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Together with thioredoxins (Trxs), plant peroxiredoxins (Prxs), and sulfiredoxins (Srxs)
are involved in antioxidant defense and redox signaling, while their regulation by
post-translational modifications (PTMs) is increasingly regarded as a key component
for the transduction of the bioactivity of reactive oxygen and nitrogen species.
Among these PTMs, S-glutathionylation is considered a protective mechanism against
overoxidation, it also modulates protein activity and allows signaling. This study
explores the glutathionylation of recombinant chloroplastic 2-Cys Prx and mitochondrial
Prx IIF from Pisum sativum. Glutathionylation of the decameric form of 2-Cys
Prx produced a change in the elution volume after FPLC chromatography and
converted it to its dimeric glutathionylated form, while Prx IIF in its reduced dimeric
form was glutathionylated without changing its oligomeric state. Mass spectrometry
demonstrated that oxidized glutathione (GSSG) can glutathionylate resolving cysteine
(Cys174), but not the peroxidatic equivalent (Cys52), in 2-Cys Prx. In contrast, GSSG
was able to glutathionylate both peroxidatic (Cys59) and resolving (Cys84) cysteine in Prx
IIF. Glutathionylation was seen to be dependent on the GSH/GSSG ratio, although the
exact effect on the 2-Cys Prx and Prx IIF proteins differed. However, the glutathionylation
provoked a similar decrease in the peroxidase activity of both peroxiredoxins. Despite
growing evidence of the importance of post-translational modifications, little is known
about the enzymatic systems that specifically regulate the reversal of this modification.
In the present work, sulfiredoxin from P. sativum was seen to be able to deglutathionylate
pea 2-Cys Prx but not pea Prx IIF. Redox changes during plant development and the
response to stress influence glutathionylation/deglutathionylation processes, which may
represent an important event through the modulation of peroxiredoxin and sulfiredoxin
proteins.

Keywords: 2-Cys peroxiredoxin, glutathione redox state, glutathionylation, peroxiredoxin IIF, post-translational
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INTRODUCTION

The redox state of plant thiols and the regulation of cysteinyl
residues in proteins are emerging as key players in the response
of plants to both biotic and abiotic stresses (Sevilla et al., 2015a),
functioning in redox sensing and signal transduction pathways.
Reactive oxygen and nitrogen species (ROS/RNS) are known to
act as signaling molecules in the maintenance of physiological
functions and in the response to changing environments
(Considine and Foyer, 2014). Plants are particularly exposed
to oxidative and nitrosative stress, mainly due to their
photosynthetic and respiratory metabolism, which can generate
high levels of ROS/RNS under certain stress conditions (Martí
et al., 2011; Lázaro et al., 2013). In the redox signaling process,
protein thiols play a central role and redox-sensitive cysteines
undergo a variety of post-translational modifications, including
S-nitrosylation and glutathionylation, which are considered as
an interesting point of control in the regulation of the protein
structure and function (Hartl and Finkemeier, 2012; Zaffagnini
et al., 2012a). Protein glutathionylation constitutes a reversible
covalent post-translational modification (PTM) that takes place
through the addition of glutathione to the thiolate of cysteines
in target proteins. This modification is involved in many
physiological processes, one of the most important being related
to signaling, not only following oxidative or nitrosative stress but
also under physiological, when thiolating agents are generated
(Dalle-Donne et al., 2007). Another interesting aspect related to
PTMs is the possible role as a mechanism for protecting proteins
against modifications such as overoxidation (Roos and Messens,
2011). In more reducing conditions, deglutathionylation occurs
as a result of the removal of the glutathione moiety from
the protein, a process controlled by glutaredoxins (Grxs) and
involving GSH and NADPH-dependent glutathione reductases
(Meyer et al., 2012; Waszczak et al., 2015). Reversible protein
glutathionylation is increasingly seen therefore not only as a
major antioxidant defense against oxidative stress, but also as
a cellular regulatory mechanism in cell signaling (Mieyal et al.,
2008). In this context, ROS have been described as inducers of
S-glutathionylation; more specifically, H2O2 plays an important
role through its influence on the GSH/GSSG ratio, and is directly
involved in the glutathionylation reaction, or through the direct
oxidation of protein Cys, generating a thiyl intermediate which
further reacts with GSH to form a mixed disulfide (Klatt and
Lamas, 2000; Grek et al., 2013).

