hexokinase, and
then 50 µL samples were assayed in 96-well plate. For Fru
and Suc, phosphoglucose isomerase (0.4 unit/well) and acid
invertase (20 units/well), respectively, were added in the mix
before measurement using a plate reader (TECAN Infinite M
200) at 340 nm.

Analysis of the Activities of Sucrose
Synthase (SS), Sucrose Phosphate
Synthase (SPS), Glutamine Synthase (GS)
and Nitrate Reductase (NR)
Hypocotyl samples (0.05 g FW) were ground in a mortar
with liquid nitrogen and then the powder was transferred
together with 3 mL of a phosphate buffered solution (pH 7.0)
into centrifuge tubes. After 15 min centrifugation at 13,000 g
(4◦C), the supernatant was collected for the analysis of enzymes
activities. Enzyme activities are expressed as moles of metabolite
generated/consumed per milligram of protein per unit of time.

SPS activity measurements were based on the method from
Klann et al. (1993), and 1 U= 0.5 µmol h−1.

SS activity was determined according to Klann et al. (1993).
Absorbance was measured at 540 nm using Fru as a standard with
1 U equal to 0.5 µmol h−1.

For NR, radish hypocotyl tissue (0.1 g) was ground in 1 mL
of buffer containing 50 mM KH2PO4-KOH buffer, pH 7.5, 2 mM
EDTA, 2 mM dithiothreitol, and 1% polyvinylpolypyrrolidone.
NR activity was measured according to the method from Reguera
et al. (2013). The activity of NR was expressed as the amount of
NO2

− produced per unit of fresh weight per hour and 1 U was
0.5 µmol h−1.

GS were determined according to O’Neal and Joy (1973), 1 U
was 1 µmol h−1.

Statistical Analysis
Values presented are means ± standard deviation (SD) of three
replicates. Data was subjected to analysis of variance (ANOVA),
and mean values were compared by Duncan’s and Tukey’s
multiple range test (p < 0.05). All the statistical analyses were
performed using SPSS 19.0 for Windows.

RESULTS

Radish Sprouts Grown in Nutrient
Solutions Show Lower Anthocyanin
Content
In our preliminary experiments, an interesting phenomenon
was observed in which the color of radish hypocotyls varied
depending on the composition of the culture solution used.
As the main pigment responsible for the red color in
radish sprouts are anthocyanins, the anthocyanin contents
in the hypocotyls of radish sprouts grown in Hoagland
solutions of different strengths were measured (Figure 1A).
The results showed that anthocyanin contents increased with
duration of the treatment, peaking at 32 h, after which
anthocyanin contents remained at relative steady levels. In
addition, amount of anthocyanins decreased with increase of
the strength of Hoagland solution, with almost twofold higher
level being measured in radish sprouts grown in deionized
water compared with those grown in full strength Hoagland
solution.

Radish Sprouts Accumulate More
Anthocyanins in Nitrogen Deficient
Conditions
The above finding was used to further investigate whether
a specific component of the Hoagland solution effected
the anthocyanin level. A single-factorial experiments were
designed with one of the nutrients [nitrogen (N), phosphorus
(P), sulfur (S), potassium (K), calcium (Ca) and magnesium
(Mg)] being removed at a time from the Hogland solution.
Radish seedlings were grown in each of the modified
Hogland solutions and assessed for anthocyanin contents
(Figures 1B–D). As shown in Figure 1B, the morphological
characteristics of radish sprouts grown in various conditions
were similar, while a considerable increase of anthocyanin
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FIGURE 1 | Changes of morphology, hypocotyl color and anthocyanin
content in hypocotyls of radish sprouts grown in different nutrient
solutions. (A) Anthocyanin contents in hypocotyls of radish sprouts grown in
different Hoagland nutrient solutions. The germinated radish seeds first were
grown in deionized water under dark condition for 48 h, and then the
deionized water was changed for different nutrient solutions: deionized water
(0 H), 1/4 strength Hoagland solution (1/4 H), half-strength Hoagland solution
(1/2 H) and full-strength Hoagland solution (1.0 H). After that, the radish
sprouts were transferred into incubators with light intensity of
100 µmol·m−2

