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Several genes encoding transcription factors (TFs) were indicated to have a key role in
the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of
plants. In order to further explore the genetic regulatory network that is involved in the
embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules,
the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were
analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190
genes of the 114 MIRNA families was monitored during SE induction and the levels of the
primary (pri-miRNAS) transcripts vs. the mature miRNAs were investigated. The results
revealed that the majority (98%) of the MIR genes were active and that most of them
(64%) were differentially expressed during SE. A distinct attribute of the MIR expression
in SE was the strong repression of MIR transcripts at the early stage of SE followed by
their significant up-regulation in the advanced stage of SE. Comparison of the mature
miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of
miRNA is associated with SE induction. Candidate miRNA molecules of the assumed
function in the embryogenic response were identified among the mature miRNAs that
had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164,
miR166, miR169, MiR319, MIR390, MIR393, MiR396, and MiR398. Consistent with
the central role of phytohormones and stress factors in SE induction, the functions
of the candidate miRNAs were annotated to phytohormone and stress responses. To
confirm the functions of the candidate miRNAs in SE, the expression patterns of the
mature MiRNAs and their presumed targets were compared and regulatory relation
during SE was indicated for most of the analyzed miRNA-target pairs. The results of
the study contribute to the refinement of the miRNA-controlled regulatory pathways that
operate during embryogenic induction in plants and provide a valuable platform for the
identification of the genes that are targeted by the candidate miRNAs in SE induction.
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INTRODUCTION

Somatic embryogenesis (SE) reflects the unique developmental
potential of plant somatic cells, which results in the transition
of the differentiated somatic cells that are cultured in vitro into
the embryogenic ones that form the somatic embryos. Thus,
studies on SE provide basic knowledge about the molecular and
genetic mechanisms that govern the developmental plasticity in
plants. It is believed that genes that have a regulatory function
activated by plant growth regulators and stress that is imposed
in vitro play a key role in the mechanism of embryogenic
transition (Jiménez, 2005; Karami and Saidi, 2010). In line with
this assumption, numerous genes encoding transcription factors
(TFs) were indicated as being involved in the regulatory pathway
that operates in SE induction, including LEAFY COTYLEDON2
(LEC2) (Gaj et al., 2005; Ledwon and Gaj, 2009; W 6jcikowska
et al, 2013), BABY BOOM (BBM) (Boutilier et al., 2002),
WUSCHEL (WUS) (Zuo et al,, 2002), and AGAMOUS-LIKE15
(AGL15) (Harding et al., 2003; Zheng et al., 2013).

In the regulation of the TF expression micro-RNA molecules
(miRNAs), the products of MIRNA (MIR) genes have an essential
function. miRNAs are single-stranded RNA molecules of 21—
24 nucleotides that regulate the expression of the genes that
are involved in plant development (for review, Bartel, 2009;
Rubio-Somoza and Weigel, 2011). The biogenesis of mature
miRNAs, which are the functional products of the MIR genes, is a
multi-stage process that involves numerous interacting proteins.
The primary MIR transcripts (pri-miRNA) are processed by
DCLI1 (DICER LIKE 1) RNase III, that is accompanied by the
double-stranded RNA binding protein HYPONASTIC LEAVES
1 (HYL 1), the C2H2-zinc finger protein SERRATE (SE), and
two cap binding proteins, CBP20 and CBP80/ABHI1 (for review,
Voinnet, 2009). In addition, the DDL (DAWDLE) protein was
proposed to stabilize pri-miRNAs and facilitate the maturation
of miRNA (Yu et al., 2008). As a result, the miRNA/miRNAx*
duplex that is produced in the nucleus of a plant cell is
transported to the cytoplasm where the miRNA strand is bound
by the protein of the ARGONAUTE (AGO) family to form
the RNA-Induced Silencing Complex (RISC) engaged in the
recognition of the target transcripts that are complementary
to the miRNA sequence (Baumberger and Baulcombe, 2005).
Then, the miRNA-loaded RISC directs the post-transcriptional
silencing of the targeted mRNA via its cleavage or translation
repression (Tang et al., 2003; Brodersen et al., 2008).

The transcripts that are produced by members of the MIR gene
family are processed to the identical or almost identical mature
miRNA molecules. Different members of the MIR gene family are
expressed in a developmental and tissue-specific manner and in
response to various biotic and abiotic stimuli (Zhao et al., 2007,
2011; Moldovan et al., 2010; Kruszka et al., 2014).

Similar to the widely documented involvement of miRNA
molecules in plant development in vivo (Jin et al., 2013), the
expression of miRNAs was reported during in vitro induced SE
in several plant species including Citrus sinensis, Dimocarpus
longan, Gossypium hirsutum, Larix kaempferi, Larix leptolepis,
Liriodendron tulipiferax L. chinense, Manihot esculenta, and Zea
mays (Zhang et al., 2012, 2014; Li et al,, 2013; Lin and Lai, 2013;

Yang et al., 2013; Chavez-Hernandez et al., 2015; Wu et al., 2015;
Lin et al., 2015a,b; Khatabi et al., 2016). Thus, the engagement of
miRNAs in the embryogenic transition that is induced in vitro is
assumed, although knowledge about the function of the specific
miRNA in SE induction is very limited.

In Arabidopsis, which is a model plant that has greatly
contributed to the present knowledge on the genetic regulation of
SE (Wojcikowska and Gaj, 2016), analysis of the MIRs/miRNAs
that are associated with embryogenic induction has not yet been
conducted. Thus, in the present study the expression profiles
of 190 MIR genes that represented 114 MIR gene families was
monitored during SE induction in an embryogenic culture of
Arabidopsis. The analysis of the primary MIR transcripts was
followed by the identification of mature miRNAs that were
differentially accumulated during the embryogenic transition.
A comparison of the pri-miRNA and the cognate mature
miRNA level implied that an extensive differential processing
of the primary MIR transcripts precedes the production of the
functional miRNA molecules that are engaged in SE induction.
The identified set of candidate miRNAs provides a valuable
platform for further analysis that is aimed at deciphering
the miRNA-mediated regulatory network that controls the
embryogenic transition in plants.

od
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FIGURE 1 | Venn diagram of the MIRNA genes transcribed in the
explants (0 d) and the derived embryogenic culture (5 and 10 d).