In cellular redox biology, there is growing interest in the
involvement and regulation of the thioredoxin/peroxiredoxin/
sulfiredoxin (Trx/Prx/Srx) system in plant signaling under
abiotic stress conditions as an important cue that influences
plant growth (Sevilla et al., 2015b). Among these redox proteins,
Prxs are sensitive to glutathionylation. These ubiquitous thiol
peroxidases have an antioxidant function, reducing H2O2,
peroxynitrite and hydroperoxides. Mammals have six Prx
isoforms (I-VI) grouped in three subfamilies, namely typical 2-
Cys Prx (I-IV), atypical 2-Cys Prx (V) and 1-Cys Prx (VI), with
different subcellular locations. In plants, they are localized in
chloroplasts, mitochondria, nuclei, peroxisomes and cytosol, and
are divided into four subgroups: 2-Cys Prx, type II Prx, Prx Q

and 1-Cys Prx (Dietz, 2011). Typical chloroplast 2-Cys Prx and
atypical mitochondrial Prx IIF have two characteristic cysteines
involved in the reduction of peroxides, namely peroxidatic
cysteine (Cp) and resolving cysteine (Cr). H2O2 oxidizes Cp to
its sulfenic form that reacts with the Cr to form a disulfide bond
that is reduced by thioredoxin (Trx), namely Trxf for chloroplast
2-Cys Prx and Trxo for mitochondrial Prx IIF (Barranco-Medina
et al., 2008; Martí et al., 2009; Pulido et al., 2010). The difference in
the reaction mechanism between both Prxs is the disulfide bond
- intermolecular for chloroplast 2-Cys Prx and intramolecular
for mitochondrial Prx IIF (Barranco-Medina et al., 2007; Dietz,
2011). There are also differences in their oligomeric states. Both
Prxs form dimers, but while 2-Cys Prx forms decamers in its
reduced or overoxidized state, Prx IIF only forms hexamers in its
oxidized state (Barranco-Medina et al., 2009; Lázaro et al., 2013).

In severe oxidative stress conditions, Prxs are overoxidized
to the inactive sulfinic form, which Srx, an ATP-dependent
reductase located in chloroplasts and mitochondria, is able to
retroreduce (Biteau et al., 2003). In fact, pea chloroplastic 2-Cys
Prx and mitochondrial Prx IIF have been shown to be regenerated
by pea Srx, which is then reduced by Trx (Iglesias-Baena et al.,
2010, 2011). Scant information exists on the regulation of
redox proteins by post-translational modifications, including the
glutathionylation of chloroplastic 2-Cys Prx or mitochondrial
peroxiredoxin IIF, aspects that will be addressed in this paper.
2-Cys Prx glutathionylation has been studied in the cytoplasmic
protein of mammals but not in its chloroplastic counterpart
of plants (Park et al., 2011; Chae et al., 2012), while human
sulfiredoxin has been shown to catalyze the deglutathionylation
of typical human 2-Cys Prx (Findlay et al., 2006; Park et al., 2009).
In this work, the glutathionylation of both typical and atypical
pea 2-Cys Prx and Prx IIF proteins is studied using reduced
and oxidized glutathione (GSH, GSSG) and nitrosoglutathione
(GSNO). The target cysteine residues and the oligomerization
pattern after the treatments, as well as any effect on the peroxidase
activity of both proteins, is analzed. In addition we study the
capacity of pea Srx to deglutathionylate chloroplast 2-Cys Prx and
mitochondrial Prx IIF.

MATERIALS AND METHODS

Cloning and Purification of Recombinant
Proteins
Chloroplast 2-CysPrx and mitochondrial Prx IIF from pea
(P. sativum L. cv. Lincoln grown as described in Barranco-
Medina et al., 2007) were cloned without His-tag, and expressed
and purified as described by Bernier-Villamor et al. (2004)
and Barranco-Medina et al. (2006). The cloning, overexpression
and purification of His-tagged sulfiredoxin (Srx) from pea was
performed as described by Iglesias-Baena et al. (2010). Briefly, the
fragment of cDNA encoding the mature proteins was obtained
by reverse transcription-PCR and cloned into the pGEM-T
(Promega, Madison, USA) (2-CysPrx) or pET3d (Novagen)
(PsPrx IIF) or pETM-11 (PsSrx) expression vectors. Escherichia
coli BL21 (DE3) strains were transformed with the resulting
constructions, and recombinant protein expression was induced
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by the addition of 1 mM isopropylthio-β-galactoside, leaving
to stand for 3 h at 37◦C. The E. coli cells were broken with
a French press, followed by ammonium sulfate precipitation
between 40 and 95% (w/v). The pellet was then suspended in
buffer (25 mM Tris-HCl, pH 8.0, containing 150 mM NaCl) and
chromatographed by FPLC.

