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Plant fibrous material is a good resource in textile and other industries. Normally,
several kinds of plant fibrous materials used in one process are needed to be identified
and characterized in advance. It is easy to identify them when they are in raw
condition. However, most of the materials are semi products which are ground, rotted
or pre-hydrolyzed. To classify these samples which include different species with high
accuracy is a big challenge. In this research, both qualitative and quantitative analysis
methods were chosen to classify six different species of samples, including softwood,
hardwood, bast, and aquatic plant. Soft Independent Modeling of Class Analogy (SIMCA)
and partial least squares (PLS) were used. The algorithm to classify different species of
samples using PLS was created independently in this research. Results found that the
six species can be successfully classified using SIMCA and PLS methods, and these
two methods show similar results. The identification rates of kenaf, ramie and pine are
100%, and the identification rates of lotus, eucalyptus and tallow are higher than 94%.
It is also found that spectra loadings can help pick up best wavenumber ranges for
constructing the NIR model. Inter material distance can show how close between two
species. Scores graph is helpful to choose the principal components numbers during the
model construction.

Keywords: accurate, classification, fibrous material, identification, quantitative analysis, near infrared

INTRODUCTION

Plant fibrous material is one of the most valuable materials because of its renewability, abundance
and wide application (Cheng, 2009). It can be used in textile (Costa et al., 2013), paper (Hubbell
and Ragauskas, 2010), food (Muangrat et al., 2010), medical (Pomin and Mourao, 2008), composite
(Messing and Oppermann, 1979), biofuel (Guazzotti et al., 2003), and other areas. In each area the
use of plant fibrous material is not limited to one species. Several species are normally used for one
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production process to ensure enough resource and yield of the
product. However, different species of biomass have various
properties. Therefore, identification and determination of the
properties of plant fibrous material prior to process is of great
significance for industrial utilization to ensure the quality of the
final product.

It is easy to identify different plant fibrous materials when
they are in raw condition, because they have special color, shape

TABLE 1 | A comparison of NIR model prediction of lignin between
different species.

Author and year  Sample Range of R2 RMSEP RPD
lignin content (%)
(%)
Jiang et al., 2014 Pine 5.45-28.59 0.99 0.6 14.34
Yao et al., 2010 Acacia spp. 17.9-24.9 0.94 0.53 3.01
Jin and Chen, 2007  Rice straw 7.2-12.8 0.86 2.1 0.76
Kelley et al., 2004 Agricultural fibers 0.2-35.2 0.85 5.5 1.61
Yeh et al., 2004 Pinus taeda 8-42 099 1.05 N/A
Ono et al., 2003 Forest floor 5.6-48.1 0.91 5 2.1

and structure. However, most of the materials before processing
are semi products which are ground, rotted or pre-hydrolyzed
(Zheng et al,, 2001; Cheng, 2009). Under these conditions,
the materials from different species can hardly be identified.
Traditionally, they are all considered as raw material and process
wet chemistry methods was used to characterize their chemical
composition as guidance for the following procedure. However,
wet chemistry is known to be time consuming, high pollution and
complex procedure, which is not encouraged for the future (Jiang
etal., 2010).

Even though the classification/identification method on plant
fibrous materials have not been studied wildly, near infrared
(NIR) is found to be a rapid quantitative determination method
on plant fibrous material in recent years (Kelley et al., 2004;
Jiang et al., 2014; Zhou et al., 2015). However, most of the
NIR researches are focused on one species or several similar
species (Yeh et al., 2004; Cozzolino et al., 2006; Jin and Chen,
2007; Xu et al., 2015). The limited number of work including
multiple species model construction all had high prediction
errors (Table 1) (Ono et al., 2003; Kelley et al., 2004; Yeh et al.,
2004; Jin and Chen, 2007; Yao et al., 2010). This indicates that
NIR is a good tool to fast evaluate biomass properties on either

TABLE 2 | Algorithm for classify different species samples using PLS.

Sample Sample 1 Sample 2 Sample 3 Sample n
Sample size Ny No N3 Nn

Assigned value 1 2 3 n

Classification value 0.5-1.5 1.51-2.5 2.51-3.5 (n—0.5-(n+0.5)
Prediction value A1-Anq By-Bpnpo C1 _CNS Z1—-ZNN

Recognition no.
Recognition rate Nrg/Nx x 100% (x =1, 2, 3,..., n)
Rejection no.

