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Crop species have been deeply affected by the domestication process, and there have

been many efforts to identify selection signatures at the genome level. This knowledge

will help geneticists to better understand the evolution of organisms, and at the same

time, help breeders to implement successful breeding strategies. Here, we focused on

domestication in the Mesoamerican gene pool of Phaseolus vulgaris by sequencing 49

gene fragments from a sample of 45 P. vulgaris wild and domesticated accessions, and

as controls, two accessions each of the closely related species Phaseolus coccineus and

Phaseolus dumosus. An excess of nonsynonymous mutations within the domesticated

germplasm was found. Our data suggest that the cost of domestication alone cannot

explain fully this finding. Indeed, the significantly higher frequency of polymorphisms in

the coding regions observed only in the domesticated plants (compared to noncoding

regions), the fact that these mutations were mostly nonsynonymous and appear to be

recently derived mutations, and the investigations into the functions of their relative genes

(responses to biotic and abiotic stresses), support a scenario that involves new functional

mutations selected for adaptation during domestication. Moreover, consistent with this

hypothesis, selection analysis and the possibility to compare data obtained for the same

genes in different studies of varying sizes, data types, and methodologies allowed us

to identify four genes that were strongly selected during domestication. Each selection

candidate is involved in plant resistance/tolerance to abiotic stresses, such as heat,

drought, and salinity. Overall, our study suggests that domestication acted to increase

functional diversity at target loci, which probably controlled traits related to expansion

and adaptation to new agro-ecological growing conditions.
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INTRODUCTION

Understanding how domestication has affected the level and
organization of genetic diversity of crop germplasm, and
identifying the genes/genomic regions that are responsible for the
phenotypic variations of traits that distinguish wild forms from
domesticated forms, are major goals not only for evolutionary
biologists, but also for breeders who exploit this knowledge as a
tool to modify breeding strategies and to more easily manipulate
traits of interest (McCouch, 2004). One of the major effects of
domestication is generally a reduction in the genetic diversity of
the domesticated compared to the wild forms, as a consequence
of both drift and selection at target loci (Glémin and Bataillon,
2009). The reduction in genetic diversity for domesticated forms
is seen for numerous crops (Glémin and Bataillon, 2009; Bitocchi
et al., 2013).

The recent literature describes the accumulation of deleterious
mutations in domesticated germplasm as the so-called “cost
of domestication” (Lu et al., 2006). This was seen in rice (Lu
et al., 2006; Nabholz et al., 2014), tomato (Koenig et al., 2013),
maize (Mezmouk and Ross-Ibarra, 2014), sunflower (Renaut and
Rieseberg, 2015), barley and soybean (Kono et al., 2016), as
well as for dogs (Cruz et al., 2008) and horses (Schubert et al.,
2014). In each case, an excess of nonsynonymous substitutions
was observed in the domesticated germplasm. The evolutionary
forces that govern this phenomenon are essentially genetic
drift and recombination rates. Domestication bottlenecks have
strongly reduced the effective population sizes, and consequently,
selection has been less effective in contrasting random genetic
shifts of allele frequencies toward the fixing of deleterious
mutations (Hill and Robertson, 1966). Genetic hitchhiking
(Maynard Smith and Haigh, 1974) and background selection
(Charlesworth et al., 1993, 1995) also reduce the overall efficacy
of selection by reducing the locus-specific effective population
size (Hill and Robertson, 1966). These processes are more
pronounced in selfing species, for which recombination rates are
lower compared to outcrossing species (Carvalho, 2003).

However, it has to be considered that the accumulation
of nonsynonymous mutations might have resulted from the
relaxation of selective constraints in a domesticated environment.
This is the case for loci that are strongly influenced by natural
selection in the wild forms, but not in the domesticated forms,
and for loci that have lost their functionality (i.e., pseudogenes).
It is also possible that selection during domestication favored
beneficial nonsynonymous mutations (as novel or from standing
variations) that enable domesticated forms to successfully
compete (de Alencar Figueiredo et al., 2008; Bellucci et al.,
2014a).

There are many examples in the literature where the genetic
control of adaptation to domestication has been analyzed
through identification of “selective sweeps” (i.e., detection of
single loci that show changes in allelic frequencies due to
selection). There are numerous bottom-up methods that use
genotypic data without any prior information about phenotypes
for the detection of sweep signals (for reviews see Luikart et al.,
2003; Storz, 2005; Vitti et al., 2013). These require validation,
because the procedures have high rates of false positives that

are primarily due to the complex demographic histories and
population structures that are not considered by the various
models (Excoffier et al., 2009; De Mita et al., 2013; Lotterhos and
Whitlock, 2014).Moreover, the role of hitchhiking has to be taken
into account (Maynard Smith and Haigh, 1974); i.e., the “outlier”
behavior of neutral loci that are physically linked to the “true”
selected locus. False negatives, as outliers that are not detected
by the neutrality tests under selection, have to be considered
too. Indeed, false negatives can arise when the selection derived
from standing variation rather than from a new mutation leads
to a “soft sweep” (Hermisson and Pennings, 2005), or when the
selection is too recent for fixation to have occurred (Hohenlohe
et al., 2010). In both cases, weak signals will be obtained in
selection tests.

Phaseolus vulgaris originated in Mesoamerica, followed by
migration and adaptation into South America (Bitocchi et al.,
2012). As a consequence, two geographically distinct and partially
isolated gene pools were established, for Mesoamerica and the
Andes, where at least two independent domestication events
occurred, one for each gene pool (for review see Bellucci
et al., 2014b). Recently, Bellucci et al. (2014a) compared the
transcriptomes of a set of representative wild and domesticated
P. vulgaris accessions from Mesoamerica, and showed that
domestication affected not only genetic diversity, but also gene-
expression patterns. Schmutz et al. (2014) analyzed whole
genome sequencing data of DNA pools of wild and domesticated
accessions from both of these two gene pools, and identified a set
of candidate genes in the Mesoamerican and Andean gene pools
that are putatively implicated in flowering time and seed size.
They also provided the first hypotheses on convergent evolution
of different populations within the same species.

To investigate the major effects of domestication on
domesticated germplasm from Mesoamerica, we analyzed
nucleotide sequences from a set of 49 gene fragments from a
sample of 39 wild and domesticated accessions. We performed
separate diversity and selection analyses for coding and
noncoding regions, and compared the data relative to the
same loci to those of different studies, to obtain evidence of
selection of candidate genes during domestication. The putative
functions of the candidate genes were determined, to reveal
associations to domestication in other species, using either direct
experimentation or because their function was previously known.