TABLE 1 | MIRNA genes differentially expressed in the early (5-0 d) and
advanced (10-5 d) stages of SE induction.

Number of differentially
expressed genes

Down-regulated Up-regulated

FOLD CHANGE X > 2

5-0d 67 (56%) 42 (63%) 25 (37%)
10-0d 79 (66%) 31 (39%) 48 (61%)
10-5d 70 (59%) 7 (10%) 63 (90%)
FOLD CHANGE X > 10

5-0d 50 (75%) 30 (60%) 20 (40%)
10-0d 30 (38%) 12 (40%) 18 (60%)
10-5d 28 (40%) 0 (0%) 28 (100%)

Frontiers in Plant Science | www.frontiersin.org

January 2017 | Volume 8 | Article 18


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Szyrajew et al.

miRNAs Involved in Somatic Embryogenesis of Arabidopsis

RESULTS

A Vast Number of MIR Genes Is

Transcribed during SE Induction

Our analysis indicated that a great majority (98%) of the analyzed
MIR genes were expressed in the Col-0 explants and in the
derived embryogenic culture. In total, primary transcripts of
187 MIR genes were detected at different time points of the
culture (Figure 1; Table SI). A significant fraction (160; 86%)
of the analyzed MIRs was transcriptionally active at all of the

monitored time points (0, 5, and 10 d). SE induction resulted
in the activation of a relatively low number (18) of MIR genes
that were not expressed in freshly isolated explants (0 d) and
a similar number (12-15) of the transcripts was induced at the
early and the advanced stage of SE induction. We observed
that the majority of the detected MIR transcripts (185; 99%)
were expressed at both of the stages of the culture that were
analyzed (5 and 10 d) and only three and six of the MIR
genes were transcribed exclusively at early or advanced SE,
respectively.

A UPREGULATED

FC>2

EARLY SE INDUCTION  ADVANCED SE INDUCTION

c FC210

EARLY SE INDUCTION  ADVANCED SE INDUCTION

(10-5 d) stages of SE induction.

FIGURE 2 | Venn diagrams with the number of differentially expressed MIRNA genes at FC > 2 (A,B) and FC > 10 (C,D) in the early (5-0 d) and advanced
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FIGURE 3 | Hierarchical clustering of the expression profiles of 120 MIRNA genes differentially expressed in SE culture. (A) Heat map displaying the
changes in the MIR expression in the early (5-0 d) and advanced (10-5 d) stages of SE induction, (B) Five patterns (I-V) of gene expression and the relevant number

Cluster |, 38 genes Cluster Il, 42 genes Cluster 1ll, 19 genes
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TABLE 2 | Number of differentially expressed mature miRNAs in the early
(5-0 d) and advanced (10-5 d) stages of SE induction.

Stage of SE Number (%) of Down-regulated Up-regulated
induction differentially

expressed miRNAs
Early 13 (68%) 9 (69%) 4 (31%)
Advanced 14 (74%) 3(21%) 11 (79%)

SE Induction Is Associated with the

Extensive Modulation of MIR Transcripts
Profiling of the MIR genes expression revealed that the majority
(120, 64%) of the transcripts displayed a significantly modulated
expression (Fold change, FC > 2.0) in response to SE induction
(Table S2). A closer inspection of the MIR transcript expression
across the SE culture indicated a similar number of differentially
expressed MIR genes in the stages of SE induction that were
compared: 67 (56%) vs. 70 (58%) of the MIR genes were found
to be significantly modulated during the early (5-0 d) vs. the
advanced (10-5 d) SE stage, respectively (Table 1). In contrast to
the similar number of the modulated MIRs, the SE stages differed
distinctly in the expression patterns of these genes. During early
SE induction, a majority (42; 63%) of MIRs were significantly
(FC > 2.0) down-regulated and a large subset (30; 71%) of these
genes was found to be highly repressed (FC > 10.0) (Figure 2).
In contrast to early SE induction, in advanced SE, the MIR
genes were predominantly (63; 90%) up-regulated (FC > 2.0) and
almost half (28/63; 44%) of them displayed a highly stimulated
transcription (FC > 10.0).

A set of 120 MIR genes that had a significantly modulated
expression was subjected to hierarchical clustering and five
distinct gene expression patterns were observed (Figure 3; Table
S3). The analysis showed that numerous (61) genes that had been
down-regulated at early SE were up-regulated at advanced SE
induction (clusters II and III). In majority of these genes (42;
69%), the expression level at 10 d was found to be similar to 0 d of
the culture (cluster II), which suggests a transient modulation of
these genes. The opposite expression patterns, i.e., up-regulation
in early SE followed by down-regulation in advanced SE, were
noticed for a small number (7) of genes (cluster IV). Hierarchical
clustering analysis also indicated numerous genes (38) that were
consistently up-regulated during both of the monitored SE stages
(cluster I) and a limited number of genes (14) were consistently
down-regulated at both of the culture stages (cluster V).

In conclusion, numerous MIR genes were found to be
differentially expressed during SE induction, and, for the
majority of these genes, a distinct down-regulation at the early
culture was followed by their up-regulation in the advanced
culture.

The analyzed transcripts represented 114 MIR gene families of
different sizes that ranged from 1 to 14 member genes. A closer
inspection of the pri-miRNAs that were produced within the gene
family indicated profound differences in the expression level in
SE of the gene family members. Divergent transcript profiles of
the member genes were found within the majority (79%) of the
analyzed MIR families. Thus, a diverse contribution of the MIR

TABLE 3 | Accumulation (up-regulation in red and down-regulation in
gray) of the primary MIRNA transcripts (pri-miRNA) and the relevant
mature miRNAs in early (5-0 d) and advanced (10-5 d) SE induction.

