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Ligularia cymbulifera is one of the predominant species in the Hengduan Mountains,

China, and has led to a decrease in the amount of forage grass in this area. However,

little is known about the mechanism behind its predominance. In this study, two novel

eremophilane sesquiterpenes, ligulacymirin A and B (1 and 2), together with seven other

known terpenoids (3–9), were isolated from the roots of L. cymbulifera. The structures of

1 and 2 were determined by spectroscopic methods and single-crystal X-ray diffraction.

Each compound showed phytotoxic activities against Arabidopsis thaliana, and each

was detected and identified in rhizosphere soil by UHPLC-MS. Compound 3 was the

most potent phytotoxin, showing remarkable inhibition against both seedling growth

(EC50 = 30.33 ± 0.94 µg/mL) and seed germination (EC50 = 155.13 ± 0.52 µg/mL),

with an average content in rhizosphere soil of 3.44 µg/g. These results indicate that

terpenoids in L. cymbulifera roots might be released as phytotoxins in rhizosphere soil to

interfere with neighboring plants.

Keywords: Ligularia cymbulifera, ligulacymirin A, ligulacymirin B, eremophilane sesquiterpenes, phytotoxic

activity

INTRODUCTION

Plants have developed complex eco-physiological strategies that allow them to outcompete
neighboring plants. Releasing phytotoxins into the environment is thought to be one of the
most important strategies influencing the dominance and succession of plants (Seigler, 1996).
Phytotoxins are bioactive secondary metabolites that evolved in plants for defensive purposes,
which exhibit strong phytotoxic effects on seed germination and the growth of other neighboring
plant communities (Field et al., 2006). Many phytotoxic secondary metabolites are produced by
plant roots, and their major mechanisms of release into the rhizosphere soil are root exudation and
decomposition of plant root residue (Bertin et al., 2003). To shed light on these phytotoxins, it is
important to detect and quantify them in rhizosphere soil (Macias et al., 2014). These phytotoxic
secondary metabolites could offer interesting templates for potential agricultural applications, for
example, as eco-friendly natural herbicides (Macías et al., 2008). Phytotoxins can be grouped
into three main classes: terpenoids, N-containing compounds, and phenolic compounds (Huang
et al., 2010). Eremophilane sesquiterpenes have been shown to be an important class of secondary
metabolites responsible for phytotoxic activities (Andolfi et al., 2013; Masi et al., 2014; Miranda
et al., 2015; Wang et al., 2015). Various skeletons of eremophilane sesquiterpenes have been
identified as major secondary metabolites in the genus Ligularia (Yang et al., 2011; Kuroda et al.,
2012; Saito, 2012; Tori, 2016), and some have been reported to display phytotoxicity (Cantrell et al.,
2007).
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Ligularia cymbulifera (W. W. Smith) Hand. Mazz, belonging
to the Asteraceae family, is one of the predominant species in
the Hengduan Mountains, China. It is a perennial herb that
grows at high density in moist grassland at altitudes from 3000 to
4800m, being especially abundant in Zhongdian, Yunnan (Hanai
et al., 2005). The population of this plant has recently exhibited
a continuous increase in grassland, causing a decrease in the
amount of forage grass in this area (Figure 1). It was reported
that eremophilane sesquiterpenes, bisabolane sesquiterpenes,
and pyrrolizidine alkaloids are the main secondary metabolites
of this plant (Hanai et al., 2005; Liu et al., 2006, 2008; Wu
et al., 2012). In addition, furanoeremophilan-10β-ol (3) was
found to be an abundant eremophilane sesquiterpene produced
by L. cymbulifera, and was thought to be a defensive agent that
helps this species to gain an ecological advantage (Kuroda et al.,
2012). However, no evidence in support of the above hypotheses
has been presented thus far (Iida et al., 2007). Accordingly, we
investigated whether secondary metabolites in L. cymbulifera
could play phytotoxic roles and, if so, what mechanisms of action
are involved.

In this study, we isolated nine terpenoids, including two
novel eremophilane sesquiterpene derivatives, and deduced their
structures. We also evaluated their phytotoxic potential, and
further detected and identified all these phytotoxic compounds in
rhizosphere soil. The results indicated that phytotoxic terpenoids
in L. cymbulifera might be released into rhizosphere soil,
and might provide this species with a competitive advantage
by interfering with the germination and root elongation of
neighboring plants. To the best of our knowledge, this is the first
report on phytotoxic terpenoids in the roots of L. cymbulifera,
which may provide new insights into the successful competitive
mechanisms of this plant.

MATERIALS AND METHODS

Plant Material
The roots of L. cymbulifera were collected in Zhongdian,
Yunnan Province, China, in September 2015, and identified
and photographed by Associate Professor Yang Liu of Kunming
Institute of Botany (KIB), Chinese Academy of Sciences (CAS).
A voucher specimen (KIB H20150913) has been deposited in the

FIGURE 1 | The habitat of L. cymbulifera in moist grassland in

Zhongdian, Yunnan.

State Key Laboratory of Phytochemistry and Plant Resources in
West China, KIB, CAS. Seeds ofA. thalianawere of the Columbia
wild ecotype.