MATERIALS AND METHODS

Plant Materials
A set of 45 P. vulgaris accessions was used. Each accession
was represented by a highly homozygous inbred line that
was obtained by two cycles of selfing through single seed
descent. Of these, 39 accessions were from Mesoamerica (19
wild, 20 domesticated). Four Andean accessions (two wild,
two domesticated) and two wild accessions characterized by
phaseolin type I (Debouck et al., 1993; Kami et al., 1995)
from northern Peru and Ecuador were also included. The
accessions were selected on the basis of well-detailed molecular
characterization of a wider sample of P. vulgaris that is
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representative of the different gene pools that characterize this
species (Rossi et al., 2009; Nanni et al., 2011; Bitocchi et al., 2012,
2013; Desiderio et al., 2013), to maximize the genetic diversity
of the initial complete sample. Moreover, two accessions each
of Phaseolus coccineus and Phaseolus dumosus were included
as controls, as these represent the most closely related legume
species to P. vulgaris. A complete list of the accessions studied,
along with their “passport” information, is available in Table S1.
Genomic DNA was extracted from each accession from young
leaves of a single, greenhouse-grown, plant using the miniprep
extraction method (Doyle and Doyle, 1987).

PCR and sequencing
A total of 49 gene regions (from ∼150 to 900 bp in size) across
the common bean genome were used, 48 of which were from
the literature (Bellucci, 2006; Hougaard et al., 2008; McConnell
et al., 2010; Nanni et al., 2011; Goretti et al., 2014), while locus
AN-Pv26.1 was developed in this study. The complete list of the
loci is given in Table S2, along with the gene functions, references
for information about primer sequences, PCR and sequencing
procedures, and locations on the reference genome (Schmutz
et al., 2014), identified through BLASTN (Altschul et al., 1997;
www.phytozome.net).

The sequences of the 45 P. vulgaris accessions for the Leg044,
Leg100, Leg133, Leg223, and PvSHP1 loci were available from
Nanni et al. (2011) and Bitocchi et al. (2012, 2013). The sequences
of 44 loci for 22 P. vulgaris accessions were obtained from the
study of Goretti et al. (2014). For the remaining 23 P. vulgaris
accessions, the sequences were determined as part of the present
study. The sequences of the new gene fragment developed in
this study (AN-Pv26.1) for all of the 45 accessions were obtained
in the present study (see Table S2), as well as those for the P.
coccineus and P. coccineus accessions for 48 loci (sequences for
PvSHP1 locus were from Nanni et al., 2011). The GeneBank
accession numbers of the sequences developed in this study are
KY194860-KY195914 (see Supplementary File S1 for complete
alignments of the AN-Pv41 and AN-Pv42 loci).

For 45 of the 49 loci, the structures (exons, introns, 3′-
untranslated regions [UTRs], 5′-UTRs) were available from
Bitocchi et al. (2012) and Goretti et al. (2014). The four fragments
with unknown structures were AN-Pv48, Leg443, gssE19, and
gssE28 loci. Forty-two loci included exon regions, while 47
included noncoding regions (introns and/or 5′-UTRs, 3′-UTRs).

Diversity Analysis
Sequence alignment and editing were performed usingMUSCLE,
version 3.7 (Edgar, 2004) and BIOEDIT, version 7.0.9.0 (Hall,
1999). Insertions/deletions (indels) were not included in the
analysis. Diversity analysis was carried out considering different
partitions of the accessions: the P. vulgaris sample; the P. vulgaris
Mesoamerican sample; and the Mesoamerican wild (MW) and
domesticated (MD) populations.

The following diversity estimates were computed: V (number
of variable sites); η (number of mutations); Pi (parsimony
informative sites); S (singleton variable sites); Syn (number
of synonymous changes); Nonsyn (number of nonsynonymous
changes); H (number of haplotypes); Hd (haplotype diversity;

Nei, 1987); π (Tajima, 1983); and θ (Watterson, 1975). Separate
estimates were made for the whole sequences and the coding
(exons) and noncoding (introns, 3′UTR, 5′UTR) regions.
The divergence between the MW and MD populations was
investigated by computing the number of shared and unique
mutations between the wild and domesticated populations within
each gene pool, and the FST statistic (Hudson et al., 1992) with
permutation tests (Hudson, 2000; 1000 replicates). All of these
calculations were carried out using DnaSP version 5.00 (Librado
and Rozas, 2009). Analysis of molecular variance (AMOVA) was
also carried out to investigate the distribution of the genetic
differentiation between the MW and MD populations, using the
program GenAlEx (ver. 6.5) (Peakall and Smouse, 2012).

As proposed by Vigouroux et al. (2002), to measure the loss of
nucleotide diversity inMWvs.MDwe used the statistic Lπ = 1−
(πMD/πMW), where πMW and πMD are the nucleotide diversities
in the MW and MD forms, respectively. The loss of nucleotide
diversity was computed from both the mean estimates of π and
θ (Lπ and Lθ , respectively), and averaging the Lπ and Lθ of each
locus (Lπ1 and Lθ

1) for the MW/ MD comparisons.
Wilcoxon–Kruskal–Wallis nonparametric test (Sokal and

Rohlf, 1995) was used to test the differences among the MW and
MD accessions of P. vulgaris for the genetic diversity estimates
(π and θ), considering the whole sequence, and the coding and
noncoding regions.

The average rate of synonymous (dS) and nonsynonymous
(dN) substitutions per site were computed in MEGA 7 (Kumar
et al., 2016) using the modified Nei-Gojobori method (Nei and
Gojobori, 1986), with the Jukes-Cantor correction (Jukes and
Cantor, 1969) for multiple substitutions. Standard errors were
estimated after 1000 bootstrap replicates. This computation was
carried out for each locus for both the MW andMD populations.
Nonparametric Wilcoxon signed-rank test for two groups, i.e.,
pairs of estimates for each locus (Sokal and Rohlf, 1995), was
used to test whether the differences between the dN/dS estimates
computed for each locus were significantly different between
MW and MD.

Divergence and Positive Selection
Regions showing evidence of putative selection were detected
following the same approach used in a previous transcriptome
scan (Bellucci et al., 2014a). A selection index was calculated
separately for the exonic and intronic fragments, and significance
was tested using coalescent simulations that take into account the
demographic history of the common bean. Monomorphic genes
(4 out of 43) were excluded from this analysis.

Briefly, the selection index combines three normalized
statistics: molecular FST (Excoffier et al., 1992), the Shriver et al.
(2004) branch-length statistic, and a standardized difference
between genetic variation in the wild and the domesticated forms.
The first and the second statistics aim to capture genes highly
differentiated between the wild and domesticated pools, while the
third is based on the likely change of diversity occurring during
selection.

The distribution of the selection index under neutrality
was obtained by simulation, using the ABCtoolbox package
(Wegmann et al., 2010). Two different models were used, based
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on previous reconstructions of the demographic history of the
common bean (Mamidi et al., 2011, 2013; Schmutz et al., 2014;
see also Figure 1). In both models, the Mesoamerican and the
Andean populations derive from a common ancestral pool,
and two independent domestication events occurred in each
population after divergence. The two models differ in the timing
of the bottleneck event associated with the colonization of the
Andes. Model 1 assumes that this event was recent, whereas
Model 2 implies a bottleneck just after the separation from
the Mesoamerican gene pool. Models 1 and 2 also assume a
different population size dynamic of the wild pools in recent
times, as constant or exponentially growing, respectively. Prior
distributions of the demographic parameters were used to take
into account the uncertainty around estimates (see Table S3 for
complete list of the parameters used in the simulations, and their
prior distributions).