Rejection rate Nij/(N1 + No 4+ N3 +... + Np=Nx) x 100%

Nrg = The number of sample that prediction value inside the classification value

Nrj = The number of sample that prediction value outside the classification value
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FIGURE 1 | Raw spectra (left) and First derivative spectra (right) of 6 species samples.
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TABLE 3 | Classification performance report using SIMCA method.

Material Kenaf Lotus Ramie Pine Eucalyptus Tallow
Recognition rate (%) 100 (10/10) 100 (13/13) 100 (8/8) 100 (20/20) 100 (35/35) 100 (20/20)
Rejection rate (%) 100 (96/96) 100 (93/93) 100 (98/98) 100 (86/86) 100 (71/71) 94 (81/86)

TABLE 4 | Identification result of SIMCA model.

No. Sample ID Specified material Identified material Result Specified material total distance ratio  Specified material distance ratio limit
1 Kenaf 1 Kenaf Kenaf Passed 0.56521 1.0000
2 Kenaf 2 Kenaf Kenaf Passed 0.5163 1.0000
3 Kenaf 3 Kenaf Kenaf Passed 0.9399 1.0000
4 Lotus 1 Lotus Lotus Passed 0.6424 1.0000
5 Lotus 2 Lotus Lotus Passed 0.8578 1.0000
6 Lotus 3 Lotus Other Failed 2.1082 1.0000
7 Ramie 1 Ramie Ramie Passed 0.6166 1.0000
8 Ramie 2 Ramie Ramie Passed 0.7800 1.0000
9 Pine 1 Pine Pine Passed 0.7980 1.0000
10 Pine 2 Pine Pine Passed 0.8076 1.0000
11 Pine 3 Pine Pine Passed 0.7657 1.0000
12 Pine 4 Pine Pine Passed 0.8862 1.0000
13 Pine 5 Pine Pine Passed 0.8500 1.0000
14 Tallow 1 Tallow Tallow Passed 0.7747 1.0000
15 Tallow 2 Tallow Tallow Passed 0.9458 1.0000
16 Tallow 3 Tallow Tallow Passed 0.9630 1.0000
17 Tallow 4 Tallow Tallow Passed 0.8836 1.0000
18 Eucalyptus 1 Eucalyptus Eucalyptus Passed 0.6895 1.0000
19 Eucalyptus 2 Eucalyptus Eucalyptus Passed 0.8127 1.0000
20 Eucalyptus 3 Eucalyptus Eucalyptus Passed 0.8375 1.0000
21 Eucalyptus 4 Eucalyptus Eucalyptus Passed 0.8184 1.0000
22 Eucalyptus 5 Eucalyptus Eucalyptus Passed 0.7195 1.0000
23 Eucalyptus 6 Eucalyptus Eucalyptus Passed 0.8553 1.0000
24 Eucalyptus 7 Eucalyptus Eucalyptus Passed 0.8795 1.0000
25 Eucalyptus 8 Eucalyptus Eucalyptus Passed 0.7072 1.0000
26 Eucalyptus 9 Eucalyptus Eucalyptus Passed 0.7713 1.0000
27 Eucalyptus 10 Eucalyptus Eucalyptus Passed 0.8578 1.0000
28 Eucalyptus 11 Eucalyptus Eucalyptus Passed 0.9224 1.0000
29 Eucalyptus 12 Eucalyptus Eucalyptus Passed 0.8840 1.0000
30 Eucalyptus 13 Eucalyptus Eucalyptus Passed 0.7980 1.0000
31 Eucalyptus 14 Eucalyptus Eucalyptus Passed 0.6793 1.0000
32 Eucalyptus 15  Eucalyptus Eucalyptus Passed 0.9218 1.0000

broad range with high prediction error or small range with more
accuracy. A NIR modeling method which can combine broad
range of species and prediction accuracy still need to be studied
further.

Some researchers found that NIR has potential ability to
classify/identify samples from different species, although these
researches mostly focused on food science (Barbin et al., 2012;
Chen et al, 2012; Zhang et al., 2014). It is believed that
high classification accuracy is much easier to achieve than
quantitative analysis. If the classification model can approach
100% accuracy or close, it is easy to analyze the unknown sample’s
property by using a two-step prediction method. This method

can first identify the species of the unknown sample, and then
quantify the sample using the prediction model constructed
on the corresponding species. Therefore, the NIR method of
classifying/identifying plant fibrous materials is essential and
worth to be studied. It is not only to classify unknown samples for
pretreatment, but also a big premise for high precise quantitative
analysis.

This research tried to construct an accurate classification
model using NIR on six different species which were pre-
ground. Soft Independent Modeling of Class Analogy (SIMCA)
and partial least squares (PLS) were used to build the models,
respectively.
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TABLE 5 | Classification results using PLS (cross validation).