General Experimental Procedures
Optical rotation (OR) values were measured with a Jasco
P-1020 (Jasco International, Tokyo, Japan) automatic digital
spectropolarimeter. Ultraviolet (UV) spectral data were obtained
using a Shimadzu UV-2401PC spectrophotometer (Shimadzu,
Tokyo, Japan). Infrared spectroscopy (IR) was performed using a
Bruker Tensor 27 FT-IR spectrometer (Bruker Optics, Ettlingen,
Germany) with KBr pellets. One-dimensional (1D) and two-
dimensional (2D) nuclear magnetic resonance (NMR) spectra
were obtained in CD3OD or DMSO-d6 on a Bruker AVANCE
III 500 MHz spectrometer (Bruker, Karlsruhe, Germany) with
tetramethylsilane as an internal standard. Chemical shifts (δ)
are expressed in ppm with reference to the solvent signals.
Electrospray ionization mass spectrometry (ESI-MS) and high-
resolution (HR)-ESI-MS were carried out on a Waters Xevo TQ-
S mass spectrometer (Waters Corp., Milford, MA, USA). X-ray
diffraction data collection was performed on a Bruker SMART
APEX CCD (Bruker, Karlsruhe, Germany) crystallography
system. Normal-pressure column chromatography (CC) was
performed on either silica gel (100–200 mesh and 300–
400 mesh; Qingdao Marine Chemical Inc., Qingdao, China)
or Sephadex LH-20 (40–70 µm; GE Healthcare Bio-Sciences
AB, Uppsala, Sweden). Preparative medium-pressure liquid
chromatography (MPLC) was performed on a Buchi Separate
system using MCI-gel CHP 20P (70–150 µm; Mitsubishi
Chemical Industries Ltd., Tokyo, Japan). Preparative high-
performance liquid chromatography (HPLC) was performed
on an Agilent 1200 liquid chromatography system (Agilent
Technologies, Santa Clara, CA, USA) equipped with an
XSELECT CSH Prep C18 column (5 µm, 19 × 150 mm
i.d.; Waters, Wexford, Ireland) and diode array detector
(DAD). Fractions were monitored and analyzed by thin-layer
chromatography (TLC) (GF254; Qingdao Marine Chemical Inc.,
Qingdao, China); spots were visualized under UV254 illumination
and/or by heating silica gel plates dipped into 5% H2SO4 in
ethanol. All solvents used for extraction and isolation were
distilled at their boiling point range prior to use. HPLC-
grade acetonitrile and formic acid were from Fisher Scientific
(Loughborough, UK). Ultrapure water was prepared by a Milli-Q
water purification system (Millipore, Bedford, MA, USA).

Extraction and Isolation of Terpenoids
Air-dried roots of L. cymbulifera (15.0 kg) were powdered and
extracted with 75% MeOH (v/v, 3 × 15 L) at 75◦C under reflux
three times (6 h each). The MeOH extracts were filtered and
the solvent was evaporated under a vacuum to afford a crude
MeOH extract (1300 g). The crude extract was then suspended
in partition between H2O (4 L) and ethyl acetate (EtOAc) (3 ×

4 L), and the EtOAc fraction (600 g) was subjected to CC over
silica gel (100–200 mesh, 1600 g) eluting with dichloromethane
(CH2Cl2)/acetone (Me2CO) (1:0; 9:1; 1:1; 0:1, v/v) to afford five
fractions, A–E. Fraction A (CH2Cl2:Me2CO = 1:0, 180 g) was
further separated by CC on a silica gel (300–400 mesh) using
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petroleum ether (PE) and Me2CO (100:1–20:1, v/v) to yield five
fractions (Fr. A1–A5). Fr. A2 (5.6 g) was subjected to MPLC
(MCI gel) using MeOH/H2O (20:80–80:20) and finally purified
by Sephadex LH-20 (MeOH) and HPLC to give compounds 4
(167 mg), 5 (158 mg), 6 (210 mg), 7 (480 mg), and 9 (950 mg).
Fraction B (CH2Cl2:Me2CO = 9:1, 127 g) was also subjected to
MPLC (MCI gel) using MeOH/H2O (40:60–80:20) to yield five
main fractions (Fr. B1–B5). Fr. B1 (MeOH:H2O = 40:60, 3 g)
was purified by Sephadex LH-20 chromatography (MeOH) and
then recrystallized to yield compound 8 (220 mg) and compound
3 (960 mg). Fr. B2 (MeOH:H2O = 60:40, 6 g) was separated by
CC on a silica gel (300–400 mesh) using PE/Me2CO (20:1), and
then further purified by preparative HPLC (XSELECT CSH Prep
C18 column, 5µm, 19× 150mm i.d.;Waters) using 30% aqueous
acetonitrile (v/v) at a flow rate of 10 mL/min to afford compound
1 (retention time (tR) of 23 min, 680 mg) and compound 2 (tR of
18 min, 920 mg).