For each exonic and intronic fragment, regions with gaps
or missing data were removed from the alignment, and only
polymorphic fragments were analyzed. One hundred thousand
simulations were performed randomly by sampling model
parameters from their prior distributions. The length of the
simulated fragments was not fixed, but varied according to
the distribution frequency observed in the real data. The prior
distribution of the mutation rate had different means for the
intronic and exonic fragments. A mean mutation rate of 1.0 ×

10−8 per site per generation was applied to introns, and a 10-
fold lower rate was used for the exons (Bellucci et al., 2014a).
The P-values for each fragment were calculated as the fraction
of simulated indices larger than the observed value. P-values
were then corrected using the Benjamini Hochberg approach
(Benjamini and Hochberg, 1995, implemented in the R function
p.adjust), and gene portions with false discovery rate <5% were
considered as putatively under selection.

We searched for independent evidence of selection signatures
for loci detected as outliers. Thus, we compared our data with
those obtained for the same loci in other studies (Bellucci et al.,
2014a; Schmutz et al., 2014). Moreover, we used the single
nucleotide polymorphism (SNP) data given in Rodriguez et al.
(2016) in a wider sample of wild and domesticated P. vulgaris
accessions from both the Andean and Mesoamerican gene pools,
to perform a selection test to investigate whether the SNPs
derived from loci that we detected as outliers show signatures
of selection during domestication, with these different data and
samples.

We mapped the physical positions of all 42 loci using
the coding sequence derived from the reference transcriptome
(27,243 contigs) developed by Bellucci et al. (2014a). Each
locus was mapped to the reference sequence using Blast Like
Alignment Tool (BLAT; Kent, 2002), version 34, implemented
in the iPlant Collaborative web portal (Oliver et al., 2013), with
default parameters. The data from BLAT were subsequently
filtered to retain the best alignments by exploiting the Best Hit
for Blat Output tool, version 34, with matches obtained for 25
loci, with an E-value < 10E−24. The results were validated by a
BLASTN analysis (Altschul et al., 1997) performed using default
settings when aligning each locus against its respective reference
contig. A comparison of the data from the selection analysis with

those obtained from the Bellucci et al. (2014a) study was then
carried out. Moreover, themapping of the 49 loci on the reference
genome (Schmutz et al., 2014) allowed a further comparison
with genomic regions (windows)/genes identified as affected by
domestication in both of the two gene pools by Schmutz et al.
(2014).

The AN-Pv loci were from the study of Goretti et al. (2014),
where their sequence data were used to design primers for
the amplification of SNP markers for the KASPar genotyping
platform (LGC Genomics, Teddington, Middlesex, UK). In
particular, 35 SNPs were from 22 of the 34 AN-Pv loci used in the
present study (see Supplementary Materials from Goretti et al.,
2014). A set of 131 SNPs from Goretti et al. (2014) augmented
with SNPs developed by Cortés et al. (2011) was used to genotype
417 Mesoamerican and Andean wild and 160 domesticated P.
vulgaris accessions by Rodriguez et al. (2016). These data from
a wide sample of accessions were used to test SNPs for signatures
of selection during domestication in the two gene pools of the
species. We applied the FST-outlier detection method developed
by Beaumont and Nichols (1996), which uses the available data to
derive a distribution of FST and expected heterozygosity, and was
implemented in the LOSITAN workbench (Antao et al., 2008).
The infinite alleles model was used and 50,000 simulations were
performed. We used a conservative false discovery rate (0.01),
a 99.0% confidence interval, and options for neutral and forced
mean FST. Deviations of loci from the expected distribution of
neutral markers were identified based on excessively high or low
FST. Outliers suggest directional selection when FST is greater
than expected, or balancing selection when FST is lower than
expected.

RESULTS

A set of 49 gene fragments were sequenced in a sample of
45 accessions of P. vulgaris, 39 from the MW and MD forms
of the Mesoamerican gene pool. High quality sequence data
were obtained for all of the accessions for 37 out of the 49
loci, while for the remaining 12 loci, data from one (AN-Pv8,
AN-Pv68, Leg044) to seven (AN-PvCO) accessions were not
of sufficient quality to be retained in the analyses (Table S4).
For 44 and 42 out of the 49 gene fragments, we obtained high
quality sequences for P. dumosus and P. coccineus accessions,
respectively.

Forty-seven loci were located on the reference genome
(Schmutz et al., 2014) through a BLASTN analysis (Table
S2 and Figure S1), and were found on all chromosomes
except chromosome 3. The sequenced region for each locus
encompassed between 133 bp (AN-Pv41) and 889 bp (PvSHP1),
with a mean of ∼440 bp per locus. Overall, ∼21.5 kb per
accession were available (Table S4).

Genetic Diversity Analysis
The genetic diversity statistics for each locus were computed
for the whole sample, the Mesoamerican, and for the MW
and MD populations; furthermore this was done for the
whole sequence, the coding regions, introns, 3′UTRs, and
5′UTRs, and considering all of the noncoding regions together
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FIGURE 1 | Demographic scenarios for the Mesoamerican and Andean populations. Parameters: TANC, divergence time between Andean and

Mesoamerican gene pools; TBAB, time of the beginning of the Andean founder bottleneck; TEAB, time of the ending of the Andean founder bottleneck; TBMD, time of

the beginning of the Mesoamerican domestication; TBAD, time of the beginning of the Andean domestication; TEMD, time of the ending of the Mesoamerican

domestication; TEAD, time of the ending of the Andean domestication; NANC, ancestral effective population size; NBA, Andean effective population size during the

founder bottleneck; NMWANC, ancestral wild Mesoamerican effective population size; NAWANC, ancestral wild Andean effective population size; NMD, effective

population size of the domesticated Mesoamerican population; NMW, effective population size of the wild Mesoamerican population; NAW, effective population size of

the wild Andean population; NAD, effective population size of the domesticated Andean population; IMD, intensity of the domestication bottleneck in Mesoamerica (in

percentage); IAD, intensity of the domestication bottleneck in the Andes (in percentage); MWD, migration rate from wild to domesticated population; MDW, migration

rate from domesticated to wild population; MMWAW, migration rate from wild mesoamerican to andean wild population; MAWMW, migration rate from wild Andean to

Mesoamerican wild population.

(Tables S4–S7). A summary of the genetic diversity estimates
computed considering the whole sample of P. vulgaris and the
Mesoamerican accessions is given in Table S8. Two loci (AN-
Pv9, AN-Pv55) were monomorphic in the whole sample, while
two other loci (AN-Pv32, gssE20) were monomorphic only in
the Mesoamerican accessions (Tables S4, S8). A total of 465 and
425 SNPs were identified, with a mean of 9.5 and 8.7 SNPs per
locus, for the whole sample and the Mesoamerican population,
respectively.

