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Polyamines are phytohormones that regulate plant growth and development as well as

the response to environmental stresses. To evaluate their functions in high-temperature

stress responses, the effects of exogenous spermidine (Spd) were determined in tomato

leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of

67 differentially expressed proteins were identified in response to high-temperature

stress and/or exogenous Spd, which were grouped into different categories according

to biological processes. The four largest categories included proteins involved in

photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and

degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated

most identified proteins involved in photosynthesis, implying an enhancement in

photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could

improve net photosynthetic rate and the biomass accumulation. Moreover, an increased

high-temperature stress tolerance by exogenous Spd would contribute to the higher

expressions of proteins involved in cell rescue and defense, and Spd regulated the

antioxidant enzymes activities and related genes expression in tomato seedlings exposed

to high temperature. Taken together, these findings provide a better understanding of the

Spd-induced high-temperature resistance by proteomic approaches, providing valuable

insight into improving the high-temperature stress tolerance in the global warming epoch.

Keywords: antioxidant, high-temperature stress, proteomics, spermidine, tomato

INTRODUCTION

High-temperature stress represents one of the most frequent abiotic stresses worldwide, inducing
several physiological and biochemical processes in cells, and limiting the growth and productivity
of plants (Bita and Gerats, 2013). Plants respond to high temperature by reprogramming their
proteome, metabolome and transcriptome to establish a new steady-state balance of metabolic
processes (Kosová et al., 2011; Lin H. H. et al., 2015; Sruthi et al., 2016).

Polyamines (PAs) are ubiquitous low-molecular-weight aliphatic amines, and include putrescine
(Put), spermidine (Spd), and spermine (Spm). PAs are known to participate in the regulation
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of physiological and developmental processes (Liu et al.,
2007; Gupta et al., 2013), and they are also involved in the
defense reaction of plants against various environmental stresses
(Todorova et al., 2007; Berberich et al., 2015; Pál et al., 2015).
The integration of environmental stimuli, signal transduction
and the stress response is mediated, at least partially, by intensive
cross-talk among plant hormones (Wahid et al., 2007). Recent
studies indicated that polyamines act as cellular signals in
the intricate cross talk with different metabolic routes and
complex hormonal pathways (Pál et al., 2015). The exogenous
Spd enhancement of high-temperature stress tolerance via the
involvement of antioxidant ability and photosynthetic efficiency
had been described (Tian et al., 2012; Mostofa et al., 2014), but
little information about Spd regulating proteomic changes under
the high-temperature stress is available.

As mRNA abundance is not enough to provide information
about the proteins, proteomic analysis has become a powerful
tool to elucidate the mechanisms of plant stress tolerance
(Skalák et al., 2016). Previous studies reported that PAs could
bind to charged spots at protein interfaces and modulate
electrostatic protein–protein interactions to regulate the protein
functions (Berwanger et al., 2010). Exogenous polyamines
had been found to activate multiple pathways that conferred
increased salt and drought tolerances in bermudagrass by
reprogramming the proteome (Shi et al., 2013). Li et al.
(2013) and Yuan et al. (2016) showed that application of
Spd/Put changed the expression of proteins and contributed to
counteract the damage induced by salt stress in cucumber
seedlings. Igarashi and Kashiwagi (2015) reported that
polyamines could stimulate the synthesis of proteins at the
translation level due to the formation of a polyamine-RNA
complex.

The tomato (Lycopersicon esculentum) is one of the most
important vegetables from both the nutritional and economic
points of view. The effects of exogenous Spd in enhancing
the stress tolerance had been described in cucumber (Tian
et al., 2012) and in rice (Mostofa et al., 2014). However, little
information is available to explain the specific mechanisms
by which PAs regulate the high-temperature stress responses
through a proteomic approach. In this study, we investigated
the differentially expressed proteins in tomato leaves through
2-dimensional gel electrophoresis to better understand the
underlying mechanisms of Spd application in high-temperature
stress resistance.