Protein concentration was measured according to Bradford
(1976) using bovine serum albumin as standard.

GSH, GSSG, GSNO, and SNP Treatment
of Recombinant Proteins
One milliliter of 50 µM of purified recombinant protein (2-
CysPrx or Prx IIF) was first reduced in 50 mM Tris-HCl pH 7.5
containing 10 mM DTT for 30 min at room temperature. The
DTT excess was removed by Bio-Spin 6 gel filtration (BioRad).

For the analysis by gel filtration, 200 µL of reduced proteins
preparations were incubated separately either with 5 mM GSSG
at 4◦C for 24 h or with 5 mM GSH, GSNO, or 750 µM SNP
(sodium nitroprusside) prepared in 50 mM Tris-HCl pH 7.5 for
30 min at room temperature. After incubation, the excess of the
modifying agent was removed by Bio-Spin 6 column and the
samples were immediately analyzed through FPLC.

For the analysis of glutathionylation using different
GSH/GSSG treatments, reduced proteins (15 µg) were
incubated with different mM concentrations of GSH+GSSG as
4.987+0.0125, 4.95+0.05, 4.75+0.25, and 4.5+0.5 for 5 min at
37◦C and the excess of glutathionylating agents was removed by
Bio-Spin 6 gel filtration (BioRad). Also a 10 mM DTT-treated
sample without any glutathionylating treatment was performed
as negative control. Samples were immediately analyzed by
western blot as described below, loading all the treated protein in
each lane.

Gel Filtration Analysis
After treatment with GSSG, GSH, GSNO, and SNP, proteins
were analyzed by gel filtration at room temperature using a
Superdex-200 HR 10/30 column (GE Healthcare) equilibrated
with 50 mM Tris-HCl (pH 7.5) containing 150 mM NaCl at
a flow of 0.5 mL/min. Absorbance at 280 nm was recorded
and 250 µL fractions were collected. The peaks of each fraction
(dimer and oligomer) were collected for mass spectrometry
analysis. A calibration curve of the column was performed with
albumin, chymotrypsinogen, ferritin, aldolase, ovalbumin, and
ribonuclease as standards (Supplementary Figure S1).

Mass Spectrometry Analysis
Samples after FPLC chromatography were analyzed by mass
spectrometry on an UltrafleXtreme Matrix-assisted laser
desorption/ionization-time-of-flight/time-of-flight (MALDI-
TOF/TOF) mass spectrometer (Bruker-Daltonics) in auto-mode
using FlexControl v3.4 and processed using FlexAnalysis
v3.4MALDI TOF/TOF apparatus (Bruker) as described in
López-Vidal et al. (2016). Theoretical digestions were performed
considering glutathionylation of cysteine in the peptide spectrum
generated from the problem sample.

Polyacrylamide Gel Electrophoresis and
Western Blot Analysis
Denaturing SDS-PAGE was performed as described by Laemmli
(1970) with acrylamide concentrations of 6% (staking gel)
and 12.5% (resolving gel). Gels were stained with Coomassie
Brilliant Blue R-250. For Western blot, proteins were transferred
onto a nitrocellulose membrane by electroblotting. Pounceau S
stained membranes were used as loading controls (Salinovich
and Montelaro, 1986). Immunoreaction was performed with
polyclonal antibodies against PsPrx IIF (1:3000) (Barranco-
Medina et al., 2007), pea Srx peptide (CHRYEAHQKLGLPTI)
(1:500) (Iglesias-Baena et al., 2010), pea 2-Cys Prx (1:5000)
(Bernier-Villamor et al., 2004), and monoclonal anti-glutathione
(1:500, Santa Cruz Biotechnology) diluted in TBS containing 1%
(w/v) of BSA and 0.1% (v/v) of Tween-20. Anti-rabbit conjugated
to alkaline phosphatase (1:7500, Boehringer Mannheim,
Germany) and anti-mouse conjugated to peroxidase (1:5000,
Santa Cruz Biotechnology) were used as secondary antibodies
and the antigen was detected using the ECL-2 system (Thermo
Scientific, USA), following the manufacturer’s instructions.