All genetic diversity estimates (V, H, Hd, π , and θ) were
higher inMWcompared toMD (Table 1) for the whole sequence,
and the coding and noncoding regions. In particular, the π

estimate was 2.0-, 1.95- and 2.22-fold higher in MW over MD
for the whole sequence and the coding and noncoding regions,
respectively; the same trend was also observed for θ (Table 1).
Differences in genetic diversity estimates between the wild and
domesticated populations were significant using the Wilcoxon–
Kruskal–Wallis nonparametric test (whole sequence, P <0.001;
and coding, P <0.02; noncoding, P < 0.005, regions). The loss
of diversity estimates, which were computed both by considering
the mean estimates of diversity (Lπ , Lθ ) and by averaging the loss
of diversity values for each locus (Lπ

1, Lθ
1), clearly highlighted

a strong reduction in genetic diversity (∼50%, considering the
whole sequence) of the domesticated as compared to the wild
forms. Moreover, the loss of genetic diversity was slightly higher
in noncoding (Lπ = 0.55, Lθ = 0.57) than coding (Lπ = 0.49, Lθ

= 0.43) regions (Table 2). The SNP frequencies were obtained
by dividing the overall number of SNPs by the total length of
sequences, and in MW these were 0.019, 0.012, and 0.026 for
the whole sequence, and the coding and noncoding regions,

respectively. These values are higher than those for MD (0.010,
0.007, and 0.012, respectively) (Table 3).

The FST estimates and the patterns of shared and unique
mutations in the MW and MD populations are reported in
Table 4. On a total of 45 polymorphic loci, 26 (58%) showed
FST estimates significantly different from zero, and the mean FST
was 0.16 (Table 4). A significant genetic differentiation between
MW and MD (P < 0.0001) resulted also from AMOVA analysis
(average FST = 0.16, Table S9). The total number of shared
mutations between the MW and MD populations was 205. The
number of polymorphic mutations in the MW population that
were monomorphic mutations in the MD population was 213,
while theMDpopulation showed only 14 polymorphicmutations
that were monomorphic in the MW accessions (Figure 2A).
As expected, in the coding regions, the number of mutations
was lower compared to that in the noncoding regions, for
both shared mutations and those polymorphic uniquely in MW.
However, the opposite was observed for unique mutations in
MD. Indeed, in MD, the number of mutations in the coding
regions was higher than that in the noncoding regions (P =

0.02, binomial test; null hypothesis: number of mutations in
coding regions private in MD equal to the observed fraction
of mutations in coding regions private in MW). In particular,
eight sites that were polymorphic in MD but monomorphic
in MW were identified in the coding regions, while only four
were found in the noncoding regions (Figure 2A). The eight
polymorphic sites in the MD but not in the MW coding regions
implied an amino-acid replacement in five cases. This trend
was different from that observation for the shared and unique
mutations in MW; indeed, 42 (49.4%) synonymous changes were
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TABLE 1 | Summary of the genetic diversity estimates computed for Mesoamerican wild and domesticated P. vulgaris accessions, considering the whole

sequences and the coding (exons) and noncoding (introns, 3′UTR, 5′UTR) regions separately.

Genetic diversity estimates Whole sequence Coding regions Noncoding regions

Introns 5′-UTR 3′-UTR Overall

MW MD MW MD MW MD MW MD MW MD MW MD

N. loci 49 49 42 42 32 32 2 2 7 7 37 37

N1 18.6 19.7 18.7 19.8 18.7 19.8 18.0 20.0 19.0 20.0 18.7 19.8

V2 411 218 133 78 218 103 8 0 16 11 242 114

η2 418 219 134 78 224 104 8 0 16 11 248 115

S2 123 67 52 28 60 35 1 0 5 1 66 36

Pi2 288 151 81 50 158 68 7 0 11 10 176 78

Syn2 / / 82 45 / / / / / / / /

Nonsyn2 / / 50 32 / / / / / / / /

H1 4.8 2.4 3.1 2.0 4.0 1.9 5.0 1.0 2.4 1.9 4.0 1.9

Hd1 0.58 0.27 0.38 0.20 0.46 0.20 0.61 0.00 0.35 0.16 0.48 0.20

1π × 10−3 5.39 2.70 3.29 1.69 7.63 3.29 4.49 0.00 5.54 3.51 7.66 3.45

1θ × 10−3 5.26 2.64 3.09 1.77 7.61 3.11 4.04 0.00 5.11 3.46 7.47 3.24

1 Average estimate among loci: N, sample size; H, number of haplotypes; Hd, haplotype diversity; π × 10−3 and θ× 10−3, two measures of nucleotide diversity from Tajima (1983) and

Watterson (1975), respectively.
2Sum of the single locus estimates: V, variable sites; η, total number of mutations; S, singleton variable sites; Pi, parsimony informative variable sites; Syn, total number of synonymous

changes; Nonsyn, total number of nonsynonymous changes.

MW, Mesoamerican wild; MD, Mesoamerican domesticated.

TABLE 2 | Loss of nucleotide diversity in domesticated compared to wild

Mesoamerican accessions of P. vulgaris, computed considering the whole

sequences and the coding (exons) and noncoding (introns, 3′UTR, 5′UTR)

regions separately.

Regions Lπ L1π Lθ Lθ
1

Whole sequence 0.50 0.57 0.50 0.53

Coding 0.49 0.55 0.43 0.42

Noncoding 0.55 0.57 0.57 0.60

Monomorphic loci were excluded, as their loss of diversity cannot be calculated; loss

of nucleotide diversity computed from the average estimates of π and θ (Lπ and Lθ ,

respectively) and averaging the Lπ and Lθ of each locus (L1π and L1θ ) for the MW/MD

comparison.

TABLE 3 | SNP frequency computed considering the different populations

(whole sample, P. vulgaris sample, Mesoamerican accessions, MW, MD)

and sequence regions (whole sequence, coding, and noncoding regions),

separately.

Regions Whole sample P. vulgaris Mesoamerican MW MD

Whole sequence 0.031 0.021 0.019 0.019 0.010

Coding 0.021 0.013 0.013 0.012 0.007

Noncoding 0.040 0.029 0.026 0.026 0.012

shared, 40 (47.1%) were unique for MW, and 3 (3.5%) were
unique for MD. In contrast, considering replacement changes,
27 (49.1%) were shared, while 23 (41.8%) were unique MW
polymorphic mutations, and 5 (9.1%) were unique for MD
(Figure 2B).

We compared the MW and MD populations for differences
between dN and dS computed for each locus (see Table S10)

using nonparametric Wilcoxon signed-ranks tests for two groups
(Sokal and Rohlf, 1995). The dn/dS estimates in MD were
significantly higher than those in MW (P = 0.03).

The five nonsynonymous mutations unique to MD were
from five different loci (i.e., AN-Pv8, AN-Pv18, AN-PvCO, AN-
DNAJ, g523) and involved five MD accessions (Table 5). All of
these gene fragments were re-sequenced for the five accessions
involved, to confirm the presence of the mutations. The
accessions from the Andean wild and domesticated populations
and the North Peru and Ecuador population carried the same
amino acids as MW and almost all of the MD accessions, as
well as the closely related species P. dumosus and P. coccineus,
this suggests that the five nonsynonymous mutations represent
recent mutations that occurred after domestication in the MD
germplasm.