MIRNA FC mature FC
gene miRNA
SE INDUCTION SE INDUCTION
EARLY ADVANCED EARLY ADVANCED
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TABLE 3 | Continued

MIRNA FC mature FC
gene miRNA
SE INDUCTION SE INDUCTION
EARLY ADVANCED EARLY ADVANCED
169 0.72 169h-n
169k 1.06
1691 0.97
169m 0.57*
169n 0.95
172a 172 0.54 1.78
172b
172¢
172d
172e
319a 319a-b
319b
3180 sioc [OAEIAGHTT]
1.77 390 0.79
390a 0.84
390b
395a 393 oo
393 o5
396a . 396
398a . 398
398b
398¢c

FC, Fold change; *significant difference between compared days of SE culture (p < 0.05).

genes of the same family to the regulation of SE induction is
assumed.

Mature miRNAs of SE-Modulated

Accumulation Level

To evaluate the regulatory impact of MIR genes on SE induction,
the accumulation of the mature miRNAs that constitute the
functional products of MIR transcripts was examined during the
time course of SE. The mature miRNAs that were selected for
the analysis represented the MIR genes that were differentially
expressed in SE. A total of 19 mature miRNA molecules, which
represented 60 pri-miRNAs encoded by 14 MIR gene families
(MIR156, MIR157, MIR159, MIR160, MIR164, MIR166, MIR168,
MIR169, MIR172, MIR319, MIR390, MIR393, MIR396, and
MIR398), were subjected to stem-loop RT-qPCR analysis.

It was found that a great majority (85%) of the mature
miRNAs that were analyzed (miR156a-f, miR156g, miR156h,
miR157, miR159, miR160, miR164, miR166, miR169a-c,
miR169d-g, miR169h-n, miR319a-b, miR319¢, miR390,

10,00
* ok * % * X%
1,00 . ; . 5
L
w5d
m10d
0,10
0,01
FIGURE 4 | Expression levels of AGO1, DCL1, HEN, and SE genes in
the early (5 d) and the advanced stage (10 d) of SE induction. A value
significantly different from O d is indicated with an asterisk (o < 0.05).

miR393, miR396, and miR398) were differentially accumulated
during SE induction (Table $4). Two mature miRNAs, miR168
and miR172 that are encoded by the multigene MIR families,
displayed a steady expression although the level of their
pri-miRNA precursors was modulated in SE.

It was observed that the expression profiles of mature miRNAs
differed distinctly in the early and advanced stage of SE induction.
In general, the expression profile of the mature miRNAs that
were analyzed corresponded with the global transcription pattern
of the MIR genes observed during SE induction. Accordingly,
in early SE the majority (69%) of mature miRNAs was found
to be down-regulated whereas in the advanced SE stage, most
of them were up-regulated (11; 79%) (Table 2). Corresponding
expression profiles of pri- and mature miRNA were found for
MIR157a-c and MIR396a in early SE and for MIR169c, MIR169d,
MIRI169g, MIR319b, and MIR396b in advanced SE. In contrast,
some inconsistencies in the expression of pri- and mature miRNA
were found for MIR157d and MIR396D in early and for MIR169a,
MIR169b, MIR319a, and MIR396a in advanced SE.

A closer look into the expression of individual members
of the MIR families indicated that only a small subset of the
family transcripts seem to contribute to the production of mature
miRNAs (Figure S1; Table 3). The MIR genes that had a rather
dissimilar contribution to the production of the mature miRNAs
were found within the majority (11; 79%) of the MIR gene
families. The majority (38; 63%) of the analyzed MIR genes was
transcribed at a significantly higher level than the relevant mature
miRNAs, thus suggesting that numerous pri-miRNAs were not
processed into the functional miRNA molecules. In support of
this assumption we observed a significantly decreased level of
the transcripts that encode the key enzymes of the pri-miRNA
processing machinery including DCLI and HENI (Figure 4;
Table S5).

In some instances, a delayed accumulation of mature miRNA
was found in respect to the expression of the relevant pri-miRNA.
Accordingly, the increased expression of MIRI69h-n in early
SE was followed by a large accumulation of mature-miRNA
in advanced SE. A gradual accumulation of these molecules in

Frontiers in Plant Science | www.frontiersin.org

January 2017 | Volume 8 | Article 18


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Szyrajew et al.

miRNAs Involved in Somatic Embryogenesis of Arabidopsis

oxidoreductase
activity, 2

hormone binding,
3

ion binding, 22

nucleicacid
binding, 32

response to ABA, 7
response to osmotic
stress, 2

ponse to AU, 8

response to radiation,

A Molecular Function

\ factor activity, 31

B Biological Process

response to GA, 3

ARF, Homeobox

transcription

NAC

Homeo
domain-like

5 P
response to o:
containing compound,
vegetative to 16
reproductive phase
transition of meristem,
9

seed development, 12
embryo development,

12

root development, 12 \

flower development,
19

phyllome
development, 29

FIGURE 5 | Functional categories: (A) molecular function and (B) biological process of the target genes annotated to the candidate miRNAs that are assumed to
be involved in SE induction. ABA, abscisic acid; AU, auxin; ET, ethylene; GA, gibberellic acid.
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the tissues undergoing SE induction cannot be excluded when
attempting to explain a delayed increase of the mature miRNA.

In conclusion, in contrast to the robustly modulated
transcription of the MIR genes accumulation of the mature
miRNAs seem to be rather confined during embryogenic
response. Hence, the extensive post-transcriptional regulation is
assumed to be associated with the production of the functional
miRNAs that control the reprogramming of the somatic cells into
embryogenic cells.

Functional Annotation of the Candidate
miRNAs

Mature miRNA molecules with a differential accumulation in SE
induction (miR156/miR157, miR159, miR160, miR164, miR166,

miR169, miR319, miR390, miR393 miR396, and miR398) were
selected as the candidate regulators of the embryogenic response.
In support of the involvement of the candidate miRNA in the
regulation of SE, all of these molecules have been reported to
control hormone and/or stress responses. Moreover, among the
candidate miRNAs, those that had a documented impact on the
development of zygotic embryos (miR156/157, miR164, miR166,
and miR169), seeds (miR159), leaves (miR159, miR164, mir319,
miR390, and miR396), roots (miR160, miR169, miR390, miR393,
and miR396), and flowers (miR159, miR164), as well as the
control of flowering (miR156/miR157, miR159, and miR169) and
vegetative phase transition (miR156/157, miR169, and miR390)
were found (Table S6).