MATERIALS AND METHODS

Plant Materials and Treatments
Tomato (Lycopersicon esculentum Mill. cv. Puhong 968) seeds
were obtained from the Shanghai Academy of Agricultural
Sciences, China. Seeds were germinated and grown in plastic
nutrition pots filled with growth media (Zhenjiang Peilei Co.,
Ltd., China). The germinated seedlings were grown under
controlled condition (light intensity, 600 µmol m−2·s−1;
day/night temperature, 25/18◦C; light/dark photoperiod,
14 h/10 h; relative humidity, 55–65%) in growth chambers
(Ningbo Jiangnan Instrument Factory, Ningbo, China).

After the third true leaf developed, the seedlings were
subjected to high-temperature (day/night temperature, 38/28◦C;
light/dark photoperiod, 14/10 h; relative humidity, 55–65%). The
experimental plots included four different treatments: (1) Cont;
(2) Spd (1mM); (3) HT; (4) HT+ Spd (1mM). The concentration
of Spd was selected on the basis of previous experiment (data
not shown). One millimole Spd was sprayed to leaves at 17:00
every day, and the control plants were sprayed with distilled
water. After 7 days of treatment, the third fully expanded tomato
leaves of each treatment were stored at −80◦C for physiological
and proteomic analysis. The experiment was arranged in a
randomized complete block design and biological replicates were
independently carried out three times.

Measurement of Dry Weight, Chlorophyll
Content, and Net Photosynthetic Rate (Pn)
The tomato seedlings were washed with sterile distilled water.
After wiped with gauze, samples were dried in an oven at
105◦C for 15 min followed by 75◦C for 72 h, until reaching a
constant weight, and then weighed for dry weight. Chlorophyll
was extracted with a mixture of acetone, ethanol and water
(4.5: 4.5: 1 by volume) and its content was estimated using the
method of Arnon (1949). Pn was measured using a portable
photosynthesis system (LI-6400, LI-COR Inc, USA).

Protein Extraction
Protein extraction was performed according to a modified
version of the trichloroacetic acid (TCA) acetone precipitation
method described by Hurkman and Tanaka (1986). Frozen leaf
tissues were ground in liquid nitrogen and suspended in ice-
cold extraction buffer (8 M urea, 1% (w/v) dithiothreitol (DTT),
4% (w/v) CHAPS and 40 mM Tris). Then the homogenates
were centrifuged at 15,000 × g for 20 min at 4◦C, and the
supernatants were precipitated overnight with ice-cold acetone
containing 10% (w/v) TCA and 0.07% (v/v) β-mercaptoethanol.
The resulting protein-containing suspensions were centrifuged at
20,000 × g for 30 min at 4◦C, and then the protein pellets were
washed three times with cold acetone containing 0.07% (v/v)
β-mercaptoethanol. Finally, the protein pellets were air-dried
at room temperature and dissolved in rehydration buffer (8 M
urea, 1 M thiourea, 2% w/v CHAPS). The protein concentrations
were determined by the methods of Bradford (1976) using
bovine serum albumin as the standard, and then the protein was
stored at −80◦C until being subjected to two-dimensional gel
electrophoresis (2-DE).

2-DE
For first dimensional isoelectric focusing (IEF), IPG strips (GE
Healthcare, San Francisco, CA, USA, 17 cm, pH 4–7 linear
gradient) were used according to the methods of Li et al. (2013).
The dry IPG strips were rehydrated at room temperature for 12–
16 h in 350µL rehydration solution [8M (w/v) urea, 1 M (w/v)
thiourea, 2% (w/v) CHAPS, 65mM DTT, 0.8% (v/v) IPG buffer
4–7, and 1% (w/v) bromophenol blue)]. Following rehydration,
the IPG strips were run on an Ettan IPGphor 3 (GE Healthcare,
USA) with a gradient of 100 V (1 h), 200 V (1 h), 200 V (1 h), 500
V (1 h), 1000 V (1 h), 4000 V (1 h), and 10,000 V (1 h), finally
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reaching a value of 75,000 V h. The working temperature was
maintained at 20◦C with a maximum current of 50mA per strip.
After the first dimension, the IEF strips were equilibrated for 15
min in equilibration solution I [1% (w/v) DTT, 6 M urea, 30%
(v/v) glycerol, 2% (w/v) SDS, and 50 mM Tris–HCl (pH 8.8)],
and then in equilibration solution II [2.5% (w/v) iodoacetamide,
6M urea, 30% (v/v) glycerol, 2% (w/v) SDS, and 50mMTris–HCl
(pH 8.8)] for 15 min.