·s−1, and this time point was considered as 0 h time point. The
hypocotyls were collected after 0, 16, 32, and 48 h of growth for anthocyanin
analysis. (B–D), changes of morphology (B), hypocotyl color (C) and
anthocyanin content (D) in hypocotyls of radish sprouts grown in different
nutrient solutions with various elemental deficiencies. After 48 h growth in
dark, the deionized water was changed for different nutrient solutions with
element deficiency, and sprouts were transferred into light for another 48 h.
Modified Hoagland solutions were deficient in a single nutrient to accomplish
nitrogen (-N), phosphorus (-P), sulfur (-S), potassium (-K), calcium (-Ca) and
magnesium (-Mg) deficiencies. The bar = 2 cm in (B). Data are means ± SD
(n = 3). Mean values were compared by Duncan’s and Tukey’s multiple range
test (p < 0.05).Data labeled with different lower case letters are significantly
different.

FIGURE 2 | The anthocyanin content (A), soluble proteins (B) and
soluble sugars (C) in the hypocotyls of radish sprouts under ascending
N concentrations from 0 to 8.0 mM. Data are means ± SD (n = 3). Data
labeled with different lower case letters are significantly different at P < 0.05.

content was observed only in the absence of N in the
nutrient solution (Figures 1C,D), suggesting that N element
is one of the major contributing factors to the observed
phenomenon.

Nitrogen Addition Decreases
Anthocyanin Accumulation and Soluble
Sugar Content
To investigate the effects of N in the regulation of anthocyanin
biosynthesis, radish seedlings were grown in Hoagland solutions
containing various amounts of N (from 0 to 8.0 mM)
and anthocyanin contents were assessed in the hypocotyl
tissues (Figure 2A). As expected, the contents of anthocyanin
accumulated depended on the N concentration in the nutrient
solution with a progressive decrease of the anthocyanin levels
according to the increase of N concentration. Additionally,
hypocotyls of sprouts grown under excessive N showed more
soluble proteins but less soluble sugars (Figures 2B,C).
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N Deficiency Increases the Contents of
Soluble Sugar and Exogenous Addition
of Sugars Enhance Anthocyanin
Accumulation
Suc, Fru and Glu are three main forms of soluble sugars
in plants (Rosa et al., 2009). In the hypocotyls of radish
sprouts, the concentration of Suc was the highest (approximate
13 mg/g FW), followed by Fru (approximate 10 mg/g FW),
with relatively low concentration in Glu (approximate 5 mg/g
FW) detected (Figure 3A). When subjected to N deficiency,
levels of all these soluble sugars were considerably increased,
with contents being 40, 20, and 40% higher for Suc, Fru and
Glu, respectively (Figure 3A). Addition of these soluble sugars
enhanced accumulation of anthocyanins in the hypocotyls. The
biggest changes were observed on addition of Suc with over
twofold increase under 10 mM Suc concentration. The response
was dose-dependent, with increase in anthocyanin contents
in response to increase of sugar concentrations (Figure 3B).
Exogenous addition of 50 mM soluble sugars inhibited the
growth of radish sprouts, thus a concentration of 10 mM was
selected for the following experiments.

To further determine the relationship between N deficiency
and soluble sugars in anthocyanin accumulation, sprouts were
grown in N-deficient conditions with addition of different
soluble sugars. Addition of 10 mM Suc significantly increased
the anthocyanin accumulation in the hypocotyls compared to
control, whereas only slight enhancement of anthocyanin content
was observed under addition of 10 mM Glu and Fru (Figure 3C).
Therefore, effect of Suc on the anthocyanin biosynthesis was
explored further. In addition, we observed that sprouts subjected
to addition of Glu or Suc under N deficiency showed much higher
level of anthocyanins as those grown under Glu or Suc with
presence of N (Figure 3C).