To further assess the potential pathways that are controlled by
the candidate miRNAs during SE induction, the functions of their
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and 10-5d (c) (o < 0.05).
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predicted targets were annotated (Table S7). A total of 59 target
genes were subjected to Gene Ontology (GO) analysis and 52 of
them were significantly (at p < 0.01) enriched for 235 GO terms
over two main functional categories-molecular function (MF)
(16) and biological processes (BP) (219) (Figure 5; Tables S8, S9).
The highly enriched GO terms in the MF category are related
to transcription factors (TF) (GO:0001071; 31 genes); binding
(GO:0005488; 48 genes) including nucleic acids (32 genes), ions
(22 genes), and hormones (3 genes), and oxidoreductase catalytic
activity (GO:0016721; 2 genes) (Figure 5A). TFs targeted by the
candidate miRNA were annotated to nine gene families that are
referred to as SBP-box (9), NAC (6), Homeodomain-like (6),
TCP (5), MYB (4), F-box (4), CCAAT-binding (3), ARF (3), and
Homeobox (2).

The annotated to the candidate miRNA GO terms infer that
a wide range of biological processes is involved in regulation
of SE induction (Figure 5B). The main, highly enriched BP
categories are related to metabolic (GO:0008152; 50 genes)
and developmental (GO:0032502; 39 genes) processes and the
responses to stimuli (GO:0051716; 19 genes) (Table S9).

Among the targets of the candidate miRNAs, those that are
related to metabolic processes were found to be overrepresented
in the BP category. Within this category, numerous target
genes that are involved in the regulation of the macromolecule
metabolic process (GO:0060255), the regulation of transcription
(GO:0006355) and RNA biosynthesis (GO:2001141) were
identified.

Targets of the great majority (92%) of the candidate miRNAs
were annotated to plant development, a general category that
covers diverse developmental processes including phyllome
(GO:0048827), shoot (GO:0048367), and root development
(GO:0048364), the transition of the meristem from the vegetative
to the reproductive phase (GO:0010228) and the regulation of
the development of the reproductive structures (GO:0048608),
such as flowers (GO:0009908), embryos (GO:0009793), and seeds
(GO:0048316). Among the genes that are related to zygotic
embryogenesis, which is a process that corresponds to somatic
embryo development, the targets of miR164, miR166, miR169,
miR319, and miR396 were identified.

Importantly to the mechanism of SE induction, another
functional category that was highly enriched in genes was
found to be related to the response to stimuli (GO:0051716)
and targets of 92% of the candidate miRNA were annotated
to this functional category, including numerous genes that
are involved in plant responses to hormones, particularly
auxin (GO:0009733), abscisic acid (GO:0009737), ethylene
(GO:0009723), and gibberellic acid (GO:0071370), osmotic stress
(GO:0071470) and radiation (GO:0071478). The genes that are
related to hormone signaling were identified within the targets of
miR159, miR160, miR164, miR319, miR393, and miR396.

Verification of the Function of the
Candidate miRNAs in SE-Target Analysis
To confirm the involvement of the candidate miRNAs in SE,
the expression patterns of the presumed miRNA targets were
analyzed in an embryogenic culture. In total, the expression

levels of 21 genes that are targeted by seven candidate miRNAs
were examined (Figure 6; Table S5). An analysis of seven SPL
(SPL2,3,9,10,11,12, and 13) genes, which are possible targets of
miR156/miR157, revealed that all of them displayed a significant
accumulation of the transcripts during SE except for SPL2. The
SPLs with an up-regulated expression (SPL3,9,10,11,1, and 13)
may be controlled by miR156 due to the decreased expression of
this miRNA during SE. In addition, the results of the expression
profiling infer a regulatory interaction of SPL2 and miR157 in SE
due to the up-regulation of miR157 and down-regulation of SPL2
that was observed in embryogenic culture (Figure 6A).

The elevated accumulation of both miR164 targets, CUCI
and CUC2 genes, throughout SE induction was found to be
opposite to the down-regulation of miR164, thus suggesting that
an miR164-CUC regulatory node might operate in SE induction
(Figure 6B). Within the miR169 targets, three genes of NF-YA
family, NF-YAI, NF-YA8 and NF-YAI0, displayed a significant
decrease in the early stage of SE induction, which contrasted with
the strongly increased level of miR169h-n. These results suggest
that a biological function of miR169 in SE seems to be related to
the repression of NF-YA genes (Figure 6C). In SE, a regulatory
relation between miR319 and the genes of the TCP family
cannot be excluded as the substantially increased level of miR319
that was observed in the advanced stage of the embryogenic
culture was found to be accompanied by a significantly decreased
expression of the TCP4 and TCP10 transcripts (Figure 6D).

The expression profiling indicated that among the TF genes
that are regulated by the candidate miRNAs, key regulators of the
auxin response also need to be considered. Accordingly, miR390
might control SE induction via contribution to production of
the tasiARFs that repress ARF2, ARF3, and ARF4 transcripts. In
support for this assumption a distinct down-regulation of ARF2
and ARF3 transcripts was observed in the early and advanced
embryogenic culture coupled with a significant accumulation of
miR390 during SE (Figure 6E). The target analysis indicated that
besides the regulation of the genes that encode TFs, the candidate
miRNA might also control the key enzymes that are involved
in a stress response. In support of this assumption, the CSDI
gene seems to be controlled by miR398 during both stages of SE
because inverse expression patterns of the target transcripts vs.
mature miRNA molecules was observed (Figure 6F).