The second dimensional SDS-polyacrylamide gel
electrophoresis was performed on running gels (Hoefer
SE600 Ruby Standard Vertical System, GE Healthcare; 12.5%
polyacrylamide) as described by Laemmli (1970). The strips
were embedded on the top of the SDS gel and then sealed with
1% molten agarose solution. Electrophoresis was carried out
at 15mA per gel until the bromophenol blue dye reached the
bottom of the gel. After the 2-DE, the gels were stained overnight
with Coomassie Brilliant Blue (CBB) R-250 solution (0.1% (w/v)
of CBB R-250 in 1:4:5 (v/v) methanol: acetic acid: deionized
water) and destained with a 1:1:8 (v/v) methanol: acetic acid:
deionized water solution with several changes, until a colorless
background was achieved.

Image and Data Analysis
The 2-D gels were scanned with an Image Scanner III (GE
Healthcare, San Francisco, USA). Spot detection, quantification
and matching were performed with ImagemasterTM 2D Platinum
software (version 6.0, GE Healthcare, San Francisco, USA). The
intensity of each spot on the 2-D gels was quantified based on the
volumes percentage (vol. %). Only spots with significant changes
(at least 1.5-fold quantitative changes, P < 0.05) were considered
to be differentially expressed.

Protein Identification
The protein spots were excised from the polyacrylamide gels,
and identified using MALDI-TOF/TOF MS by an Ultraflex II
mass spectrometer (Applied Biosystems, Foster City, CA, USA).
The resulting peptide mass lists were searched in NCBI (http://
www.ncbi.nlm.nih.gov) using the software MASCOT version
2.1 (Matrix Science, London, UK). The parameter criteria
were as follows: trypsin cleavage, one missed cleavage allowed;
carbamidomethyl (C) set as a fixed modification; oxidation of
methionines allowed as a variable modification; peptide mass
tolerance within 100 ppm; fragment tolerance set to ± 0.4 Da;
and minimum ion score confidence interval for MS/MS data set
to 95%.

The classification of the identified proteins was performed
by searching in the UniProt Knowledgebase (UniProtKB, http://
www.uniprot.org).

Hierarchical Cluster Analysis and
Interaction Network
The hierarchical clustering of the protein expression patterns
was performed on the log2 transformed vol. % of each protein
spot using Cluster software (version 3.0). The complete linkage
algorithm was enabled, and the results were plotted using
Treeview software (version 1.60).

Mapping of the interaction network was performed using the
STRING database (http://string.embl.de) based on conformed
and predicted interactions.

Enzyme Activity Analysis
Ascorbate peroxidase (APX, EC 1.11.1.11) activity was
determined according to Nakano and Asada (1981) by measuring
the rate of ascorbate oxidation at 290 nm (ε = 2.8 mM−1 cm−1).
Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity was
calculated from the change in absorbance at 265 nm and the
extinction coefficient of 14 mM−1 cm−1, as described by Nakano
and Asada (1981). Superoxide dismutase (SOD, EC 1.15.1.1)
activity was calculated by inhibiting the photochemical reduction
of NBT at 560 nm. One unit of SOD activity was defined as the
amount of enzyme that caused 50% inhibition of NBT reduction
rate (Becana et al., 1986).

Total RNA Extraction and Quantitative
Real-Time PCR (qRT-PCR) Analysis
The total RNA was extracted from the tomato leaf tissues as
described in the TRI reagent protocol (Takara Bio Inc.). The
total RNA and cDNA syntheses were performed according to
the manufacturer’s instructions. The primers were designed
according to the NCBI (Supplementary Table 1). qRT-PCR was
performed with the SYBR PrimeScriptTM RT-PCR Kit (Takara
Bio Inc.) according to the manufacturer’s instructions. All
experiments were repeated three times and the relative gene
expression was calculated by the 2−11Ct method.

Statistical Analysis
All biochemical analyses were conducted at least three times.
Data were statistically analyzed with statistical software SPSS 17.0
(SPSS Inc., Chicago, IL, USA) using Duncan’s multiple range test
at the P < 0.05 level of significance.