Divergence and Positive selection
The P-values for each gene are reported in Table S11. When
Model 1 was used to generate the null distribution of the selection
index, seven (17.9%; AN-Pv 22, AN-Pv26.1, AN-Pv33, AN-
DNAJ, g523, Leg133, Leg223) out of the 39 genes analyzed had
at least one exonic or intronic fragment identified as putatively
selected during domestication in Mesoamerica. Three genes had
selection signals only in exons, three only in introns, and one
in both. The number of genes under putative selection increases
to 11 (28.2%) under Model 2, as four with selection signals only
in exons, five only in introns, and two in both. The set of genes
identified under Model 1 is entirely included in the set of genes
identified under Model 2. The four additional loci are AN-Pv64,
AN-Pv69, AN-TGA, and PvSHP1.

To obtain supporting evidence for our findings of putatively
selected loci that have been affected by selection during
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TABLE 4 | FST estimates and mutation patterns across the wild and domesticated Mesoamerican accessions of common bean (P. vulgaris) for each locus

and for the whole sequences and the coding (exons) and noncoding (introns, 3′UTR, 5′UTR) regions separately.

Locus Variable

Whole sequence Coding Noncoding

FST SM PMW PMD FST SM PMW PMD FST SM PMW PMD

1 AN-Pv1 0.12* 0 6 0 0.06* 0 5 0 0.22* 0 1 0

2 AN-Pv2 0.01 4 1 0 0.02 1 0 0 0 3 1 0

3 AN-Pv3 0.06* 1 6 0 0.08 1 3 0 0 0 3 0

4 AN-Pv4 0.16* 1 2 0 na na na na 0.16* 1 2 0

5 AN-Pv5 0.04 0 3 0 na na na na 0.04 0 3 0

6 AN-Pv8 0.21*** 2 4 1 0.21** 2 4 1 / / / /

7 AN-Pv9 na Na na na na na na na na na na na

8 AN-Pv10 0.02 5 3 0 0.01 4 0 0 0.05 1 3 0

9 AN-Pv16 0.33*** 0 7 0 / / / / 0.33** 0 7 0

10 AN-Pv17 0.11 0 1 0 na na na na 0.11 0 1 0

11 AN-Pv18 0.01 0 9 1 0.01 0 9 1 / / / /

12 AN-Pv22 0.46*** 4 7 0 0.44*** 3 4 0 0.50*** 1 3 0

13 AN-

Pv26.1

0.65*** 9 7 0 0.57*** 3 4 0 0.68*** 6 3 0

14 AN-Pv28 0.01* 5 1 0 0.01 1 0 0 0.01* 4 1 0

15 AN-Pv29 0.09 3 1 1 0.11 1 0 0 0.08 2 1 1

16 AN-Pv30 0.19*** 3 1 0 0.19** 3 1 0 / / / /

17 AN-Pv32 na na na na na na na na na na na na

18 AN-Pv33 0.37*** 0 4 0 0.37*** 0 4 0 / / / /

19 AN-Pv35 0.06 0 2 0 na na na na 0.06 0 2 0

20 AN-Pv41 0.00 1 2 0 / / / / 0 1 2 0

21 AN-Pv42 0.02 3 2 0 / / / / 0.02 3 2 0

22 AN-Pv44 −0.01 3 0 1 −0.01 3 0 1 na na na na

23 AN-Pv46 0.25** 3 1 0 0.25* 3 1 0 na na na na

24 AN-Pv47 0.23* 8 3 0 0.18* 4 2 0 0.28* 4 1 0

25 AN-Pv48 0.01 17 2 2 / / / / / / / /

26 AN-Pv51 0.08*** 12 7 0 0.08*** 5 3 0 0.07* 7 4 0

27 AN-Pv54 0.03 5 1 2 0.03* 5 1 2 / / / /

28 AN-Pv55 na na na na na na na na na na na na

29 AN-Pv57 −0.03 11 2 0 −0.04 3 2 0 −0.03 8 0 0

30 AN-Pv63 0.19*** 5 3 0 0.19*** 5 3 0 / / / /

31 AN-Pv64 0.25*** 0 8 0 na na na na 0.25*** 0 8 0

32 AN-Pv66 0.02* 0 4 0 0.02 0 4 0 / / / /

33 AN-Pv68 −0.03 8 9 1 −0.02 4 5 0 −0.03 4 4 1

34 AN-Pv69 0.59*** 0 2 0 0.22* 0 1 0 0.72*** 0 1 0

35 gssE18 0.20*** 4 3 1 0.19* 2 0 0 0.21*** 2 3 1

36 gssE19 0.08 0 2 0 / / / / / / / /

37 gssE20 na na na na na na na na na na na na

38 gssE28 0.00 4 6 0 / / / / / / / /

39 AN-PvCO 0.05 11 5 1 0.05 6 1 1 0,05 5 4 0

40 AN-TGA 0.23*** 3 11 0 0.00 0 1 0 0.23*** 3 10 0

41 AN-DNAJ 0.41*** 3 3 1 0.41*** 3 3 1 / / / /

42 g510 0.26*** 8 2 0 0.29** 7 1 0 −0.04 1 1 0

43 g523 0.41*** 2 0 1 0.31** 1 0 1 0.42** 1 0 0

44 Leg044 −0.02 10 12 0 na na na na −0.02 10 12 0

45 Leg100 0.08*** 22 18 1 na na na na 0.08*** 22 18 1

46 Leg133 0.35*** 1 12 0 0.06 0 1 0 0.36*** 1 11 0

(Continued)
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TABLE 4 | Continued

Locus Variable

Whole sequence Coding Noncoding

FST SM PMW PMD FST SM PMW PMD FST SM PMW PMD

47 Leg223 0.33*** 0 6 0 na na na na 0.33*** 0 6 0

48 Leg443 0.00 3 2 0 / / / / / / / /

49 PvSHP1 0.22*** 21 20 0 0.00 0 1 0 0.22*** 21 19 0

Overall / 205 213 14 / 70 64 8 / 56 71 4

Mean 0.16 / / / 0.14 / / / 0.17 / / /

SM, shared mutations between MW and MD; PMW , mutations polymorphic in MW and monomorphic in MD; PMD, mutations polymorphic in MD and monomorphic in MW; FST
probability: *P < 0.05; **P < 0.01; P < 0.001; ***P < 0.0001; na, not applicable, as the loci monomorphic in all Mesoamerican accessions; /, loci with no structure identified or with

absence of coding or noncoding regions in their sequence.

FIGURE 2 | Mutation patterns across the wild and domesticated

Mesoamerican accessions of common bean (P. vulgaris); shared,

unique in Mesoamerican wild (pMW) and unique in domesticated

(pMD) populations (A) for the whole sequence (gray), coding (orange), and

noncoding (yellow) regions. (B) For the coding regions, considering subdivision

in synonymous (violet) and replacement (green) changes. *The number of

mutations was standardized for the total length of the different sequence

regions.

domestication (directly or due to hitchhiking), we compared our
data with those of other studies for the same genomic regions.
These comparisons are reported in Figure 3 and Table S12.