Data of the Two Novel Eremophilane
Sesquiterpenes
Ligulacymirin A (1). Colorless cubic crystals (MeOH); Mp: 175–
176◦C; [α]20D +20 (c 0.17, MeOH) (Figure S9); UV (MeOH)

λmax (log ε): 203.6 (3.62) nm (Figure S7); IR (KBr) νmax:
5323, 3386, 2964, 2934, 2913, 2866, 1778, 1445, 1380, 1325,
1245, 1223, 1131, 1112, 1077, 1040, 1023, 1012, 913, 863 cm−1

(Figure S8); for 1H and 13C NMR (500 MHz, DMSO-d6)
spectroscopic data, see Table 1 (Figures S1–S6); positive ESIMS:
m/z 343 [M+Na]+; positive HRESIMS m/z 359.1627 (calcd for
C19H28O4K+, 359.1619) (Figure S10).

Ligulacymirin B (2). Colorless crystals (MeOH); Mp: 180–
182◦C; [α]20D +24.3 (c 0.1, MeOH) (Figure S19); UV (MeOH)
λmax (log ε): 204.5 (3.62) (Figure S17); IR (KBr) νmax: 3489,
3422, 2967, 2928, 2908, 2879, 1746, 1630, 1449, 1381, 1333, 1306,
1278, 1228, 1189, 1099, 1048, 1032, 1011, 917 cm−1 (Figure
S18); for 1H and 13C NMR (500 MHz, DMSO-d6) spectroscopic
data, see Table 1 (Figures S11–S16); positive ESIMS: m/z 343
[M+Na]+; positive HRESIMSm/z 359.1623 (calcd for C19H28O4

K+, 359.1619) (Figure S20).

Absolute Structures of Two Novel
Eremophilane Sesquiterpenes Analysis by
Single-Crystal X-Ray Diffraction
Colorless crystals of 1 and 2 were obtained in MeOH at
room temperature. Crystallographic data were collected at 100K

TABLE 1 | 1H and 13C NMR (500 MHz) spectroscopic data of compounds1 and 2 (in DMSO-d6) and compound 3 (in CD3OD) (δ in ppm, J in Hz)a.

No. 1 2 3

δC δH δC δH δC δH

1α 33.7 1.23 (m) 34.1 1.27 (m) 35.1 1.46 (m)

1β 1.54 (m) 1.45 (d, J = 12.0, 5.6) 1.82 (td, J = 12.9, 5.0)

2α 21.9 1.42 (s) 21.9 1.37 (s) 23.5 1.59 (m)

2β 1.52 (m) 1.51 (d, J = 19.1, 6.7) 1.72 (m)

3α 29.0 1.33 (m) 29.0 1.29 (d, J = 12.7) 30.4 1.41 (m)

3β 1.21 (m) 1.25 (m) 1.38 (m)

4 32.5 1.35 (m) 32.6 1.49 (m) 34.3 1.45 (m)

5 39.5 38.9 42.7

6α 31.6 2.04 (d, J = 17.4) 31.5 1.95 (d, J = 16.9) 28.6 2.42 (d, J = 16.3)

6β 1.85 (d, J = 17.4) 1.84 (d, J = 16.9) 2.26 (d, J = 16.3)

7 129.6 130.3 116.2

8 128.3 125.8 148.7

9α 38.5 2.41 (d, J = 18.4) 35.7 2.05 (d, J = 18.4) 34.0 3.14 (d, J = 17.4)

9β 1.58 (d, J = 18.4) 1.66 (d, J = 18.4) 2.36 (d, J = 17.4)

10 70.6 70.8 75.6

11 85.0 82.7 120.5

12 78.6 3.77 (d, J = 4.9) 78.6 3.69 (d, J = 5.2) 138.5 7.07 (s)

13 14.6 1.30 (s) 19.1 1.36 (s) 8.1 1.91 (d, J = 1.3)

14 14.6 0.79 (s) 14.8 0.78 (s) 15.4 0.99 (s)

15 16.0 0.73 (d, J = 6.5) 16.2 0.70 (d, J = 6.5) 16.5 0.81(d, J = 6.2)

16 40.6 2.08 (s) 39.0 2.38 (s)

17 48.1 44.9

18 180.3 178.7

19 16.4 1.10 (s) 18.4 1.04 (s)

OH-10 4.04 (s) 4.07 (s)

OH-12 5.70 (d, J = 5.0) 5.59 (d, J = 5.2)

aThe assignments were based on distortionless enhancement by polarization transfer (DEPT) and 2D NMR experiments.

Frontiers in Plant Science | www.frontiersin.org 3 January 2017 | Volume 7 | Article 2033

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Chen et al. Phytotoxic Terpenoids from Ligularia cymbulifera

on a Bruker APEX DUO diffractometer with APEX II CCD,
using CuKα radiation. All calculations were performed using
the SHELXS-97 program and refined by full-matrix least-
squares refinements based on F2 with SHELXL-97. The absolute
configurations of 1 and 2 were analyzed using Hooft methods.
Crystallographic data for the reported structures have been
deposited with the Cambridge Crystallographic Data Center as
supplementary publication deposition number CCDC 1475236
for compound 1 and CCDC 1475237 for compound 2. Copies of
these data can be obtained free of charge from the Cambridge
Crystallographic Data Center via http://www.ccdc.cam.ac.uk/
data_request/cif.