Peroxidase Activity
Recombinant 2-Cys Prx and Prx IIF (100 µg) were treated with
10 mM DTT at room temperature for 30 min. The excess of
DTT was then removed by Bio-Spin 6 gel filtration (BioRad,
Spain) and 50 µg of protein were treated with 5 mM GSSG and
with 4 mM GSH + 1 mM GSSG at 37◦C for 5 min. The excess
of GSSG and GSH was removed by Bio-Spin 6 gel filtration.
Treated proteins (10 µg) were incubated with 50 µM H2O2
for 10 min at 37◦C and the reaction was stopped adding 2%
(p/v) trichloroacetic acid (TCA). A blank of the reaction was
performed using sample buffer instead of peroxiredoxin proteins,
incubated with DTT, followed by gel filtration and incubated with
H2O2 and stopped with TCA. H2O2 was quantified using 100 µL
of the reaction mixed with 500 µL of eFOX medium according
Cheeseman (2006). H2O2 was determined based on the difference
in absorption at 550 nm using a standard curve that covered the
range of 0–200 µM.

Deglutathionylation of 2-Cys Prx and Prx
IIF by Srx
Fifty microgram of recombinant 2-Cys Prx and Prx IIF were
reduced with DTT as described above in a final volume of 50 µL
and subjected to Bio-Spin 6 gel filtration. Forty microliter of
these reduced proteins were incubated with 5 mM GSSG at 4◦C
for 24 h and dialyzed again to eliminate the excess of GSSG.
A final concentration of 3 µM of GSSG-treated peroxiredoxin
was incubated with a final concentration of 6 µM of DTT-treated
Srx for different times and the reactions were stopped adding the
non-reducing SDS-buffer. Finally, 3 µg of treated proteins were
subjected to western blot analysis.

Statistics
The results are the mean of three replicates from each experiment
which were repeated at least two times. The significance of any
differences between the mean values was determined by one-way
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analysis of variance. The Tukey’s test was used to compare
the means. All error bars represent standard error (SE) of the
mean. The asterisk above the bars indicates significant difference
(P < 0.05).

RESULTS

Effect of Glutathionylation on the
Oligomeric State of 2-Cys Prx
After gel filtration on Superdex-200 HR 10/30, untreated 2-
Cys Prx protein appeared exclusively as a dimer (Figure 1A),
but when reduced with DTT, the protein mainly changed to
its decameric form. Treating this reduced form with GSSG
produced two modifications (Figure 1A): the decamer eluted
earlier and it was also dissociated to a dimer. The oligomerization
pattern was also analyzed by native PAGE and Coomasie staining
(Figure 1B). The 2-Cys Prx protein pre-reduced with DTT
was treated with GSSG and the protein without any reducing
treatment was used as control. The treatment with 1 and 5 mM
GSSG was carried out at 37◦C for 5 min to check whether
the changes in the oligomeric pattern also occurred in these
conditions. The treatment of the DTT-treated 2-Cys Prx protein
with GSNO also showed an advance in the elution volume
of the decamer and its concentration fell slowly as the dimer
concentration increased (Figure 2), the change being dependent
on the incubation time.

Mass spectrometry analysis of the decameric and dimeric
forms eluted from the gel filtration of the 2-Cys Prx
protein treated with both GSSG and GSNO pointed to the
glutathionylation of the resolving Cys174 but not of the
peroxidatic Cys52 in both oligomeric forms (Table 1 and
Supplementary Figure S2). To ascertain whether a nitrosylated
form of 2-Cys Prx was susceptible to glutathionylation with GSH,
the reduced protein was first treated with an S-nitrosylating

agent, sodium nitroprusside (SNP). It was observed that
the reduced decamer delayed its elution volume, unlike the
glutathionylated protein that forwarded the elution volume as
shown in Figure 3. The subsequent treatment with GSH showed
a similar result to that obtained by direct modification with
GSSG.

Effect of Glutathionylation on the
Oligomeric State of Prx IIF
The reduction of Prx IIF by DTT provoked a change
in the hexameric form of the protein to a dimeric one.
Glutathionylation of the dimeric form with both GSSG and
GSNO, showed a slight shift (advance) in its elution volume
(Figure 4). In this case, mass spectrometry analysis pointed to the
glutathionylation of both resolving and peroxidatic Cys (59 and
84) (Table 2 and Supplementary Figure S3).

Effect of Different GSH/GSSG
Treatments on the Glutathionylation of
2-Cys Prx and Prx IIF
DTT-reduced recombinant proteins (15 µg) were treated
with different GSH+GSSG mM concentrations (4.987+0.0125,
4.95+0.05, 4.75+0.25, and 4.5+0.5) and a 10 mM DTT sample
without any glutathionylating treatment was used as negative
control of the experiment. As shown in Figure 5, increasing
concentration of GSSG increased glutathionylation of both the
oligomeric and dimeric forms of 2-Cys Prx. However, the
opposite was observed for the Prx IIF, the glutathionylation
of which decreased as GSH diminished, although in general, a
higher signal of glutathionylation was observed for this protein
compared to that of the 2-Cys Prx. A representative gel is shown
for each protein and numbers above the signals represent the
mean of the densitometric analysis of the bands corresponding
to four independent experiments. Pounceau staining was used to
correct the loading.