For 25 out of the 42 loci (59.5%), we found a correspondence
in the reference transcriptome (Table S13). In particular, the
AN-Pv69 and Leg223 loci that were both putatively selected
in our analyses matched with the Ref_259_comp14324 and
Ref_25_comp4672 contigs, respectively (Bellucci et al., 2014a).
These two contigs were also detected as under selection during
common bean domestication in Mesoamerica in Bellucci et al.
(2014a). The remaining 23 contigs that matched our loci did not
show evidence of selection in Bellucci et al. (2014a).

Schmutz et al. (2014) investigated the domestication history

of common bean by resequencing eight pools that comprised 160

wild and domesticated genotypes from both the Mesoamerican
and Andean gene pools. They identified 10-kb windows with

a 2-kb slide (10-kb/2-kb windows) and gene sequences as

putatively under selection during common bean domestication.

Eight loci found by Schmutz et al. (2014) in the 10-kb/2-

kb windows showed putative selection during domestication

in the Andean gene pool, one of which was identified as

putatively selected in our study (AN-Pv22). Ten loci were

present in 10-kb/2-kb windows detected as under selection in the

Mesoamerican gene pool by Schmutz et al. (2014), four of which

were identified as outliers (AN-Pv26.1, AN-Pv33, Leg133, and

Leg223). Comparisons with candidate loci detected by Schmutz

et al. (2014) that represent the same gene regions of the loci
appeared to be more reliable than considering windows that
encompass a large portion of the genome. We found six genes
detected as outliers by Schmutz et al. (2014) that overlapped
with those found in the present study. Three genes were
detected as candidate genes in Mesoamerica, Pvul.001G143100,
Pvul.007G113700, and Pvul.009G231900, which correspond to
the AN-Pv33, AN-Pv66, and Leg223 loci, respectively, where
AN-Pv33 and Leg223 were detected as putatively selected loci
in our analysis. Similarly, in the Andean gene pool, three
genes were detected as candidate genes, Phvul.007G177200,
Phvul.002G242000, and Phvul.002G257300, which correspond to
the AN-Pv5, AN-Pv69, and AN-DNAJ loci, respectively, with two
of these detected as outliers in our study (AN-Pv69, AN-DNAJ);
this is of interest, as this study was focused on domestication only
in the Mesoamerican gene pool.

Finally, SNP data from a wider sample of 517 individuals
(Rodriguez et al., 2016) have been investigated. Forty of the 131

Frontiers in Plant Science | www.frontiersin.org 8 January 2017 | Volume 7 | Article 2005

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Bitocchi et al. Domestication in Mesoamerican Common Bean

TABLE 5 | Replacement changes unique to the MD population: locus, codon, corresponding amino acids, and number of accessions for the different

populations and for the P. dumosus (Pd) and P. coccineus (Pc) controls for each of the five replacement changes unique to the MD population.

Locus Codon Aminoacida MW MDb AW AD PhI Pd Pc

AN-Pv8 AAG K 6 / / / 2 / /

AAA K 13 19 2 2 / 1 1

ACA T / 1 (102) / / / / /

AN-Pv18 ATG M 19 18 2 2 2 1 1

ACG T / 2 (102,107) / / / / /

AN-PvCO CCA P 15 14 2 2 2 1 1

CTA L 3 (102,107,166) / / / / /

AN-DNAJ TCT S 19 19 2 2 2 1 1

TTT F / 1 (89) / / / / /

g523 TAT Y 19 19 2 2 2 1 1

TGT C / 1 (104) / / / / /

In brackets: the code of the MD accessions carrying the specific nonsynonymous change. aC, cysteine, F; phenylalanine; K, lysine; L, leucine; M, methionine; P, proline; S, serine;

T, threonine; Y, tyrosine.
bAccession codes (see Table S1): 089, PI151017; 102, PI165440; 104, PI196933; 107, PI201349; 166, PI313301.

SNPs used by Rodriguez et al. (2016) were located within 23 AN-
Pv loci used in this study. We separated the selection analysis
for the Andean and Mesoamerican gene pools. In each case,
we excluded individuals considered to be potentially admixed
between the two gene pools (Rodriguez et al., 2016).

For the Mesoamerican gene pool, we retained 408 out of
the 417 genotyped individuals. Ninety-eight were domesticated,
while 310 were wild. SNPs with more than 5% missing data and
those with a frequency of minor allele≤0.01 were not considered,
which resulted in the loss of 19 SNPs and a final dataset of 112
SNPs. The filters allowed us to retain 31 SNPs in the analysis
that were present in 18 of our AN-Pv loci (AN-Pv2, AN-Pv5,
AN-Pv8, AN-Pv30, AN-Pv33, AN-Pv35, AN-Pv44, AN-Pv47,
AN-Pv51, AN-Pv54, AN-Pv63, AN-Pv64, AN-Pv69, gssE18,
AN-TGA, AN-PvCO, AN-DNAJ, and g510). Neutrality tests
were performed by applying the Beaumont and Nichols (1996)
approach, and these identified six SNPs putatively under selection
during domestication of the common bean in Mesoamerica,
five of which were designed by Goretti et al. (2014) and are
present in the set of loci used in this study. In particular, the
AN-DNAJ_105 and AN-DNAJ_246 SNPs were from the AN-
DNAJ locus, the AN-Pv30_158 SNP from the AN-Pv30 locus,
and the AN-Pv33_68 and AN-Pv33_136 SNPs from the AN-
Pv33 locus. The SNP primers and the relative information are
in Goretti et al. (2014). Interestingly, all five SNPs were in loci
detected as putatively selected in the present study (Figure 3 and
Table S12).

The same approach was used for the data of individuals
from the Andean gene pool. There was a total of 133 Andean
individuals, as 51 wild and 62 domesticated. From these, 61
SNPs were retained for the analysis, 13 of which were from 11
loci present in this study. In this analysis, 7 SNPs were detected
as outliers; however, none of these SNPs were shared with the
present study.

DISCUSSION

Overall our outcomes suggest that selection during
domestication resulted in an increase in functional diversity at
target loci, which appears to control traits related to expansion
and adaptation to new agro-ecological growing conditions.

Consistent with the findings of Bellucci et al. (2014a), who
analyzed the transcriptome (∼27,000 genes) of a smaller set
of MW and MD accessions, there was a severe reduction in
genetic diversity (∼57%) of the MD compared to the MW
populations. However, an intriguing result was obtained by
looking at the genomic changes at coding and noncoding
regions separately, and considering both shared and unique
polymorphisms between the wild and domesticated populations.
Coding regions are expected to accumulate mutations slower
than noncoding regions, because purifying selection acts on
mutations that negatively alter gene function. In contrast,
mutations in noncoding regions are less functionally constrained,
and so they should accumulate more quickly (Li, 1997).
In general, this is what we observed, in both the wild
and domesticated populations. However, when we considered
separately the polymorphisms in the shared and private
substitutions in the wild and domesticated populations, we found
a statistically supported exception: polymorphisms observed only
in the domesticated plants occurred more frequently in the
coding regions and implied several nonsynonymous changes.
Furthermore, a significant increase in the difference between the
average rate of nonsynonymous substitutions and synonymous
substitutions in the domesticated compared to the wild forms was
found.