Crystal data for 1: C19H28O4,M = 320.41, orthorhombic, size
0.95× 0.70× 0.50 mm3, a= 7.9425 (2) Å, b= 10.8992 (2) Å, c=
19.3930 (4) Å, α = 90.00◦, β = 90.00◦, γ = 90.00◦, V = 1678.79
(6) Å3, T = 100(2) K, space group P212121, Z = 4, µ (CuKα)
= 0.701 mm−1, 9417 reflections measured, 2878 independent
reflections (Rint = 0.0301). The final R1 values were 0.0340 (I >

2σ (I)). The final wR (F2) values were 0.0849 (I > 2σ (I)). The
final R1 values were 0.0340 (all data). The final wR (F2) values
were 0.0850 (all data). The goodness of fit on F2 was 1.139. Flack
parameter = 0.12 (16). The Hooft parameter is 0.11(4) for 1168
Bijvoet pairs.

Crystal data for 2: C19H28O4, M = 320.41, Monoclinic, size
0.970 × 0.380 × 0.260 mm3, a = 7.8489 (6) Å, b = 10.8350(8)
Å, c = 10.2850 (8) Å, α = 90◦, β = 104.762 (2)◦, γ = 90◦, V =

845.79(11) Å3, T = 100(2) K, space group P21, Z = 2, µ (CuKα)
= 0.696 mm−1, 8987 reflections measured, 2924 independent
reflections (Rint = 0.0362). The final R1 values were 0.0300 (I >

2σ (I)). The final wR (F2) values were 0.0807 (I > 2σ (I)). The
final R1 values were 0.0300 (all data). The final wR (F2) values
were 0.0807 (all data). The goodness of fit on F2 was 1.089. Flack
parameter= 0.06 (5).

Seed Sterilization and Plant Growth
A. thaliana seeds were surface-sterilized with ethanol (75%, v/v)
for 2 min and sodium hypochlorite (5%, v/v) for 2 min, and
then rinsed three times with sterile distilled water. The surface-
sterilized seeds were cold-stratified for 3 days at 4◦C before use.
The seeds were then sown on MS agar plates that contained
0.4% gellan gum (G1910; Sigma-Aldrich) and 1% sucrose. These
glass Petri dishes (9 cm) were placed vertically for growth, and
the conditions of the growth chamber were 23/18◦C, a 12/12-
h light/dark cycle, photosynthetic photon flux density of 150
µM·m−2·s−1, and relative humidity of 65%.

Seed Germination Bioassay
The phytotoxic effects of the nine compounds were evaluated as
described by Zheng et al., with minor modifications (Zheng et al.,
2012). The initial solvent carriers (100 mg/mL) of compounds
1–5 and 7–9 were prepared using methanol, and that of
compound 6 was prepared using dimethylsulfoxide (DMSO).
After the sterilized MS medium had been cooled to 50◦C, tested
compounds were added to the medium to obtain the final serial
concentrations. To assess the toxic effects of methanol or DMSO,
MS medium containing 0.8% MeOH or DMSO (v/v) was used
as a control. Three replicates were set for each treatment; in

each replicate, 20 surface-sterilized seeds were sown equidistantly
on MS medium. Subsequently, Petri dishes were sealed with
Parafilm to retard moisture loss and then placed in the growth
chamber. The germination rate of seeds was determined after 7
days, when over 95% of the control seeds had germinated, using
emergence of the radicle (≥ 1 mm) as the index of germination.
The seed germination inhibition (IG) was evaluated using the
following equation: IG% = (1−NT/N) × 100. NT is the number
of germinated seeds for each treatment and N is the number of
seeds used in the bioassay.

Root Elongation and Determination of Root
Death
To test the effects of compounds 1–9 on A. thaliana
root elongation, seeds of this species were pretreated as
described above. Compounds 1–9 were each assayed at different
concentrations. Three replicates, with 20 seeds each, were set for
each treatment, and 7 days after germination, the root length
of each seedling was measured and recorded using electronic
calipers. The percentage of growth inhibition of root length (IR)
was calculated using the following equation: IR% = (1−T/C) ×
100. T is the average root length (cm) of treated seeds and C is
the average root length (cm) of the control. Seeds that produced
a radicle but no coleoptile were scored as zero. To detect root
death, roots of A. thaliana were stained with 5 µg/mL fluorescein
diacetate (FDA; Sigma-Aldrich) for 5 min, and then rinsed three
times with MS liquid medium. After staining and rinsing, the
roots were observed under a confocal laser scanning microscope
(FV-1000; Olympus, Tokyo, Japan). FDA fluorescence decreased
as the dye leaked from dead cells.

Rhizosphere Soil Sample
The rhizosphere soil of L. cymbulifera was collected in
Zhongdian, Yunnan Province, China, in August 2016. The plants
(ca. 60–80 cm in height) were randomly collected and carefully
uprooted, and the rhizosphere soil was shaken off the roots. The
soil was picked and crushed, and residues were then removed
with a sieve (30 mesh). Three replicated sieved soil samples
(100 g each) were stored at 75% MeOH (300 mL) for 3 days
at room temperature, and then extracted ultrasonically at 75◦C
for 60 min. The extracts were filtered and concentrated in a
vacuum and was then dissolved in MeOH (10 mL). The solution
was centrifuged at 12,000 rpm for 10 min, the supernatant was
passed through a 0.45 µm nylon membrane filter and then
analyzed by ultra-high-performance liquid chromatography-
mass spectrometry (UHPLC-MS).