FIGURE 1 | Elution profile after size exclusion chromatography (A) through Superdex-200 HR 10/30 column of native (untreated) recombinant pea 2-Cys Prx
and after its treatment with 10 mM DTT (+DTT) and 10 mM DTT + 5 mM GSSG (+DTT+GSSG). Asterisks indicate the samples subsequently analyzed by MALDI
TOF/TOF. Pattern of oligomerization (B) analyzed by native PAGE and Coomasie staining of pre-reduced protein treated with GSSG or DTT, the non-treated protein
(−DTT, −GSSG) being used as control.
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FIGURE 2 | Elution profile after size exclusion chromatography through Superdex-200 HR 10/30 column of pre-reduced pea 2-Cys Prx (+DTT) and
after its treatment with 5 mM GSNO for different incubation times. Asterisks indicate the samples subsequently analyzed by MALDI TOF/TOF.

Effect of Glutathionylation on the
Peroxidase Activity
Glutathionylation of 2-Cys Prx and Prx IIF led to a reduction
in the peroxidase activity of the proteins, as represented
by the H2O2 consumed in the reaction. This activity was
measured in the DTT-reduced proteins (control) and after
the treatment of the proteins with GSSG, as described above

TABLE 1 | Glutathionylation of purified recombinant pea 2-Cys Prx
analyzed by mass spectrometry MALDI-TOF/TOF after treatment of the
pre-reduced (DTT) protein (2CPSH) with 5 mM GSSG or GSNO for 30 min
(See Supplementary Figure S2).

Protein Sample Cysteine Modification

2-Cys-Prx 2CPSH C52 NO

C174 NO

2CPGSSG Decamer C52 NO

C174 YES 3105.40 (Cys-SG)

2CPGSSG Dimer C52 NO

C174 YES 3105.43 (Cys-SG)

2CPGSNO Decamer C52 NO

C174 YES 3105.46 (Cys-SG)

2CPGSNO Dimer C52 NO

C174 YES 3105.39 (Cys-SG)

The incorporation of a SG group in the Cys52 or Cys174 in the decameric and
dimeric forms of the protein eluted from the size exclusion chromatography through
Superdex-200 HR 10/30 is pointed in bold.

(Figure 6). The activity was found to be similarly reduced by
the glutathionylation treatment, the reduction being approx 17%
for both peroxiredoxin proteins. Similar results were found for a
4 mM GSH+ 1 mM GSSG treatment (data not shown).

Deglutathionylation of Glutathionylated
Proteins by Srx
To assess whether the pea Srx protein was able to
deglutathionylate both pea 2-Cys Prx and Prx IIF
glutathionylated proteins, the proteins were first treated with
GSSG and then both peroxiredoxins were incubated for different
times with recombinant pea Srx protein previously reduced
with DTT. After analysis of all the treated proteins by western
blot using a specific GSH antibody, the deglutathionylation of
2-Cys Prx was found to be catalyzed by Srx, and the decrease
in the glutathionylation was detected after 10 min (Figure 7A).
However, Srx did not deglutathionylate Prx IIF in the analyzed
conditions (Figure 7B). The loading was checked using a specific
polyclonal 2-Cys Prx and Prx IIF antibodies.

DISCUSSION

Peroxiredoxins in non-photosynthetic organisms have been
described as being among the proteins that are modified
by the redox-sensitive mechanisms of glutathionylation and
deglutathionylation, which, along with other post-translational
mechanisms, are known to regulate their function, allowing
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FIGURE 3 | Elution profile after size exclusion chromatography through Superdex-200 HR 10/30 column of DTT-reduced pea 2-Cys Prx and after its
treatment with different S-nitrosylating and glutathionylating agents: 750 µM SNP, 750 µM SNP + 5 mM GSH and 5 mM GSNO.