N Deficiency-Induced Anthocyanin
Accumulation Disappears When the
Biosynthesis of Carbohydrates Is
Inhibited
The results of cross section showed that anthocyanins mainly
accumulated in the epidermis of the hypocotyls of radish
sprouts (Figure 4A), and compared with control, addition of
Suc markedly increased the content of anthocyanins in the
hypocotyls. DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea]
inhibits photosynthetic electron transport, and consequently
reduce the production of chemical energy (ATP) and reducing
power (NADPH), resulting in inhibition of carbon fixation
process and, eventually, sugar biosynthesis (Jeong et al., 2010).
Addition of DCMU decreased the anthocyanin accumulation
significantly, which was reverted by Suc supplementation
(Figures 4A,B). N deficiency also induced observable increase in
anthocyanin content compared to control. Addition of 10 mM
Suc to N-deficient solution enhanced anthocyanin content by
40%, whereas addition of DCMU completely eliminated the effect
(Figure 4B). Supplementing Suc and DCMU together to growth
solution negated each other leading to anthocyanin content

FIGURE 3 | Effects of N deficiency and sugar supplementation to the
growth solution on the sugar content and anthocyanin accumulation
in the hypocotyls of radish sprouts. (A) Amounts of sucrose, fructose, and
glucose contents accumulated in the presence (dark) and the absence (white
symbols) of N in the growth medium. Control (con) represents growth in a full
strength Hoagland solution while N deficiency is indicated as “-N.” The
asterisk represents the significance at P < 0.05 between respective pairs (i.e.,
presence vs. absence of N). (B) Effects of ascending concentrations of
sucrose, glucose, and fructose on anthocyanin accumulation in the normal
Hoagland solution. Seedlings were grown at various sugar concentrations (0,
5, 10, 20, and 50 mM) in Hoagland solution. (C) Effects of the N deficiency
and different sugars (Glu, Suc and Fru) on the anthocyanin contents in the
hypocotyls of radish sprouts. After 48 h growth in dark, the deionized water
was changed into different nutrient solutions, and sprouts were transferred
into light for another 48 h when the samples were collected for analysis. Data
are means ± SD (n = 3). Data labeled with different lower case letters are
significant differences at P < 0.05.

being similar to those in N-deficient solution. Change of growth
conditions also affected amounts of soluble sugars accumulated
in the hypocotyls of radish sprouts, with addition of Suc causing
their substantial increase under both growth conditions (the
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presence and absence of N in the nutrient solutions, Figure 4C).
The trend observed for soluble sugars was similar to changes in
anthocyanin levels described above (Figures 4B,C, respectively).

Expressions of Anthocyanin
Biosynthesis-Related Genes Are
Up-Regulated by Suc and N Deficiency
and Down-Regulated by DCMU
In addition to the content of anthocyanins, the transcript levels
of anthocyanin biosynthesis-related genes (PAL, CHS, CHI, F3H,
DFR, UFGT, LDOX, and ANS) were measured under different
treatments. As shown in Figure 5, the trends of changes in
gene transcriptions were in agreement with the changes of
anthocyanin content under the same growth conditions. Indeed,
sprouts had substantially higher expression of anthocyanin
biosynthesis-related genes under N deficiency compared to genes
expressed under control conditions (full strength Hoagland
solution) either in the presence or absence of Suc, DCMU and
their combination. The highest transcript levels of the genes
were observed in the hypocotyls of sprouts subjected to N
deficiency with addition of Suc. The latter phenomenon, however,
disappeared when sprouts were treated with DCMU.