Sample Tallow Eucalyptus Pine Kenaf Ramie Lotus
Sample no. 20 35 20 10 8 13
Classification value 0.5-1.5 1.51-2.5 2.51-3.5 3.51-4.5 4.51-6.5 5.51-6.5
Prediction value 0.70-1.52 1.62-2.23 2.81-3.18 3.99-4.26 4.60-5.25 5.64-6.24
Recognition no. 19 35 20 10 8 13
Recognition rate 95% 100% 100% 100% 100% 100%
Rejection no. 86/86 70/71 86/86 96/96 98/98 93/93
Rejection rate 100% 98.6% 100% 100% 100% 100%
. spectrum covers a range of 10,000-4000 cm™! with a spectral
resolution of 4 cm™!. Each spectrum is an average of 32 scans.
6
Classification Method
3 The classification models were conducted with two different
2, methods. One was Soft Independent Modeling of Class Analogy
§ (SIMCA) method (Gemperline et al., 1989). The other one was
5 3 partial least squares (PLS) modeling method. Prior to modeling,
E a spectral pretreatment was performed using multiple scattering
2 correction (MSC) coupled with a first and second derivative with
a Savitzky-Golay approach to decrease the noise of the spectra.
" The pretreatment can significantly reduce the noise including
. Tallow _Eucalyptus__Pine Kenaf _ Ramie __Lotus . sample color, sample size unevenness and machine noise.
0 1 2 3 4 5 6 7 SIMCA is a statistical method for supervised classification
Specified property of data. The samples in different species can be analyzed using
o . principal components (PC) analysis. This method is used on
FIGURE 2 | Cross validation results using PLS. . . . . .
classification of thermally modified wood in a previous study

MATERIALS AND METHODS

Sample Preparation

Six species of biomass were used in this research. Southern pine
(25 samples) and Tallow (24 samples) samples were harvested in
Alabama, USA. Eucalyptus samples (50 samples) were shipped
from South Africa. Kenaf (13 samples), Ramie (10 samples)
and Lotus (17 samples) samples were collected from Xinjiang
Province, Hu Nan Province and Shandong Province, respectively,
in China. All the samples were ground to 40 mesh powders,
and then air dried under ambient conditions. In this research,
20 southern pine samples, 20 Tallow samples, 35 Eucalyptus
samples, 10 Kenaf samples, 8 Ramie samples and 14 Lotus
samples were used for constructing the model. All the rest of the
samples were used to verify the model accuracy.

The six species belong to three different groups. Pine is a
softwood, Eucalyptus and Tallow are hardwoods. Ramie and
Kenaf are bast samples. Lotus belongs to aquatic plant. These
three big groups with six small species cover most of the bio-
based material used in the world. The successful classification of
them is very important and significant.

Near Infrared Spectra Collection

The NIR spectra were collected using a PerkinElmer spectrum
400 FT-IR/FT-NIR spectrometer. Biomass powders were
analyzed and the reflectance spectra were collected. The

(Bachle et al., 2012).

PLS is traditionally a quantitative analysis method. In this
study, we set up some rules that can use PLS to be applied on
classification research. As described in Table 2, the samples that
come from different species were assigned to different values (1,
2, 3... n). Then a PLS model was constructed based on these
values. If the predicted value of the sample was inside the 0.5
error area (£0.5) of one number, this sample was identified to
the relevant species.

In this research, the values of the six species were assigned as
following: 1: Tallow, 2: Eucalyptus, 3: Pine, 4: Kenaf, 5: Ramie, 6:
Lotus (Roughly based on the cellulose content from low to high).

RESULTS
NIR Spectra of All Samples

By reviewing the NIR spectra of the six species in Figure 1, it is
found that the six species can be clearly separated to two different
groups. The wood samples including Eucalyptus, Tallow and Pine
have similar spectra while Lotus, Kenaf, and Ramie hold close
patterns, especially in the wavenumber range of 7500-6000 cm ™.
This indicates that the wood samples and non-wood samples can
be easily separated.

SIMCA Classification

An optimized classification model was successfully constructed
using SIMCA method. It is found that the model has perfect
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prediction ability on Kenaf, Lotus, Ramie, Pine, and Eucalyptus
(Table 3). They show 100% recognition rate and rejection rate.
Tallow has 100% recognition rate while 94% rejection rate,
which means the model may identify some other samples to
Tallow. The identification results (Table 4) show that most of
the samples were successfully identified to the correct species
including Tallow. Only one Lotus samples was misidentified to
other samples. As described in the previous section, Lotus is the
Aquatic plant which differs from wood and bast samples; and
moreover, the sample size of Lotus is not large enough. Only
14 Lotus samples were involved for the model construction and
three for identification, which causes the Lotus samples not to
be identified completely. In the future study, by adding more
samples for model construction could help improve the accuracy
at lotus species.