localized H2O2 to build up, as described in the floodgate
model (reviewed by Chae et al., 2012; Sevilla et al., 2015a).
In plants, there is scarce information about glutathionylated
proteins, although a 2 Cys-Prx has been described in Arabidopsis
as being one of the proteins targets of this PTM (Dixon
et al., 2005). Changes in the oligomeric pattern have been
described as a consequence of PTMs of several proteins including
peroxiredoxins from different origins, although the effect on
chloroplastic 2-Cys Prx or mitochondrial Prx IIF is unknown.
The transition from decamers to dimers of chloroplastic 2 Cys
Prx due to glutathionylation, as observed in this study after
treatment with GSSG and GSNO, is similar to that described for
human cytosolic Prx I (Park et al., 2009, 2011). These authors
reported that three of the four Prx I cysteine residues, Cys52,
Cys83, and Cys173, were glutathionylated when treated with
GSSG. Moreover, the glutathionylation of 50 µM Prx I was shown
to promote changes in its quaternary structure from decamers
(representing 97% of the total reduced protein) to mainly
dimers with a higher peroxidase activity. This modification also
provoked the inactivation of its molecular chaperone function
mainly through the glutathionylation of a Cys83 located at the
dimer–dimer interface and probably involved in the stabilization
of the decamers (Chae et al., 2012). In this way, glutathionylation
is able to alter the structure and thus the function of this
antioxidant protein (Park et al., 2011), with possible implications
in situations involving redox changes or oxidative/nitrosative

stress. On the other hand, human Prx II, another cytosolic 2-
Cys Prx which lacks Cys83, has been described as being less
susceptible to glutathionylation by glutathione than Prx I, which
may not be easily accessible to interact with the peroxidatic and
resolving Cys52 and Cys173 in the dimer (Park et al., 2011).
The chloroplast 2-Cys Prx studied in the present work has
two cysteines, Cys52 and Cys174, the latter resolving Cys being
glutathionylated. The observed change in the elution profile of
the decamer after FPLC Superdex-200 HR 10/30 chromatography
of the glutathionylated protein could be due to a conformational
change, because the possible change in molecular mass as a
result of the addition of GSH would not seem to justify this
behavior. On the other hand, glutathionylation of this Cys seems
to destabilize the decamer and the protein is present mainly as a
dimer. Any structural change in Prxs may affect their redox state,
oligomeric structure, and/or interaction with other proteins and
could have a significant impact on the cascade of H2O2-related
signaling events (Sevilla et al., 2015a). It has been described
that functional 2-Cys Prx is a dimer (Dietz, 2011) and we have
found that glutathionylation of both the decamer and dimer
forms negatively affected peroxidase activity strongly suggesting
that glutathionylation affects the function of this protein in
chloroplasts. This is especially interesting taking into account the
recent suggestion concerning the chaperone function of plant 2-
Cys Prx, which does not seem to be essential in planta, because of
the absence of high-molecular weight complexes under severe but
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FIGURE 4 | Elution profile after size exclusion chromatography through Superdex-200 HR 10/30 column of native (untreated form) recombinant pea
Prx IIF and after its treatment with 10 mM DTT and 5 mM GSSG and GSNO. Asterisks indicate the samples subsequently analyzed by MALDI TOF/TOF.

physiological water deficit and photooxidative stress conditions,
highlighting the peroxidase activity of this protein (Cerveau et al.,
2016).

As regard PsPrx IIF, glutathionylation did not induce a
change in its oligomeric state but produced a similar shift in
the elution profile to that recently described for S-nitrosylation
of the protein after GSNO and SNP treatments: an advance in
the elution volume of both the hexameric and dimeric forms
(Camejo et al., 2015). While the effect of S-nitrosylation was

TABLE 2 | Glutathionylation of purified recombinant pea Prx IIF analyzed
by mass spectrometry MALDI-TOF/TOF after treating the pre-reduced
(DTT) protein (IIFSH) with 5 mM GSSG or GSNO for 30 min.

Protein Sample Cysteine Modification

Prx IIF IIFSH C59 NO

C84 NO

IIFGSSG C59 YES 2002.94 (Cys-SG) 2131.06 (Cys-SG)

C84 YES 2669.20 (Cys-SG) 2868.33 (Cys-SG)

IIFGSNO C59 YES 2002.96 (Cys-SG ) 2131.04 (Cys-SG)

C84 YES 2669.20 (Cys-SG) 2868.33 (Cys-SG)

The incorporation of a SG group in the Cys59 or Cys84 in the dimeric form of the
protein eluted from the size exclusion chromatography through Superdex-200 HR
10/30 is pointed in bold.

described as decreasing the peroxidase activity of Prx IIF, which
acquired a new transnitrosylase activity on its target protein,
citrate synthase, the effect of glutathionylation of this protein
has not been evaluated before. The decreased peroxidase activity
found following the glutathionylation of both Cys residues in Prx
IIF by GSNO and GSSG points to an additional post-translational
modification of this peroxidase in the mitochondria that would
influence its role in redox control, with potential implications for
cell signaling.