N Deficiency Induces Activity of Sucrose
Synthase (SS), while Suc Addition
Induces a Decrease in the Activity of
Glutamine Synthase (GS) and Nitrate
Reductase (NR)
The activity of SS, sucrose phosphate synthase (SPS), GS and
NR were determined to further investigate the effects of N
deficiency on Suc biosynthesis and N metabolism (Figures 6A–
D). Results showed that N deficiency positively regulated SS
activity (Figure 6A) and negatively regulated NR activity with
the latter being reduced by nearly twofold (Figure 6D). No
effects on the activities of SPS and GS were found (Figure 6B,C).
Nitrogen deficiency also negatively affected free amino acids,
soluble proteins levels, and NR activity but not activity of GS
(Figures 6E–H).

We also assessed effects of Suc presence in the growth
solutions on levels of amino acids and soluble proteins and
enzymes activities. Addition of Suc to full strength Hoagland
solution (control) significantly reduced the content of soluble
proteins and activities of GS and NR (Figures 6F–H). Suc did not
affect levels of free amino acids in either control or N-deficient
solution (Figure 6E). No change was also found in GS activity
under N-deficient condition (Figure 6F). At the same time
addition of Suc to N deficient solution led to a decrease of NR
activity and to amounts of soluble proteins, similar to the trends
observed under control conditions (Figures 6F,H).

DISCUSSION

With more attention being focused on nutritious and healthy
food, radish sprouts have found their way to human diet due

FIGURE 4 | The transection of hypocotyls (A), hypocotyl color and
anthocyanin content (B) and amount of soluble sugars (C)
accumulated in the hypocotyls of radish sprouts under different
growth conditions. Different nutrient solutions used for seedlings growth
were modified Hoagland solutions containing N (control, Con, dark) or
deficient in N (-N, white symbols) and various modifications of the two,
specifically: Hoagland full strength solution containing 10 mM sucrose (Con +
Suc), 10 µM DCMU (Con + DCMU), 10 mM sucrose and10 µM DCMU (Con
+ Suc + DCMU); N-deficient Hoagland solution containing 10 mM sucrose
(−N + Suc), 10 µM DCMU (−N + DCMU), 10 mM sucrose and10 µM DCMU
(−N + Suc + DCMU). Bar in A is 0.3 mm. Data are means ± SD (n = 3). Data
labeled with different lower case letters have significant differences at
P < 0.05.

to their high levels in antioxidants, carotenoids, vitamin C, fiber,
flavonoids and glucosinolates (Takaya et al., 2003; Marton et al.,
2010). Red skin radish sprouts have higher nutrition value due to
the red hypocotyls which are rich in anthocyanins (Papetti et al.,
2014).

In the present study, cultivating radish sprouts in deionized
water led to substantially more anthocyanins in the hypocotyls
than those in nutrient solutions (Figure 1A). Further assay
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FIGURE 5 | The expression of anthocyanin biosynthesis-related genes (PAL, A; CHS, B; CHI, C; F3H, D; DFR, E; UFGT, F; LDOX, G; ANS, H) in the
hypocotyls of radish sprouts grown in different solutions. After 48 h in dark, the deionized water was changed for different nutrient solutions such as full
strength Hoagland solution (control, Con, dark symbols) and its variations: with addition to Hoagland solution of 10 mM sucrose (Con + Suc), 10 µM DCMU (Con +
DCMU), 10 mM sucrose and10 µM DCMU (Con + Suc + DCMU); N deficient Hoagland solution (−N, white symbols) and its variations: with addition to Hoagland
solution of 10 mM sucrose (−N + Suc), 10 µM DCMU (−N + DCMU), 10 mM sucrose and 10 µM DCMU (−N + Suc + DCMU). Sprouts were transferred into light
for another 48 h and the samples were collected for analysis. Data are means ± SD (n = 3). Data labeled with different lower case letters have significant differences
at P < 0.05.