MATERIALS AND METHODS

Experimental Design

The expression profiles of 190 MIR genes belonging to 114
gene families were monitored at the level of the primary
MIR transcripts using mirEX, a high throughput RT-qPCR
platform (Bielewicz et al., 2012; Zielezinski et al, 2015,
http://comgen.pl/mirex2/). The analysis encompassed the tissue
at different stages of embryogenic culture derived from immature
zygotic embryo (IZE) explants that had been induced on an
auxin medium. The experimental design followed the analysis
of SE-associated TF transcripts (Gliwicka et al., 2013) and
included freshly isolated explants (0 d) and the embryogenic
induction at the early (5 d) and advanced (10 d) stages.
To identify the MIR genes that were differentially expressed

Frontiers in Plant Science | www.frontiersin.org

January 2017 | Volume 8 | Article 18


http://comgen.pl/mirex2/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Szyrajew et al.

miRNAs Involved in Somatic Embryogenesis of Arabidopsis

during SE, the pri-miRNA transcript levels at 5 vs. 0 d,
10 vs. 0 d, and 10 vs. 5 d were analyzed. The level of
mature miRNAs products of the selected MIR that displayed a
significantly modulated expression was evaluated using stem-
loop RT-qPCR.

Plant Material

The Arabidopsis thaliana (L.) Heynh. Col-0 genotype was
analyzed in this study. Seeds of Col-0 were supplied by NASC
(The Nottingham Arabidopsis Stock Centre). Plants were grown
in soil pots in a “walk-in” type phytotron under controlled
conditions (20-22°C, 16/8 h L/D photoperiod, light intensity of
100 WE/m?s).

Somatic Embryogenesis Induced In Vitro
Somatic embryogenesis was induced following the standard
protocol (Gaj, 2001). IZE at the mid-late cotyledonary stage of
development (10-12 days after pollination) were used as explants.
The SE induction medium (E5) was based on B5 basal micro-
and macro-salts (Gamborg et al., 1976) and supplemented with
20 g/L sucrose, 8 g/L Oxoid agar, and 5 uM 2,4-D. Cultures were
maintained in a growth chamber under controlled conditions:
22°C, 16/8 h (light/dark), light intensity 50 mE/m?s.

RNA Isolation and cDNA Synthesis for the
Analysis of MIRs

SE cultures were sampled at three time points for the isolation of
total RNA: freshly isolated IZEs (0 d) and explants at the early (5
d) and the late (10 d) stage of SE induction. At each time point,
three biological replicates were used for the analysis.

To analyse the transcripts of MIR genes (pri-miRNA), total
RNA was isolated using an RNAqueous Kit (Ambion by Life
Technologies) according to the manufacturer’s instructions. The
RNA concentration was measured using Nano-Drop ND-1000
(NanoDrop Technologies, Wilmington, Delaware, USA) and
RNA integrity was tested on 1% agarose gel. Reverse transcriptase
reactions were performed using 3 pg of RNA, Oligo(dT)20
Primer (Invitrogen by Life Technologies) and SuperScript
III Reverse Transcriptase (Invitrogen by Life Technologies)
according to the manufacturers’ instructions.

RNA Isolation and cDNA Synthesis for
Mature miRNAs Analysis

To evaluate the accumulation level of mature miRNAs, total RNA
was isolated using a miRVana Kit (Ambion by Life Technologies)
according to the manufacturer’s instructions. The design of the
oligonucleotides and stem-loop reverse transcriptase reactions
were performed according to Speth and Laubinger (2014).

RNA Isolation and cDNA Synthesis for the

Analysis of Target Genes

Total RNA was isolated using an RNAqueous Kit (Ambion by
Life Technologies) according to the manufacturer’s instructions.
Reverse transcriptase reactions were performed using a
RevertAid First Strand c¢DNA Synthesis Kit (Fermentas)
according to the manufacturer’s instructions.

Quantitative PCR for Profiling the MIRs

To monitor the accumulation of pri-miRs during SE, the
RT-qPCR reaction was used. Gene-specific primers for
190 microRNAs from A. thaliana genes were designed as
described in Szarzynska et al. (2009) and Bielewicz et al
(2012). The primer sequences are available on the miREX
website (http://www.comgen.pl/mirex1/). RT-qPCR reactions
were performed using a 7900HT Fast Real-Time PCR System
(Applied Biosystems by Life Technologies) and PowerSYBR
Green to monitor the dsDNA synthesis. The reaction mixture
(10 nL) contained 5L of 2x PowerSYBR Green PCR Master
Mix (Applied Biosystems by Life Technologies), cDNA and
gene-specific primers (200 nM each). The following thermal
profile was used for all of the gPCRs: 95°C for 10 min; 40 cycles
of 95°C for 15s; and 60°C for 1 min. After each RT-qPCR run,
dissociation curve analyses were performed. The results were
analyzed using SDS 2.2.1 software (Applied Biosystems by Life
Technologies) (Szarzynska et al., 2009). Ct values for all of the
MIR transcripts were normalized to the PP2AA3 (AT1G13320)
and ELONGATION FACTOR 1-ALFA (EF-1) (AT1G07930)
(Czechowski et al., 2005).

Quantitative PCR for Profiling Mature

miRNAs
qPCR analyses were performed using a LightCycler 480 (Roche)
to monitor the accumulation of mature miRNAs. The following
RT-qPCR reaction conditions were used: Denaturation one
repeat of 10 min at 95°C followed by 45 repeats of 10s at 95°C,
8s at the specific temperature for each of the primers, 12s at
72°C and 55 at 80°C. Denaturation for the melt curve analysis
was conducted at 95°C followed by 15s at 65°C and 95°C
(0.1°C/s for fluorescence measurement). The stem-loop primers
for the reverse transcription and the primers for RT-qPCR are
listed in Table S10. The universal qPCR reverse primer sequence
was designed according to Wu et al. (2007). Ct values were
normalized to the EF-1 (AT1G07930).

Expression data were submitted to the mirEX qPCR platform
(Zielezinski et al., 2015; http://comgen.pl/mirex2/).

Quantitative PCR for Profiling the Target

Genes

qPCR analyses were performed using a LightCycler 480
(Roche) to monitor the accumulation of target gene transcripts.
The following RT-qPCR reaction conditions were used:
Denaturation-one repeat of 10 min at 95°C, followed by 45
repeats of 10s at 95°C, 8s at the temperature that is specific for
the primer pairs, 12s at 72°C and 55 at 80°C. Denaturation for
the melt curve analysis was conducted at 95°C followed by 15 s at
65°C and 95°C (0.1°C/s for the fluorescence measurement). Ct
values were normalized to the EF-1 (AT1G07930). The primers
used for the RT-qPCR reactions are listed in Table S11.