UHPLC-MS Equipment and Conditions
The LC analysis was carried out using an Agilent 1290 Infinity
Series UHPLC system comprising a quaternary pump (G4204A,
USA), an autosampler (G4226A, USA), a column compartment
(G1316C, USA), and a DAD. Samples were separated on a
Phenomenex Kinetex C18 column (1.7 µm, 2.1 × 100 mm i.d.;
Phenomenex, Torrance, CA, USA) at room temperature. The
mobile phase consisted of water containing 0.1% formic acid (A)
and acetonitrile (B) and the elution gradient was set as follows:
32% B (0 min), 38% B (12 min), 85% B (15 min), 95% B (18 min).
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The mobile phase flow rate was 350 µL/min and the injected
volume was set at 2 µL of standard and 5 µL of MeOH extracts
of rhizosphere soil.

For the LC-ESI-MSn experiments, a quadrupole time-of-flight
high-resolution mass spectrometer (Q-TOF LC/MS 6540 series;
Agilent Technologies) was connected to the UHPLC instrument
via an ESI interface. The data were acquired using Mass Hunter
workstation software. Detection was performed in positive ESI
mode and the full scan mass range was set from m/z 100 to m/z
700. The MS parameters were optimized as follows: the fragment
voltage was set at 135 V; the capillary was set at 3500 V; the
skimmer was set at 65 V; and nitrogen was used as the drying
(350◦C, 6 L/min) and nebulizing (25 psi) gas.

Identification of Potential Phytotoxins and
Quantification of Compound 3 in
Rhizosphere Soil by UHPLC-MS
Identification of compounds 1–9 in the rhizosphere soil samples
of L. cymbulifera was undertaken by UHPLC-MS. Identification
of potential phytotoxins was performed by comparing the
retention times and MS/MS data with those of standards.
Quantification of 3 in the rhizosphere soil was also undertaken
using the same UHPLC method, with the isolated authentic
sample as an external standard. Samples were also prepared in
the same way as rhizosphere soil sample described above. For
quantification, a calibration curve for 3 was prepared. Triplicate
injections were carried out at four concentrations (1, 5, 20, 50
µg/mL), and standard curves were constructed by the linear
regression method. The equation and correlation coefficient
obtained from the linearity study for 3 were as follows: y =

2.492x+21.1673 (r2 = 0.9997).

Statistical Analysis
Each treatment was conducted with three replicates in a
completely randomized design. The data on the inhibition of
seed germination and root elongation are expressed as mean ±

standard deviation (SD). The values of effective concentration
producing 50% inhibition (EC50) were calculated using SPSS.

RESULTS AND DISCUSSION

Structural Elucidation of Secondary
Metabolites
Compounds 1 (680 mg), 2 (920 mg), 3 (960 mg), 4 (167 mg),
5 (158 mg), 6 (210 mg), 7 (480 mg) 8 (220 g), and 9 (950 mg)
were isolated from the MeOH extracts of the air-dried roots of L.
cymbulifera (Figure 2).

Ligulacymirin A (1) was obtained as optically active colorless
cubic crystals from MeOH. Its molecular formula C19H28O4 was
determined on the basis of the positive HRESIMS atm/z359.1627
(calcd for C19H28O4K+, 359.1619), corresponding to six degrees
of unsaturation. The IR spectrum indicated the presence of
hydroxyl (3386 cm−1) and lactone (1778 cm−1) groups. The
13C NMR (Table 1) and DEPT spectra of 1 exhibited signals for
19 carbons. Among these 19 carbons, a tetra-substituted double
bond at δC 128.3 (C-8), 129.6 (C-7), and a carboxyl at δC 180.3
(C-18) were occupied with two degrees of unsaturation. Thus,
the remaining four degrees of unsaturation indicated that 1 is
a compound with four rings. Upon careful comparison of the
NMR data of 1 with furanoeremophilan-10β-ol (3) (Table 1),
a typical eremophilane sesquiterpene isolated from the same
plant, the three methyl group signals at δH 0.73 (d, J = 6.5
Hz, H3-15), 0.79 (s, H3-14), and 1.30 (s, H3-13), which are
characteristic of eremophilane sesquiterpenes, were observed.
These data suggested that compound 1 is an eremophilane
sesquiterpene derivative with the skeleton with 19 carbons.