Protein glutathionylation is primarily influenced by the
glutathione redox state and the most studied mechanism of
glutathionylation is the spontaneous thiol/disulfide exchange
between GSSG and a protein cysteine thiol (Zaffagnini et al.,
2012b). Reduced glutathione concentration in organelles such
as chloroplasts and mitochondria are described to be around
1-5 mM and 6-10 mM, respectively (Foyer and Halliwell,
1976; Law et al., 1983; Bielawski and Joy, 1986; Noctor et al.,
1998; Koffler et al., 2013). The glutathione pool is kept highly
reduced by glutathione reductase and the relationship between
GSH and GSSG are usually in the range of 95% GSH 5%
GSSG, although Zaffagnini et al. (2012b) described a GSH/GSSG
ratio of around 105. Moreover, these authors described that
a change in the GSH/GSSG to 1 (Kox of the Cys: a value
that is thought to be the range at which 50% of the proteins
could be glutathionylated), was unlikely to have occurred during
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FIGURE 5 | Glutathionylation of recombinant 2-Cys Prx and Prx IIF by different concentrations of GSH/GSSG. DTT-reduced Prx proteins were incubated
with the different concentrations for 5 min at 37◦C and the excess of glutathionylating agents was removed. A DTT-treated sample was used as negative control.
Samples (15 µg protein) were immediately analyzed by western-blot using a specific monoclonal glutathione antibody, and a representative example is shown.
Numbers show the mean of the densitometric analysis of at least 4 independent experiments, relative to the first band in each of the forms of the proteins. Pounceau
S stained membranes were used as loading controls. Dec: decameric and Dim: dimeric forms of the proteins.

FIGURE 6 | Peroxidase activities of recombinant 2-Cys Prx and Prx IIF after the treatment with 5 mM GSSG. Peroxidase activity was measured in
previously DTT-reduced proteins (control) and in GSSG-treated proteins after incubation with H2O2 for 10 min at 37◦C, using trichloroacetic acid to stop the
reactions, as described in material and methods. H2O2 was then quantified using the eFOX method.

stress. However, a chloroplastic GRX of poplar has a Kox of
309 and might be glutathionylated in vivo under physiological
stress conditions (Couturier et al., 2009). On the other hand,
it has been reported that the GSH/GSSG ratio influences the
extent of oxidation of mitochondrial protein thiols by GSSG
(Beer et al., 2004). Thus, in order to determine whether the
glutathionylation of 2-Cys Prx and Prx IIF was dependent on
this ratio, the assays were performed in the presence of different

GSH/GSSG ratios, and the results were different for the two
proteins, with an increase in the glutathionylation of the 2-Cys
Prx and Prx IIF dependent on increasing concentrations of
GSSG and GSH, respectively, with a higher amount of PrxIIF
protein being glutathionylated in the assayed conditions. This
different behavior is interesting taking into account the different
subcellular location of both peroxiredoxins and the different
susceptibilities of the Cys to be glutathionylated, as well as
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FIGURE 7 | Deglutathionylation of recombinant 2-Cys Prx (A) and Prx IIF (B) proteins by pea recombinant Srx. Prx proteins were treated with 5 mM GSSG and
then incubated for different times with recombinant DTT-treated Srx. The samples (3 µg of protein) were analyzed by western-blot using a monoclonal glutathione
antibody. The loading was checked using specific polyclonal 2-Cys Prx and Prx IIF antibodies.

the different effect on the oligomerization of the proteins.
S-glutathionylation seems to be dependent on the different
sensitivity of the Cys residues to the glutathionylating agent
although further studies will be necessary to determine the
exact mechanism underlying this different effect. Anyway, it is
important to point out that very small changes in GSH/GSSG
during cellular metabolism but mainly during stress could play a
key role in signaling events, while the fact that 2-Cys Prx and Prx
IIF thiol glutathionylation was sensitive to these changes points
to a fine regulation by a mild oxidation of the glutathione pool.
In light of the rapid response to this PTM, both peroxiredoxins
may contribute to the antioxidant defense in chloroplasts and
mitochondria, regulating H2O2 concentration and signaling.