Gene and Mature miRNA Expression Level

Analysis
The fold change (FC) of the SE-modulated MIRs, mature
miRNAs and their presumed targets was calculated using the

Frontiers in Plant Science | www.frontiersin.org

January 2017 | Volume 8 | Article 18


http://www.comgen.pl/mirex1/
http://comgen.pl/mirex2/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Szyrajew et al.

miRNAs Involved in Somatic Embryogenesis of Arabidopsis

comparative 20744 method. In all of the analyzed culture

tissue samples, the control genes displayed a constant expression
pattern with Ct = 17 £ 1 and Ct = 18 £ 1 for PP2AA3 and
EF-1, respectively. Candidate genes were identified using the
thresholds of 2- and 10-fold changes. The FC were calculated
as the ratio of the transcript levels at different SE time-points
(SE-modulated genes). The reactions and calculations were
performed in biological triplicate. P-value was calculated by
comparisons of dCt values. As the number of data was limited it
was not possible to conduct normality tests, thus non-parametric
Analysis of Variance (Kruskal Wallis test) was applied to calculate
the significant differences between the comparisons (corrected p
< 0.05).

Hierarchical Clustering of SE-Modulated
MIRs

The expression profiles were clustered hierarchically using the
average linkage method and Euclidean distances. The experiment
was repeated for the number of clusters k = 2, 3, ..., 15. For each
k, the results were visualized and manually verified. A number of
clusters, k = 5, was selected for further analysis as the one that
was characterized by the highest within-cluster coherence and
between-cluster separation. The clustering procedure and the
visualizations were performed using MATLAB R2014a software.

Target Prediction and Functional

Annotation

The miRNA targets that were predicted using the psRNATarget
tool (Dai and Zhao, 2011) were functionally annotated
with using the PLAZA Dicots database version 3.0
(http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dic
ots/). The significance of the over-representation was determined
using the hypergeometric distribution followed by the Bonferroni
method for multiple testing corrections (corrected p < 0.01).

DISCUSSION

Extensive and Specific to SE-Stage
Modulation of MIRNA Genes Is Associated
with the Embryogenic Transition Induced

in Arabidopsis

The study indicated that numerous MIR genes are active in
the embryogenically induced somatic tissue of Arabidopsis and
that the majority of them are significantly modulated during
SE induction. Interestingly, the expression level of MIRs seems
to be specific to the stage of SE induction and a substantial
repression vs. stimulation of MIR genes was found to be
characteristic to the early vs. advanced stage of SE induction,
respectively. Like the MIR transcripts, the majority of mature
miRNAs were found to be down-regulated during early SE
and up-regulated in the advanced SE induction stage. Inverse
transcription profile i.e., substantial transcript accumulation in
the early SE followed by transcript down-regulation in the
advanced SE stage, displayed TF genes expressed in embryogenic
culture of Arabidopsis (Gliwicka et al., 2013). This observation
was a reason to focus on TFs as miRNA targets. Thus, it

seems that in SE, similar to ZE, miRNAs might contribute to
the cellular differentiation during embryonic development via
the regulation of the TF genes (Nodine and Bartel, 2010). In
support of this assumption, we found genes encoding TFs to
be over-represented among the targets that were annotated to
the differentially expressed miRNAs. Thus, the intense miRNA-
mediated regulation of TF genes could be employed in the
mechanism of SE induction, similar to other developmental
processes (Chen and Rajewsky, 2007; reviewed in Hobert, 2008).
Moreover, a regulatory feedback loop between the TF and MIR
genes might be expected during SE considering that binding
sites for various TFs were identified within the MIR promoters
(Megraw et al., 2006). In support of this assumption, the
GRF1 (GROWTH RESPONSE FACTORI) and GRF3, which
are the targets of miR396 that were found to be differentially
expressed in SE, were reported to repress the expression of
MIR396a and MIR396b in Arabidopsis (Hewezi and Baum,
2012). Likewise, ARFs (AUXIN RESPONSE FACTOR) might
control the SE-modulated expression of MIRI60, MIR167,
and MIR390 due to the AUXIN RESPONSE ELEMENTS
(AREs) that were detected in the promoters of these genes
(Gutierrez et al., 2009; Yoon et al, 2009; Marin et al.,
2010).

In conclusion, the study provides comprehensive evidence
that the regulatory interactions between TFs and miRNA play
a pivotal role in the re-programming of somatic cells into
embryogenic cells.

Intense Post-transcriptional Regulation of

miRNA is Associated to SE Induction

The present comparative analysis of pri- and mature-miRNAs
levels in an embryogenic culture of Arabidopsis indicated a
global similarity in the expression profiles of these molecules.
However, the up-regulation of the individual pri-miRNAs that
were produced within a gene family did not always result
in the accumulation of the functional product, i.e., mature
miRNA. A growing number of reports have highlighted the
importance of the post-transcriptional regulation of miRNA
biogenesis in plant and animal development (Lee et al., 2008;
Nogueira et al, 2009; Bielewicz et al., 2013; Barciszewska-
Pacak et al., 2015).The extensive differential processing of the
primary miRNA transcripts that was inferred in the present
study appears to reflect the response of the cultured tissue
to the stress conditions that were applied in vitro to induce
SE. Various environmental stresses have been shown to trigger
the differential processing of the primary miRNA transcripts,
which is relevant to this assumption (Yan et al, 2012; Jia
and Rock, 2013). A fundamental role of post-transcriptional
regulation of miRNA expression in the responses to various
abiotic stresses was recently postulated in Arabidopsis seedlings
and, similar to the present results, a broad modulation of
pri-miRNA was found to distinctly contrast to the rather
confined response of mature miRNA (Barciszewska-Pacak et al.,
2015).