How can the excess of nonsynonymous mutations within the
domesticated germplasm be explained? This pattern of variation
can result from neutral forces. The targeted gene fragments might
be pseudogene sequences, for which mutations are expected
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FIGURE 3 | Graphical representation of the results of the neutrality tests and comparison with other studies. Blue, monomorphic (gssE20, AN-Pv9,

AN-Pv32, AN-Pv55), or without structure information (gssE28, Leg443, AN-Pv48), or containing only 5′UTR (AN-Pv16) or 3′UTR (AN-Pv42) regions loci; red, loci

detected as putatively under selection with Model 1; red and italic, the further four loci detected as putatively under selection with Model 2; black, putatively neutral

loci; yellow circles, loci detected as putatively under selection in the Mesoamerican gene pool in Bellucci et al. (2014a); red and light blue squares, loci detected as

putatively under selection in the Andean and Mesoamerican gene pool, respectively, by Schmutz et al. (2014); *loci, including SNPs, detected as putatively under

selection in the Mesoamerican gene pool using data from Rodriguez et al. (2016). Dark red and gray boxes, centromeric and pericentromeric regions, respectively.

to accumulate at a higher rate than coding sequences due to
the loss of selective pressure (Li et al., 1981; Petrov and Hartl,
2000). Alternatively, a higher nonsynonymous mutation rate
in the domesticated materials might be the result of genetic
drift related to a reduction in the population size imposed by
the domestication bottleneck that limited the purifying effect
of deleterious mutations due to recombination (e.g., the cost of
domestication). This can be enhanced in genomic regions that
surround selected loci, due to genetic sweep. These phenomena
might also have increased after the initial development of
the domesticated pool, due to subsequent bottleneck episodes
associated with crop expansion and breeding.

However, some results suggest that the cost of domestication
hypothesis appears insufficient to fully explain these
observations. Indeed, the inefficiency of purifying selection
predicts an increase in the fraction of polymorphisms in coding
regions, up to the level found in the noncoding regions. However,
this cannot explain our observation that two thirds of the private
polymorphisms that occurred in the domesticated gene pool
are located within genes. Moreover, those mutations leading to
changes in the amino-acid sequence appear in the domesticated
populations at very low frequencies, as derived from five gene
fragments. They are present only in a few of the MD genotypes
(rare alleles), while P. dumosus and P. coccineus accessions, the
wild population from North Peru and Ecuador, and the wild and
domesticated populations from the Andes carry the same and
more frequent alleles that are present in MW and in the majority
of MD (Table 5). This outcome supports a scenario where
new functional mutations that are probably not from standing
variation were selected for adaptation during domestication.
However, we cannot exclude that the development of local

varieties also determined a “secondary domestication” cost, even
if this would not explain the larger diversity that we observed
for private mutations in the domesticated population for
substitutions in coding regions. The gene-function investigation
of the genes carrying the nonsynonymous changes and the
genotypes carrying the mutated allele might also suggest that
due to local adaptation, these mutations probably arose during
expansion and diversification into new cultivated environments
that were characterized by unexpected biotic and abiotic stresses.
In particular, the AN-Pv8 gene is a β-glucan binding protein,
and these proteins are known to be involved in pathogen
recognition and the subsequent activation of disease resistance
responses in plants (Fliegmann et al., 2005). This is seen, for
example, in the β-glucan binding protein that recognizes the
β-glucan elicitor that is released from the cell walls of the
phytopathogenic oomycete Phytophthora megasperma, which
results in defense reactions in soybean (Umemoto et al., 1997).
AN-Pv18 and AN-DNAJ are known to be involved in plant
tolerance/resistance to abiotic stress. In particular, AN-Pv18 is
a late embryogenesis abundant protein, and high levels of these
proteins accumulate in plants under environmental stress. In
several studies, AN-Pv18 and AN-DNAJ have been shown to
have roles in cellular protection during abiotic stress tolerance,
and especially during drought (for review see Amara et al.,
2014). AN-DNAJ belongs to the DNAJ heat-shock family of
proteins that regulate the folding, localization, accumulation,
and degradation of proteins, stabilize proteins and membranes,
and can assist in protein refolding under stress conditions.
Synthesis of these proteins was demonstrated to be induced in
different plant species as a defense against several environmental
stresses, such as heat, salinity, light, and heavy metals (Wang
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et al., 2004; Zhichang et al., 2010; Sun et al., 2012; Bekh-Ochir
et al., 2013; Liu and Whitham, 2013). The AN-PvCO gene is
homologous to the CONSTANS (CO) gene in Arabidopsis that is
involved in flowering time (Putterill et al., 1995; Samach et al.,
2000; Hayama and Coupland, 2004), which is a crucial trait for
adaptation and crop expansion. Among the MD accessions that
carried the functional mutations, PI 165440 carried three of
the five nonsynonymous mutations that involve the AN-PV8,
AN-Pv18, and AN-PvCO genes. Interestingly, this accession was
collected in Mexico, Puebla State, at an altitude of 2430m a.s.l.,
which is well above the altitudinal range of distribution of the
MW common bean germplasm (Toro et al., 1990).

Our findings suggest that domestication not only had a
major effect on the reduction of the genetic diversity at the
genome level and at loci controlling useful features for human
needs, but also acted to increase functional diversity at target
loci that are probably involved in adaptation to different agro-
ecological contexts. In this regard, our study supports the results
of Bellucci et al. (2014a), who detected a small fraction (2.8%)
of genes as under selection during common bean domestication
in Mesoamerica. These are variable in the domesticated, while
they are monomorphic in the wild population. One of these
genes is a homolog of K+ uptake transporter6 (KUP6), which is
involved in plant responses to water stress (Osakabe et al., 2013).
This inference is consistent with the complex dynamics of the
domestication process. This involves not only human selection
acting on favorable traits, such as the shape and size of the edible
parts, which have undergone the most impressive changes in
distinguishing between the wild and domesticated forms, but also
functional changes that are related to the spread and adaptation
to different agro-ecological environments, which are sometimes
referred to as diversification traits (for review see Meyer and
Purugganan, 2013).