The interplay between nitrosative and oxidative stress could be
through PTMs which may lead to a conformational change in the
proteins that could prevent their overoxidation or carbonylation
and thus the irreversible loss of function. This point of control
might be especially important for an adequate plant response
(Tanou et al., 2009; Camejo et al., 2013). More specifically
an interplay between S-nitrosylation and S-glutathionylation
exists, the physiological agent GSNO being able to produce
both modifications. As an example, human eNOS has been
described as being regulated by glutathionylation (Chen et al.,
2010). To check whether a nitrosylated form of 2-Cys Prx could
also be glutathionylated, the protein was first treated with an
S-nitrosylating agent (SNP) before glutathionylation with GSH.
The result was similar to that obtained with the direct treatment
with GSNO, suggesting that glutathionylation of the decamer
could be caused directly by GSSG or GSNO or indirectly by GSH
on a nitrosylated form of the protein (Figure 8); in fact, GSH has
been seen to glutathionylate –SOH or -SNO groups (Zaffagnini
et al., 2012b). Once glutathionylated, the decamer would change

FIGURE 8 | Proposed mechanism of glutathionylation of the decameric
reduced form of 2-Cys Prx after treatment with 5 mM GSSG, 5 mM
GSNO or 750 µM SNP. Glutathionylation of the 2-Cys Prx can be caused
directly by GSSG or GSNO or indirectly by GSH after nitrosylation of the
protein by SNP. The glutathionylation of the decameric 2-Cys Prx induces
dimerization of the protein.

to the dimeric form, probably as a result of the conformational
instability of the decameric glutathionylated form. It has been
described that NO-induced GSH oxidation may contribute to
RNS-induced protein thiolation. The reaction of GSH with
protein thiols that are S-nitrosylated upon exposure to RNS
converts nitrosylated cysteines into relatively more stable mixed
disulfides (Klatt and Lamas, 2000). On the other hand, many of
the proteins reported as S-thiolated under oxidative conditions
have subsequently been described as being susceptible to the
formation of a mixed disulfide in response to RNS. Therefore
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the S-glutathionylation of active-site cysteines may integrate
oxidative and nitrosative stress via redox-dependent and/or
redox-independent (through GSNO) mechanisms (Klatt and
Lamas, 2000).

Different results have been attributed to the capacity of Srx
to deglutathionylate many protein targets in vitro and in vivo
following oxidative and/or nitrosative stress (Findlay et al., 2006),
including Prxs, depending on the glutathionylating agent. In
the present work, plant sulfiredoxin deglutathionylated GSSG-
treated 2-Cys Prx and not Prx IIF. Human Srx has also been
described to deglutathionylate GSSG-treated Prx I, a ubiquitous
2-Cys Prx, but not Prx V, an atypical 2-Cys Prx (like plant Prx
IIF). It has been described that Cys83 and Cys173 residues were
preferentially deglutathionylated by Srx, and glutathionylated Srx
was found as intermediate, which was rapidly deglutathionylated
by GSH, whereas glutaredoxin I deglutathionylated Cys52 (Park
et al., 2009). The fact that pea chloroplastic/mitochondrial Srx is
not able to deglutathionylate Prx IIF implies that glutaredoxin
might be a potential key protein in the mitochondria and thus
in ROS/RNS functionality in this organelle, an aspect that merits
further attention, while in chloroplast, the Srx protein could
play a central role in the redox control. Both proteins would be
involved in cell signaling in oxidative or nitrosative environments
as a result of their glutathionylation/deglutathionylation, which
may influence protein function, affecting among others, the
H2O2 or hydroperoxide levels.

CONCLUSION

The glutathionylation of pea chloroplastic 2-Cys Prx and
mitochondrial Prx IIF induced a change in their structure but
also in the oligomerization state of the chloroplastic enzyme.
The peroxidase activity of both proteins was similarly reduced
by glutathionylation, which was detected in the resolving
cysteine of 2-Cys Prx and in both Cys of the Prx IIF protein.
Glutathionylation was dependent on the GSH/GSSG ratio, which
affected both proteins differently, and sulfiredoxin was able
to deglutathionylate 2-Cys Prx but not Prx IIF. In this way,
glutathionylation may act, on the one hand, as a temporary

protection of peroxiredoxins in physiological processes in which
oxidative and/or nitrosative stress are involved and, on the other
hand, this PTM could play a significant role in situations where
H2O2 acts as a signaling molecule, modulating the peroxidase
activity of these proteins. Studies of the biological relevance
of the glutathionylation-deglutathionylation processes in vivo
for peroxiredoxin proteins and their involvement during plant
development or stress response are being conducted in order to
establish the significance of these modifications.
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