Among the various mechanisms that control the biogenesis
of miRNA, splicing efficiency, alternative splicing and
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polyA site selection have been postulated to be frequent
(Bielewicz et al, 2013; Szweykowska-Kulinska et al., 2013).
Alternative splicing may result in a low level of mature
miRNA in spite of the up-regulation of the relevant pri-
miRNA as was indicated for miR400 and miR846 under
heat stress and ABA treatment, respectively (Yan et al,
2012; Jia and Rock, 2013). The discrepancy between the
accumulation of pri- and mature miRNA might result
from the differential susceptibility of pre-miRNA to the
processing machinery and the diverse stability of mature
miRNA (Ramachandran and Chen, 2008; Koster et al,
2014; Dolata et al, 2016). Recently, the increased levels of
miRNA161 and miRNA173 coupled with down-regulated
expression of the relevant pri-miRNAs were described
in Arabidopsis seedlings subjected to salinity stress and
ARGONAUTE 1 (AGOL1) was proposed to be involved in the
co-transcriptional regulation of MIR gene expression (Dolata
etal., 2016).

Among the post-transcriptional processes that control the
accumulation of mature miRNA, the level of the proteins that are
involved in microRNA biogenesis has been postulated to regulate
the efficiency of pri-miRNA processing into mature miRNAs
(Rogers and Chen, 2013; Wang et al., 2013). In accordance
with this postulate, in the present study, a lower than expected
accumulation of the functional miRNA products in SE was
coupled with the down-regulation of the genes encoding key
enzymes in miRNA processing (AGO1, DCL1, HEN1, and SE).

The differential stability of miRNAs has mostly been
demonstrated in animal cells and the active degradation of
mature miRNAs has been identified as an important mechanism
in miRNA homeostasis (Bail et al., 2010; Riiegger and Grof3hans,
2012). Thus, it cannot be ruled out that the high degree of stability
of miRNA may account for the delayed accumulation (in the
advance SE stage) of the mature products of the MIR169h-n
genes of up-regulated transcription in the early stage of SE.

An inconsistency in the expression of pri- and mature miRNA
was also observed for miR168. A steady level of mature miR168
was detected throughout SE in contrast to the differential
expression of both members of the family (MIR168a and
MIR168b). miR168 was found to control miRNA processing by
targeting a key gene in this pathway, AGOI1 (Vaucheret et al.,
2004, 2006). However, in SE, other regulatory elements besides
miR168 seem to control AGOI as we observed a down-regulated
transcription of the AGOI transcripts in the culture that had
a steady miR168 level. In support of this suggestion, complex
regulatory loops were postulated to be involved in the control of
AGOLI in order to ensure the correct function of the miRNA and
siRNA pathways (Mallory and Vaucheret, 2009).

The results show that in the majority (79%) of the analyzed
MIR gene families, the members displayed distinctly divergent
expression profiles during SE. Thus, the diverse contribution of
different members of the MIR family to the production of mature
miRNAs, and hence, the regulation of SE is assumed. In support
of this supposition, the functional diversification within MIR
gene families was indicated in Arabidopsis. Accordingly, it was
shown that MIR393a contributes to bacterial resistance (Navarro
etal., 2006), MIR164a controls leaf differentiation (Koyama et al.,

2010) and the expression of MIR165a/MIR166a is specific to the
abaxial epidermis (Yao et al., 2009).

Stress- and Hormone-Related Functions of
the Candidate miRNAs during SE Induction

Stress factors together with hormone treatments are widely
accepted to play a pivotal role in the mechanism of SE induction
(Jiménez, 2005; Zavattieri et al, 2010). In support of this
belief, the promoters of MIR genes, including those that are
differentially expressed in the SE of Arabidopsis (present study),
have been found to be highly enriched in the cis regulatory
elements that control stress- and hormone-responses (Megraw
et al., 2006; Zhao and Li, 2013).

The miRNAs that have a differential accumulation in SE
that were reported to control plant responses to stress include
miR398. It can be assumed that miR398 contributes to SE
induction via the activation of a stress protective reaction
(Sunkar et al., 2006). In support of this postulate, we observed
that the down-regulated expression of miR398 in early SE
was accompanied by a significant up-regulation of the CSDI
(Cu/Zn superoxide dismutase 1) gene encoding a key enzyme
that is involved in the responses to oxidative stress (Sunkar
et al., 2006). The decreased accumulation of miR398 linked
with an increased transcription of the CSD genes was also
indicated in embryogenic cultures of other plants (Zhang et al.,
2012; Lin and Lai, 2013). Another stress-related candidate for
a possible regulatory role in SE, miR169, was reported to be
highly produced in response to different stresses in Arabidopsis,
tomato and rice (Zhao et al., 2009, 2011; Zhang et al., 2011).
The present results suggest that during SE, miR169 might target
the NF-YA (NF-YAI, NF-YA8, and NF-YA10) genes encoding the
HAP2-type transcription factors, which are components of the
CCAAT-box binding factor complex (CBF/NF-Y/HAP) (Testa
et al,, 2005). miR169-NFY regulatory interactions have been
indicated as operating in various plant development processes
including embryogenesis and seed development (Mu et al,
2013) as well as responses to stresses (Liu and Howell, 2010;
Zhao et al,, 2011; Luan et al., 2014). In SE, a stress-related
function of the mirl69-NF-YAI0 regulatory interaction can be
postulated due to the observations that stress factors affect the
TaNF-YA10 expression in wheat and that the overexpression of
this gene in Arabidopsis resulted in enhanced stress tolerance
(Ma et al, 2015). The stress conditions that are inevitably
associated with in vitro cultures may also account for the
differential expression of miR319 that was indicated during
SE as this molecule has been indicated as controlling the
general stress-responses in Arabidopsis (Barciszewska-Pacak
et al., 2015). It is possible that a mechanism of the miR319-
mediated regulation of SE induction is related to auxin as
miR319 was found to indirectly repress of the auxin response
inhibitor, SHY2 (AtIAA3) (Koyama et al., 2010). miR319 might
also exert its function in SE by targeting the TCP (TEOSINTE
BRANCHEDI1/CYCLOIDEA/PROLIFERATING CELL FACTOR)
genes encoding TFs that are involved in the organ-specific
regulation of cell growth and differentiation (Palatnik et al., 2003;
Crawford et al, 2004; Nag et al,, 2009). The present results
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showed that during the advanced stage of SE induction, which is
connected with somatic embryo differentiation, miR319 appears
to control two of the TCP genes, TCP4 and TCPI0.