showed that this phenomenon was due to N deficiency, which
was supported by (1) removing other ions from the Hoagland
nutrient solution (such as P, S, K, Ca, and Mg) had no effect on
anthocyanin accumulation; (2) more anthocyanins accumulated
when sprouts were grown in N deficient solution (Figures 1C,D).
These results are in agreement with earlier reports (Nemie-
Feyissa et al., 2014; Soubeyrand et al., 2014; Medina-Perez
et al., 2015) indicating that N deficiency affects regulation of
anthocyanin biosynthesis. Other authors reported enhancement
of anthocyanin content by P deficiency in strawberry fruits,
flower stalk of Chinese kale and Arabidopsis leaves (Valentinuzzi
et al., 2015; Khan et al., 2016), however, that was not the case in
our study. Similar to our findings, Jia et al. (2015) reported that
there was no effect of P deficiency on the anthocyanin content in
tobacco leaves. Additionally, it was suggested that macronutrients

deficiency might cause an abiotic stress in plants, and abiotic
stress would induce the anthocyanin enhancement (Van den
Ende and El-Esawe, 2013). Absence of increase in anthocyanin
content in radish sprouts observed in our experiments under
P, S, K, Ca or Mg deficiency might be explained by early
developmental stages of the sprout used in our experimental
conditions (3-day old) when abiotic stress induced by elemental
deficiency has not been appeared yet. Compared results in
Figure 1A with those in Figure 1D, the increase of anthocyanins
induced by deionized water was more than N deficiency, which
might result from the abiotic stresses from starvation, hypo-
osmotic and non-optimal pH conditions in deionized water.

To further confirm the negative effects of nitrogen on
anthocyanin accumulation, radish sprouts were grown
under different N concentrations. As expected, increase of
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FIGURE 6 | Effects of N deficiency on the activity of sucrose synthase (SS; A), sucrose phosphate synthase (SPS; B), glutamate synthase (GS; C) and
nitrate reductase (NR; D). Effects of the presence of N and sucrose in the growth solution on amounts of free amino acids (E), soluble proteins (F)
and activities of GS (G) and NR (H) in radish sprouts. After 48 h growth in dark, the deionized water was changed for different nutrient solutions, which were full
strength Hoagland solution (control, Con), with addition of 10 mM sucrose (Con + Suc), N-deficient Hoagland solution (−N), with addition of 10 mM sucrose (−N +
Suc). After change of solution, sprouts were transferred to light for another 48 h, and the samples were collected for analysis. Data are means ± SD (n = 3). Data
labeled with different lower case letters have significant differences at P < 0.05.

N concentration in the growth solutions led to a decrease
anthocyanin content (Figure 2A). On the contrary, soluble
proteins increased according to the ascending N concentration
(Figure 2B). That was reasonable, as N is a crucial component
of proteins. An interesting result was that contents of soluble
sugars showed a similar descending trend with anthocyanin
accumulation (Figure 2C) indicating that there may be a negative
effect of N on the content of soluble sugars. This hypothesis was
confirmed by results in Figure 3A, in which the contents of Suc,
Glu and Fru, that comprise main soluble sugars (Rosa et al.,
2009), were all significantly increased in sprouts grown under
N deficiency. This phenomenon has been reported by a number
of researches showing that high nitrogen application resulted in

reduction of the sugar content (Bénard et al., 2009; Prvulović
et al., 2009). The increased sugar contents positively affected
anthocyanin content in hypocotyls of sprouts. This was shown to
occur in the presence of Suc, Glu and Fru, with Suc being most
effective (Figure 3B). Similarly a number of researches reported
the positive effect of soluble sugars on anthocyanin accumulation
(Nagira and Ozeki, 2004; Loreti et al., 2008; Ram et al., 2011).
A study from Solfanelli et al. (2006) indicated that Suc is
specific in the sugar-dependent up-regulation of the anthocyanin
synthesis pathway. While both Suc addition and N deficiency led
to increase in anthocyanin level, the relationship between the two
factors remains largely unexplored. In this work we investigated
causative relationship between N levels and amounts of soluble
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sugars in the regulation of anthocyanin biosynthesis and
involvement of specific enzymatic pathways.