PLS Classification

Another classification model was successfully constructed using
PLS method with optimized parameters. The cross validation
report (R* = 98.49) shows the species have strong relevance with
the number that set in previous section. The classification results

were calculated based on the method of Table 2. It is found that
the classification results (Table 5 and Figure 2) perfectly matched
the SIMCA model, in which the Pine, Kenaf, Ramie and Lotus
have excellent classification results, while Tallow and Eucalyptus
slightly overlap on data.

DISCUSSION

Wavenumber Range Selection for

Improving Classification Precision

This section explains how the optimized wavenumber ranges
were chosen. Spectra loading plots are the data that were
generated from PLS method. They show the most important
information that was used in constructing the model. Figure 3
shows the spectra loading plots of PC1-4. It is found that
the wavenumbers higher than 9000 cm™! barely contain any
useful information. The best wavenumber ranges were 7500-
4000 cm™! for PC 1; 7800-4000cm™' for PC2, PC3, and
PC4. It is also found that 9000-7800 cm ™! may contain helpful
information from loading plots of PC2 and PC3. Based on the

above results, the wavenumber ranges of 7500-4000cm~! or
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(9000-7800)-4000 cm~! were chosen to construct the model.
It was found that the optimized wavenumber ranges are
7500-4000cm™! for SIMCA method, and 8500-4000 cm™!
for PLS method, respectively. Figures 4, 5 approve the above
optimization. It was found that all the classification and
identification performances were significantly improved by using
the optimized wavenumber ranges.

Relationship between Species on

Classification
The study found that the Eucalyptus and Tallow samples were not
perfectly classified in previous results. This section explains why
this happens and how to separate them better.

Table 6 gives the inter material distance (IMD) between
species using SIMCA method. The IMD shows the relationship
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FIGURE 4 | Classification results using different wavenumber ranges for SIMCA (left) and PLS (right) model.
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TABLE 6 | Inter material distance of SIMCA model.

Material Kenaf Lotus Ramie Pine Eucalyptus Tallow
Kenaf - 8.37 4.69 11.8 1.7 9.13
Lotus - - 9.27 12.3 111 8.74
Ramie - - - 125 13.7 10.9
Pine - - - - 5.29 3.8
Eucalyptus - - - - - 2.61

between species: when the two species have closer relationship,
the IMD will be smaller; and when the two species have big
difference, the IMD will be larger. It was found that the IMDs
between wood species (Eucalyptus, Tallow and Pine) and Bast
species (Kenaf and Ramie) are all higher than 10, which means
the wood species and bast species can be separated effortlessly.
The IMDs between Lotus and Bast species and those between
Lotus and Wood species are 6-10, implying that Lotus samples
can be easily separated from other species. The IMD between
the bast fibers (Kenaf and Ramie) is 4.69, which is lower
than 6. The IMDs are all lower than 6 within wood species,
the IMD between Eucalyptus and Pine is 5.29, and the IMD
between Tallow and Pine is 3.8, the IMD between Tallow and
Eucalyptus is the lowest value of 2.61, which can explain why
the Eucalyptus and Tallow samples overlap a little during
classification.

Figure 6 gives the score values of all the samples for PC1-4
using PLS method. The score values show clearly how close the
species are, and give us the idea on which PC we can chose to
classify the species better. It was found that only wood samples
(Eucalyptus, Tallow, and Pine) and non-wood samples (Kenaf,
Ramie and Lotus) can be separated using PC 1. By choosing
PC 2, the pine samples were separated from Eucalyptus and
Tallow; Kenaf, Ramie and Lotus samples were also separated well.
Eucalyptus and Tallow samples started to separate by choosing
PC 3. Eucalyptus and Tallow samples were well separated when
PC 4 was chosen. However, the other samples were mixed
again. When choosing PC 5 (data not shown), it was found
that all the samples were mixed. The data above demonstrates
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that combining PC1-4 are the best for classifying all the
samples.

CONCLUSIONS

The spectra of six different species samples, including Tallow,
Eucalyptus, Pine, Ramie, Kenaf and Lotus, were collected and
analyzed using NIR classification software (SIMCA). A new
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