In the 1H-1H COSY spectrum, the cross peaks between δH
5.70 (d, J = 5.0, OH-12) and δH 3.77(d, J = 4.9, H1-12) suggested
one free hydroxyl group link to C-12 (Figure 3). The HMBC
correlations H-16/C-8, C-17; Me-19/C-16, C-17, C-18; Me-13/C-
7, C-11; and H-12/C-11 revealed a ring C connected from C-7
to C-11 and C-8 to C-16, while δH1.10 (s, H3-19) and 1.30 (s,

FIGURE 2 | Structures of compounds 1–9 isolated from the roots of L. cymbulifera.
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FIGURE 3 | A 1H-1H COSY (bold) and key HMBC correlations (from H to C) of ligulacymirin A (1); B X-ray crystallographic structure of compound ligulacymirin A (1);

C X-ray crystallographic structure of compound ligulacymirin B (2).

H3-13) were located at C-19 and C-13, respectively (Figure 3).
By analysis of NMR spectra of compounds 1 and 3, the major
difference between them was that the furan ring commonly
appearing in eremophilane sesquiterpenes was clearly absent in
1 (Figure 2). Another free hydroxyl group at δH 4.04 (s, 10-OH)
was located at C-10 due to the significant HMBC correlations
from OH-10 to C-1. In addition, carboxyl at δC 180.3 (C-18)
indicated a lactone moiety, which linked to C-11 through an
ester bridge to occupy the last degrees of unsaturation. Thus, the
planar structure of 1 was thus identified as shown in Figure 2.
This assignment is in full agreement with the result of the X-
ray crystallography (Figure 3). The absolute configuration of
compound 1 was definitively determined to be 4S, 5R, 10S, 11R,
12S, 17S, and it was named ligulacymirin A. It is noteworthy that
1 is a novel eremophilane derivative with the skeleton with 19
carbons featuring an unusual 6/6/6/5 ring system.

By HRESIMS analysis, ligulacymirin B (2) showed the same
molecular formula, C19H28O4, as ligulacymirin A. The 1D and
2DNMR spectra of 2 closely resemble those of 1, clearly revealing
that the planar structure of 2 was the same as that of 1 (Table 1).
A single crystal of 2 was also obtained from MeOH and analyzed
by X-ray crystallography (Figure 3) to confirm unambiguously
the absolute configuration of 2, which was assigned to be 4S, 5R,
10S, 11S, 12S, 17R, named ligulacymirin B. Ligulacymirin A and
B are thus a pair of isomers.

The known compounds 3–9 were identified as
furanoeremophilan-10β-ol (3) (Jennings et al., 1976); 3β-
angeloyloxyeremophila-7,11-dien-14β ,6α-olide (4) (Li et al.,
2004); furanoeremophil-3-en-14,6α-olide (5) (Kuroda et al.,
1982); 10β-dihydroxyeremophilenolide (6) (Aclinqu et al., 1991);
8β ,10β-dihydroxyeremophilenolide (7) (Kojima et al., 1997);
11-hydroxyvalenc-1(10)-en-2-one (8) (Savona et al., 1987); and
(3R,4R,6S)-3,6-dihydroxy-1-menthene (9) (Cuenca et al., 1991),
respectively, on the basis that their HRESI-MS and NMR data
were consistent with the literature.

Terpenoids Isolated from L. cymbulifera

Showed Phytotoxic Activity on A. thaliana
Among the nine compounds tested for the inhibition of A.
thaliana seed germination, compound 3 showed the highest
inhibitory activity, with an EC50 value of 155.13 ± 0.52 µg/mL,
in a concentration-dependent manner from 100 to 300 µg/mL
(Figure 4). Moreover, the rates of inhibition of seed germination
for compound 7 were 11.75 and 93.64% at concentrations of
400 and 600 µg/mL, respectively; the rates of inhibition of

FIGURE 4 | Effects of compound 3 on A. thaliana seed germination

after 7 days of treatment. There were three replicates for each plate; error

bars represent standard error of the mean, n = 3.

seed germination by compound 9 were 59.11 and 93.06% at
concentrations of 400 and 800 µg/mL, respectively. Compound
8 did not show any effect on seed germination at a concentration
of 400 µg/mL, and the inhibition was 97.21% at a concentration
of 800 µg/mL. Compounds 1, 2, and 4–6 displayed no inhibitory
activity even at a concentration of 800 µg/mL.

To investigate how compounds 1–9 affect the roots of A.
thaliana, we examined root elongation and root viability after
treatment with these compounds at different concentrations. As
shown in Figure 5, all tested samples exhibited different degrees
of inhibitory activity of root elongation in a dose-dependent
manner and, at the maximum concentration (400 µg/mL), all
samples presented 100% inhibition. In this bioassay, compounds
3, 5, and 6 had significant inhibitory activities, with EC50

values of 30.33 ± 0.94, 36.81 ± 5.98, and 35.19 ± 0.77µg/mL,
respectively. These results show a similar trend compared with
those in previous studies in which sesquiterpenes inhibited root
elongation more effectively than they inhibited seed germination
(Anese et al., 2015).