To investigate the relationship between N and Suc in
modulating of anthocyanin accumulation, radish sprouts were
treated with exogenous soluble sugars under normal or N
deficiency condition. Addition of Suc dramatically increased the
anthocyanin content in hypocotyls and this increase was further
enhanced under N deficiency condition (Figure 3C), implying
a potential role of Suc in N deficiency-induced anthocyanin
accumulation. To validate this hypothesis, an inhibitor of
carbohydrate biosynthesis, DCMU, was used. Addition of DCMU
to radish sprouts markedly reduced the content of soluble sugars
and anthocyanins in hypocotyls, and this inhibition was reversed
by application of Suc to the growth solution (Figure 4), indicating
involvement of sugar biosynthesis in the observed changes.
Additionally, N deficiency-induced anthocyanin accumulation
disappeared with application of DCMU. These results were
further supported by the expression levels of anthocyanin
biosynthesis-related genes (PAL, CHS, CHI, F3H, DFR, UFGT,
LDOX, and ANS; Figure 5) that will activate anthocyanin
biosynthesis, suggesting that N deficiency-induced increase of
anthocyanins was Suc-dependent. Sucrose synthase (SS) and
sucrose phosphate synthase (SPS) are two important enzymes
responsible for sucrose biosynthesis (Lunn and MacRae, 2003).
The activity of SS was markedly enhanced by the N deficiency
(Figure 6A), which provided a positive evidence for our
hypothesis while the activity of SPS was not affected (Figure 6B).

NR is the first enzyme in the system of transforming inorganic
nitrogen into organic nitrogen that would limit the overall
nitrogen assimilation in plants (Beevers and Hagemann, 1969).
In this study exogenous addition of Suc, no matter under normal
condition or N deficiency, reduced the content of soluble protein
and the activity of NR (Figures 6F,H) suggesting implication of
Suc in the process. A significant decrease in glutamine synthase
(GS) activity was observed under control (in the presence of N)
condition when Suc was added (Figure 6G), suggesting inhibition
of N metabolic pathway by Suc. Nitrogen and carbon metabolism
are tightly linked in almost every biochemical pathway in the
plant (Coruzzi and Bush, 2001), and ratio of C/N is generally
suggested to be an important parameter for regulation of gene
expression (Lea et al., 2007). Results in this study indicate an
antagonistic effect between N concentration and Suc content in
regulation of anthocyanin biosynthesis. Besides, it was reviewed
that ethylene plays a pivotal role in N limitation-induced
anthocyanin accumulation by activating PAL activity (Khan et al.,
2015). All those hypothesis still requires further investigations.

CONCLUSION

N deficiency and high sugar concentration (especially Suc),
respectively, or together, have been the focus on the enhancement

of anthocyanin accumulation. Though a number of researches
reported their separate positive effects on anthocyanin
biosynthesis, few of them aimed to investigate the relationship
between N deficiency and Suc addition in the regulation of
anthocyanin content. In this study, we demonstrated that
anthocyanins were accumulated to substantially higher levels
under N deficiency in the hypocotyls of radish sprouts. The
increased endogenous Suc induced by N limitation and the
inhibition effects of DCMU in N deficiency-induced anthocyanin
accumulation together implied that when perceived signals
from the growth environment with N deficiency, plants
synthesized more Suc (most likely through enhancing the
activity of SS), which contributed to the increase of anthocyanin
content. The detailed mechanism of N deficiency-induced
anthocyanin accumulation still remains unclear, while in the
present study, we introduce propose and introduce some
proof that Suc is an important regulator of this process.
Though the relationship between N metabolism and sugar
changes in anthocyanin biosynthetic pathway still need further
confirmation, the results presented in this research provide
the basis to improve our understanding of the regulatory
mechanism in anthocyanin biosynthesis that might lead to
practical application to production of more nutritious radish
sprouts.
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