Divergence and Positive Selection
By comparing the data obtained for the same loci/genes in
different studies of varying sizes, data types, and methodologies
(including incomplete overlap among gene fragments), we
obtained independent evidence that some genes were targets
of directional selection during common bean domestication. In
particular, four (AN-Pv33, AN-Pv69, AN-DNAJ, and Leg223) out
of the 11 loci that showed signatures of selection in the present
study were detected as outliers in other studies (Bellucci et al.,
2014a; Schmutz et al., 2014) or in re-analysis of the SNP data
over a wide sample of Mesoamerican accessions (Rodriguez et al.,
2016; Figure 3). These genes were found to be involved in plant
resistance/tolerance to abiotic stresses, such as heat, drought, and
salinity. In particular, AN-Pv33 encodes a late embryogenesis
abundant protein and its involvement in plant reactions to abiotic
stresses was described previously, as well as for the AN-DNAJ
function. In general, both have a common function that is related
to protection and stability of molecules and cellular structures
during stress. Similarly, Leg223 appears to act tomaintain cellular
machinery processes during exposure of plants to abiotic stress
conditions. This gene encodes a eukaryotic translation initiation
factor SUI1 family protein that functions to ensure that there
is a start codon, AUG, at the beginning of the protein, which

helps to stabilize the pre-initiation complex, thus favoring protein
translation and synthesis (Sonenberg and Hinnebusch, 2009).
This gene is a homolog of elF-1, which has been demonstrated
to increase salt tolerance in different plants, such as Arabidopsis
thaliana (Rausell et al., 2003), rice (Diédhiou et al., 2008) and its
salt-tolerant wild relative, Porteresia coarctata (Latha et al., 2004).
Multiple and independent evidence for being under selection
during domestication are available for AN-Pv69, which encodes
a heat-shock transcription factor (HSF). By binding heat-stress
elements in the target promoters of stress-inducible genes, the
HSFs activate transcription of these genes, and thus have crucial
roles in the mechanisms of plant responses to abiotic stress (Guo
et al., 2016).

Methodological Issues
The data obtained in the present study and the possibility to
compare these data with the outcomes of similar studies (Bellucci
et al., 2014a; Schmutz et al., 2014; Rodriguez et al., 2016) has also
given rise to several methodological considerations.

How Important Is the Choice of the Evolutionary

Model to be Used When Applying Approaches Based

on Coalescent Simulations to Detect Signals of

Selection?
This question arises from the observed differences in the
percentages of loci detected as under selection during
domestication using the two different evolutionary models
(Figure 1), with the percentage of outlier loci being 17.9 and
28.2% for Model I and Model II, respectively. The risk when
applying coalescent approaches is to erroneously attribute to
selection a poor fit to the true demographic history of a species
(Siol et al., 2010). However, in the present study, the models were
derived from the rich literature on evolution of the common
bean, most of which focuses on domestication. Importantly,
the two models did not give contrasting results; i.e., the genes
identified as outliers in Model I were completely included in the
set of outliers of Model II. This occurred also with Bellucci et al.
(2014a), who applied the same approach to ∼27,000 genes using
three different evolutionary models, for which they obtained
three nested sets of outliers. Working with a species for which
there is a wealth of previous information makes it possible to
build evolutionary models that can depart slightly from the true
demographic history of the species. In this case, a better question
to consider is how conservative do we want to be to reduce the
false-positive rate of calling a locus an outlier when it is not?
Not relying on a unique model, but performing the analysis
using multiple models that mimic subtle differences in previous
studies might be an empirical conservative solution. This was
the strategy adopted by Bellucci et al. (2014a), who identified as
outliers only genes that were detected under selection in all of
the three models they considered.

Why Is There Such a Small Overlap for the Fraction of

Genes Studied Here with the Transcriptome

(∼27,000) Analyzed in Bellucci et al. (2014a)?
Indeed, a relatively high fraction of genes sequenced in this study
(41.5%) were not present in the reference transcriptome from
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Bellucci et al. (2014a). One explanation is related to the primer
pairs used in the present study. These were designed to amplify
a set of gene fragments homologous to soybean gene fragments
(Zhu et al., 2003; Hyten et al., 2006) that were identified from
gene sequences in GeneBank that were functionally annotated.
Moreover, with the exception of the Legmarkers (Hougaard et al.,
2008; Bitocchi et al., 2012, 2013), the other 10 loci were selected as
being near to domestication quantitative trait loci or were defined
as putatively under selection during domestication in previous
studies (Papa et al., 2005, 2007; Goretti et al., 2014). Thus, our
set of loci cannot be completely considered as randomly chosen.
Moreover, a rapid survey on the level of expression of most of the
genes used in soybean and other legumes indicates that they are
mostly expressed in roots and seeds; this could thus explain why
most of them were not present in the leaf transcriptome used by
Bellucci et al. (2014a).

Did Domestication Act in the Same Genomic Regions

or on Completely Different Genes to Obtain

Functionally Convergent Phenotypes?
One of the major controversies in evolutionary genomics is
whether the effects of domestication at the genomic level were
the same within and between species. The major goal is to
determine whether convergent evolution was active not only
at the phenotypic level (domestication syndrome), but also at
the genomic level, with the selection of the same set of genes
to obtain the same phenotypes in different species or gene
pools. P. vulgaris represents an interesting model to answer this
question (e.g., Bitocchi et al., 2013), because of the parallel and
independent domestication that occurred in two different and
geographically distinct gene pools. A first attempt to investigate
convergent evolution in common bean was reported by Schmutz
et al. (2014). They investigated the domestication history of
common bean by resequencing pools representing genomes of
160 wild and cultivated genotypes from the two gene pools. They
computed genetic diversity (π) and population differentiation
(FST) statistics using data averaged over 10-kb windows with a
2-kb slide (10-/2-kb windows), and using gene sequences. To
indicate a 10-/2-kb window or a gene as a selection window or
domestication candidate gene they considered whether it was in
the upper 90% of the empirical distribution of the pool for the
πwild/π landrace ratio and FST statistics. Schmutz et al. (2014)
found that<10% of the 74 Mb of sequence putatively involved in
domestication, as well as only 3% of the Mesoamerican and 8%
of the Andean candidates, were shared by the two domestication
events. Their conclusion was that the Mesoamerican and Andean
lineages underwent independent selection upon distinct sets of
genes, while they evolved similar morphologies and life cycles.
What we see from the present study is that two (AN-Pv69,
AN-DNAJ) out of the four strong candidates detected under
selection during Mesoamerican domestication were identified by
Schmutz et al. (2014) as under selection only during Andean
domestication. This suggests that more studies and evidence
are needed to either support or refute the lack of correlations
between the two gene pools found by Schmutz et al. (2014). A
potential drawback of the analysis carried out by Schmutz et al.
(2014) is that they did not use an explicit demographic model to

generate an expectation of the number of potential false-positive
regions, and thus they potentially identified a high level of false
positives (i.e., regions of the genome with reduced diversity due
to stochastic effects of domestication bottlenecks). Moreover,
when approaching such an issue, it has to be taken into account
that the two gene pools have different demographic histories,
with two sequential bottlenecks that occurred in the Andes,
one prior to domestication and the other during domestication.
This strongly impoverished the genetic diversity present in
the Andean gene pool compared to the Mesoamerican gene
pool.

CONCLUSIONS

We have shown independent evidence of positive selection due
to domestication on four genes, along with an increase in the
functional diversity at five genes in domesticated germplasm.
The gene function surveys for these genes suggest that they are
involved in adaptation outside the geographic distribution of the
wild germplasm, and in particular, in plant responses to biotic
and abiotic stresses.

The present study also opens a debate on the fascinating
issue of convergent evolution. In particular, we found some
discrepancies between our data and those of Schmutz et al.
(2014), a situation that suggests that more studies are needed
to obtain a more detailed picture as to how evolution acted in
promoting the same phenotypic changes in these domesticated
plants.
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