Furthermore, we determined the cell death of roots using
the vital stain FDA, and found that the fluorescence of the
root tip cells faded with increasing concentration of the applied
compounds after 7 days of growth. The results of compounds
induced root cell death are relatively similar to their inhibitory
activities against root elongation. Compound 3 showed the

Frontiers in Plant Science | www.frontiersin.org 6 January 2017 | Volume 7 | Article 2033

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Chen et al. Phytotoxic Terpenoids from Ligularia cymbulifera

FIGURE 5 | Inhibition of A. thaliana root elongation by compounds 1–9 at different concentrations after 7 days of treatment. There were three replicates

for each plate; error bars represent standard error of the mean, n = 3.

strongest phytotoxic activity, although after 7 days of 25 µg/mL
treatment, the fluorescence faded dramatically (Figure 6). To
investigate the time-dependent phytotoxic activity of 3, we
further treated roots of A. thaliana seedlings grown for 5 days
with 400 µg/mL of 3, and found that, 15 min after treatment, the
fluorescence of root tip cells began to fade, and the fluorescence
faded dramatically 30 min after treatment (Figure 7). These
results suggest that the inhibition of root elongation caused by
these compounds was mostly due to the cell death at the root
tips after treatment. However, the mechanism of these terpenoids
inducing cell death in root tips was unknown.

The above results indicate that compounds 1–9 are phytotoxic
chemicals in L. cymbulifera. Compound 3 was the most
phytotoxic, exhibiting remarkable activity against both seedling
growth and seed germination. The potential phytotoxic activities
of these compounds mainly depended on their concentration
and structure. Considering the structure-activity relationship
in compounds 1–9 (Figures 2, 4, 5), the co-existence of a tri-
substituted furan ring and OH-10 plays an essential role in the
phytotoxic bioactivity (e.g., compound 3), given that the absence
of these two moieties caused a noticeable reduction in activity
(e.g., compounds 1, 2, and 4–7). Similarly, upon comparing the
inhibitory activity between compounds 6 and 7, it is possible that
8-OH weakens this activity. Furthermore, compound 3 showed
stronger activity than compounds 6 and 8, revealing that the
furanoeremophilane-type sesquiterpenes are more active than

the eremophilanolide-type ones, and simple eremophilane-type
ones show the weakest activities. In addition, compounds 1

and 2 showed almost the same inhibitory activities against seed
germination (EC50 of 144.22 ± 2.92 and 137.09 ± 4.19 µg/mL,
respectively), indicating that their stereochemistry should not
influence their activity. Together, these results suggest that the
basic eremophilane structures, as well as the co-existence of
the tri-substituted furan ring and the OH-10, appeared to be
important for phytotoxicity.

L. cymbulifera May Release Phytotoxic
Chemicals into Rhizosphere Soil to Get
Competitive Advantage
To determine whether phytotoxic compounds 1–9 were released
from the roots of L. cymbulifera into the surrounding rhizosphere
soil, rhizosphere soil samples were collected, extracted with
MeOH, and then analyzed by UHPLC-MS under the conditions
described above. Compounds 1–9 in the rhizosphere soil
samples were readily identified by comparing their retention
times and MS/MS data with the isolated authentic sample
standards (Table 2). Figure 8 shows the results of a UHPLC-
MS chromatogram of the MeOH extracts of rhizosphere soil; the
existence of potential phytotoxins 1–9 in the rhizosphere soil was
confirmed. These findings indicate that L. cymbulifera has the
potential to release phytotoxic chemicals 1–9 into the rhizosphere
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FIGURE 6 | Compound 3 induced root cell death in meristematic and CEZ cells of A. thaliana. (A) Cell death proceeds with the sequential loss of FDA

fluorescence. (B) Effect of compound 3 on the root tip cells of A. thaliana.

FIGURE 7 | Induction of cell death by 400 µg/mL compound 3 in meristematic and CEZ cells of A. thaliana. (A) Cell death proceeds with sequential loss of

FDA fluorescence. (B) Effect of compound 3 on the root tip cells of A. thaliana.

soil; these compounds might thus act synergistically to exert
phytotoxic activity against the germination and root elongation
of neighboring plants. It is likely that these potential phytotoxins
identified in surrounding rhizosphere soil were released from
the plant partly by root exudation or decomposition of plant
root residue because numerous fibrous roots were found in
rhizosphere soil during the process of collecting soil samples
(Bertin et al., 2003). However, the actual process of release and the
fate of these terpenoids under natural field conditions remains
unclear.

Compound 3 was the most potent phytotoxin in L.
cymbulifera, and a quantitative analysis was therefore also
carried out by UPLC-MS. A standard curve of 3 was
obtained using linear regression. The results disclosed that

the average concentration of 3 in rhizosphere soil was 3.44
µg/g. This suggested that L. cymbulifera might synthesize
phytotoxic terpenoids continuously, by which they accumulate
in surrounding rhizosphere soil and reach an effective
concentration. Studies have shown that compound 3 might
interfere with the enzymes involved in amino acid metabolism
by reaction with pyridoxal at room temperature without any
catalyst, due to the presence of its electron-rich tri-substituted
furan ring (Iida et al., 2007; Torihata and Kuroda, 2008).
Similarly, in our study, the phytotoxic activities of compound 3

mainly depend on the co-existence of the tri-substituted furan
ring and the OH-10. These results provide some evidence that,
one of the mechanisms of phytotoxic activity of compound 3

takes place via interference with the amino acid metabolism of
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TABLE 2 | Compounds 1–9 identified in the rhizosphere soil of L. cymbulifera by UHPLC-MS in positive ion mode.