A significantly modulated expression of numerous genes
encoding auxin-responsive TFs was reported in Arabidopsis
(Gliwicka et al., 2013; Wickramasuriya and Dunwell, 2015) and
other plant species (Legrand et al., 2007; Sharma et al., 2008;
Chakrabarty et al., 2010). Consistent with these observations,
numerous miRNAs that are involved in auxin responses were
identified among the candidates that are engaged in SE induction.
Among them, miR393, which plays a key role in auxin signaling
during plant development, was identified (Navarro et al., 2006;
Si-Ammour et al., 2011). A recent report on SE in Arabidopsis
confirmed that miR393 contributes to embryogenic transition by
targeting the auxin receptors, TIRI and AFB2, and modulating
tissue sensitivity to auxin treatment (Wdjcik and Gaj, 2016).
Another auxin signaling-related miRNA candidate, miR160, was
indicated as controlling the development of various organs in
Arabidopsis, particularly zygotic embryos, by targeting ARFIO0,
ARF16, and ARF17 (Liu et al., 2007; Liu and Chen, 2010).
The down-regulation of miR160 that was observed in SE
of Arabidopsis in this study was also documented in the
embryogenic cultures of other plants (Zhang et al., 2012; Lin and
Lai, 2013). In support of the regulatory relation between miR160
and ARFs during SE induction is the observation about the
increased accumulation of ARF10, ARF16, and ARF17 transcripts
in an embryogenic culture of Arabidopsis (B. Wéjcikowska and
MDG., submitted for publication). In addition, the involvement
of the miR160-mediated regulation of ARFI0 in the regeneration
of shoots in a callus culture of Arabidopsis was also reported
(Qiao et al., 2012).

Auxin/ARF-related functions can also be postulated for
miR390, which had a significantly modulated expression in
SE of Arabidopsis (present study) and of other plants (Zhang
et al., 2012; Lin and Lai, 2013; Wu et al., 2015). miR390 has
been documented as controlling the auxin signaling pathway
by triggering the production of tasiARFs which down-regulate
expression of ARF2, ARF3, and ARF4 genes (Allen et al,
2005; Williams et al., 2005). The present results imply that
the miR390-TAS3-ARFs regulatory interaction seems to operate
during early SE induction and miR390-mediated regulation
of the ARF2 and ARF3 genes might contribute to auxin
signaling involved in embryogenic transition induced in somatic
cells.

Similarity of miRNA-Mediated Control in
ZE and SE

The essential role of numerous miRNAs in the control of ZE
was indicated in Arabidopsis and among them miR156/miR157,
which are expressed in the early morphogenic stage of ZE, were
identified (Nodine and Bartel, 2010; Willmann et al., 2011). In
the present study, an accumulation of miR156h and miR157
was detected in the advanced stage of SE induction, which is
relevant to ZE. Thus, it might be expected that, similar to ZE,
these molecules control the morphogenesis of somatic embryos
possibly through targeting the SPL (SQUAMOSA PROMOTER

BINDING PROTEIN LIKE) genes. The present analysis of the
SPLs vs. miR156/157 expression profiles during SE, which
suggests the involvement of miR156-SPL3/9/10/11/12/13 and
miR157-SPL2 regulatory modules in the control of somatic
embryo development supports that assumption. The miRNA-
mediated regulation of the SPL transcripts might be a common
mechanism that operates during the formation of the somatic
embryo as an inverse expression pattern of miR156/miR157 and
SPL genes was also found in the SE of citrus and cotton (Wu et al.,
2011; Yang et al., 2013).

The present results infer that miR164 might contribute to the
SE mechanism via the regulation of the CUCI and CUC2 genes
encoding the CUP-SHAPED COTYLEDON transcription factors
of the NAC family. Thus, similar to zygotic embryos, the miR164-
CUC1/CUC2 regulatory module appears to control establishment
of the shoot apical meristem in somatic embryos (Aida et al,
1999).

The promotion of the seed maturation programme during ZE
in Arabidopsis requires the miR166-mediated repression of PHB
and PHV (Tang et al,, 2012). Importantly for the SE induction
mechanism, the PHB and PHV were reported to positively
control the LEC2, which is the master regulator of zygotic (Stone
et al., 2001) and somatic (Gaj et al., 2005; Wojcikowska et al.,
2013) embryogenesis. Some evidence suggests that miR165/166
and PHB/PHV are involved in the LEC2-controlled pathway of
SE induction since the up-regulation of the PHB/PHYV transcript
was associated with efficient SE induction and that the silencing
of the MIRI66/165 genes resulted in impaired embryogenic
response (A. M. W. and M. D. G., unpublished). Similar to
Arabidopsis, an inhibited expression of miR166 was attributed
to the early stages of an embryogenic culture of C. sinensis (Wu
etal., 2011), which suggests a common function of miR166 in SE
induction in plants.

CONCLUSIONS

The enrichment of the SE-related transcriptome in MIR
transcripts that were indicated in the present study together
with the extensive modulation of the TF genes that have been
reported in embryogenic cultures of Arabidopsis and other
plants confirm that a robust regulatory burst is associated with
the reprogramming of plant somatic cells toward embryogenic
development. The extensive modulation of MIR gene expression
that is associated with the embryogenic transition appears to
be distinctly controlled at the post-transcriptional level and as
a result, the final level of mature miRNA, causative for SE
induction, is adjusted.

The functions annotated to the SE-involved miRNA
candidates reflect a general belief about the prevalent role of
stress- and hormone-related responses in the genetic mechanism
that governs SE induction. In addition, notable similarities in
the miRNA-mediated regulatory pathways that operate in SE
to the developmental processes in ZE are evident. The results
of the study provide a valuable platform for further analysis
that is aimed at the identification of the miRNA-controlled
regulatory pathways that contribute to embryogenic induction
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in plant somatic cells. Further experiments are needed to verify
the involvement of the candidate miRNAs and their postulated
targets in the embryogenic transition.
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