Peak no. tR(min) Identified

compound

Molecular

formula

Molecular

weight

Precursor

Ion (m/z)

Collision

energy (eV)

Characteristic

fragment (m/z)

1 1.785 9 C10H18O2 170 193 20 152, 135, 107

2 4.019 8 C15H24O2 236 237 20 219, 204, 189

3 6.576 7 C15H22O4 266 267 10 249, 231, 213

4 7.044 2 C19H28O4 320 321 10 303, 285, 275

5 7.607 1 C19H28O4 320 321 10 303, 285, 267

6 9.279 6 C15H22O3 250 251 20 233, 215, 187

7 19.259 5 C15H16O3 244 245 20 227, 209, 181

8 26.388 3 C15H22O2 234 235 10 217, 207, 189

9 27.838 4 C15H17O3 344 345 10 245, 227, 199

FIGURE 8 | UHPLC-MS analysis of MeOH extracts of L. cymbulifera rhizosphere soil. Compounds 1–9 are shown in the total ion current (TIC) chromatogram

with retention times of 7.607, 7.044, 26.388, 27.838, 19.259, 9.279, 6.576, 4.019, and 1.785 min, respectively.

other plants. However, there is a problem associated with 3 in
terms of it acting as an active phytotoxin in the wild, namely,
its instability. Its tri-substituted furan ring might be prone to
reacting with electron-deficient reagents in the soil (Iida et al.,
2007). Nevertheless, a recent study showed that, because of
co-competitive sorption and preferential degradation, a mixture
of phytotoxins exhibits greater persistence than single ones in
the soil (Tharayil et al., 2008). Compound 3 might accumulate
with other phytotoxins in rhizosphere soil, and the mixture of
these phytotoxins would lead to greater bioavailability and a
longer half-life. Additional studies are needed to obtain a better
understanding of the mechanism of action of 3 and further
research of 3 might lead it develop into a new eco-friendly
natural herbicide.

Compounds 1, 2, and 4-7 May Derivate
from Compound 3
Notably, the compounds ligulacymirin A (1) and B (2) were
isolated from L. cymbulifera roots for the first time and

their structures were found to differ from those of other
known eremophilane sesquiterpenes (Zhao et al., 1997; Chen
et al., 2014). Figure 9 presents the hypothesis that the novel
skeleton of 1 and 2 might be derived from compound 3,
a common eremophilane sesquiterpene in the same plant,
followed by Diels-Alder reaction and subsequent oxidative
modification. This finding makes a new addition to our
understanding of eremophilane sesquiterpenes. It has been
demonstrated that the Diels-Alder reaction can be catalyzed by
natural Diels-Alderases from microorganisms, indicating that
the endophytes in roots of L. cymbulifera might be involved
in the biosynthesis of 1 and 2 (Hashimoto et al., 2015;
Hashimoto and Kuzuyama, 2016). The production of 1 and
2 might be the result of co-evolution of L. cymbulifera and
coexisting microorganisms in an unusual environment in which
they faced unusual stresses. In this study, these two abundant
compounds showed slight phytotoxic activities (Figures 4, 5),
which may indicate that they have other main ecological
roles.
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FIGURE 9 | Hypothesized biosynthetic pathway of compounds 1, 2, and 4–7.

Similarly, it is reasonable to deduce that the other
eremophilane sesquiterpenes compounds 4–7 are also derived
from compound 3 (Zhao et al., 2015). It is clear that, throughout
the course of evolution, secondary metabolites in plants
have gained numerous new ecological and physiological
roles to secure optimal responses to challenges by biotic
or abiotic stresses (Bertin et al., 2003; Walker et al., 2003).
This has clearly been a useful strategy for plants in flexibly
synthesizing secondary metabolites to endure a wider variety of
stresses in a cost-effective biosynthetic manner (Neilson et al.,
2013). Accordingly, we hypothesize that L. cymbulifera could
continuously synthesize excessive 3 as the key intermediate in the
biosynthetic pathway of eremophilane sesquiterpene derivatives
for conversion into other phytotoxic active eremophilane
sesquiterpenes (Figure 9). These phytotoxic chemicals would
then display multiple ecological roles to face unusual stresses
in the environment, including synergistic phytotoxic activity
against neighboring plants (Siemens and Haugen, 2013).

CONCLUSIONS

In conclusion, nine terpenoids (1–9) including two novel
eremophilane sesquiterpene derivatives (1 and 2) were isolated
from the roots of L. cymbulifera. Compounds 3, 5, and 6 exhibited
significant phytotoxic activities, while 3 was the most phytotoxic
chemical in L. cymbulifera. The average content of compound
3 in rhizosphere soil was 3.44 µg/g. These results indicate that
terpenoids in L. cymbulifera roots might be released into the
surrounding rhizosphere soil as phytotoxins. These phytotoxic
terpenoids would synergistically interfere with the germination
and root elongation of neighboring plants to help L. cymbulifera
gain an advantage in the particular habitat. Additional studies will
be performed to obtain a better understanding of themechanisms
of action associated with these phytotoxic terpenoids in the roots
of L. cymbulifera.
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