RESULTS

Morphological and Physiological
Responses
After 7 days’ treatment with exogenous Spd, no significant
differences were observed in the tomato leaves under non-
stressful conditions. Phenotypic observations showed that
the untreated high-temperature stressed seedlings exhibited
chlorosis and yellowing, whereas the Spd-treated seedlings
had a better visual appearance (Figure 1A). Under the high-
temperature stress, the dry weight, chlorophyll content and net
photosynthetic rate (Pn) decreased by 33.0, 16.4, and 58.9%,
respectively. However, exogenous Spd application resulted in
improvements in these parameters (Figure 1).

Proteomic Analysis
To reveal the protective effect of exogenous Spd on the
tomato under high-temperature stress, a total of 67 differentially
expressed spots were identified using 2-DE and MALDI-TOF-
MS (Figure 2, Table 1, Supplementary Figure 1). To better
understand which physiological process was regulated by Spd
under the high-temperature stress, the identified proteins
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FIGURE 1 | Effects of Spd on plant morphology (A), dry weight (B), chlorophyll content (C), and Pn (D) in leaves of tomato exposed to high temperature stress.

Cont, control plants under 25/18◦C (day/night); Spd, plants under 25/18◦C with 1 mM Spd foliar spraying; HT, plants under 38/28◦C; HT+Spd, plants under

38/28◦C with 1 mM Spd foliar spraying. Each histogram represents a mean ± SE of three independent experiments (n = 3). Different letters indicate significant

differences between treatments (P < 0.05) according to Duncan’s multiple range tests.

were grouped into 7 categories based on their biological
functions according to Gene Ontology (Figure 3). Among the
67 proteins, the majority were sorted into photosynthesis (27%),
followed by cell rescue and defense (24%), protein synthesis,
folding, and degradation (22%), energy and metabolism (13%),
amino acid metabolism (5%), signal transduction (5%), and
unknown (4%).

Compared with the control, there were 33 up-regulated
spots and 32 down-regulated spots in response to the high-
temperature stress (Figure 4A). For the high-temperature stress
induced proteins, the most highly enriched category was cell
rescue and defense. However, exogenous Spd up-regulated
35 spots and down-regulated 26 spots compared with the
untreated seedlings subjected to high-temperature stress, and of
these proteins, the most prevalent category was photosynthesis
(Figure 4B).

To obtain a comprehensive overview of the differentially
expressed proteins, hierarchical cluster analysis was conducted

to categorize the proteins that showed differential expression
profiles affected by Spd under the normal and high-temperature
stress conditions (Figure 5).

Antioxidant Enzymes and Related Genes
Expression Analysis
The proteomic results revealed that the abundances of some
antioxidant enzymes (spots 25, 29, 35, 36) were changed
(Figure 6A), so we further analyzed the associated antioxidant
enzyme activities (APX, DHAR, SOD) and related gene
expressions (APX 2, APX 6, DHAR 1, DHAR 2, Fe SOD,
Cu/Zn SOD). The activities of the enzymes showed significant
decreases under high-temperature stress. However, exogenous
Spd remarkably increased their activity compared with the
high-temperature stress alone (Figure 6B). A similar trend was
observed for the expression levels of most of the antioxidant
enzyme related genes (Figure 6C).
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FIGURE 2 | Coomassie Brilliant blue (R-250)-stained 2-DE gels. Spot numbers indicate the 67 identified differentially expressed proteins. The range of the

molecular mass of protein markers was from 10 to 170 kDa.

Interaction Network Analysis
The proteins act together in the context of networks in cells,
rather than performing their functions in an isolated manner
(Bian et al., 2015). The STRING database provides a critical
assessment and integration of protein–protein interactions,
including direct (physical) as well as indirect (functional)
associations. A network was used to show the interactions of the
identified proteins and revealed the potential information at the
protein level (Figure 7). Most energymetabolism related proteins
(86.7%) and cell rescue and defense (68.8%) were involved in
the protein–protein interaction network. Among the interaction
proteins, the energy metabolism related proteins represented the
highest proportion (35.1%). More importantly, GAPDH (spot
22) and phosphoglycerate kinase (spot 18) were the important
junctions of interacting proteins in the network, suggesting that
energy was of the utmost importance for the response to high
temperature stress with exogenous Spd treatment.

DISCUSSION

Polyamines are known to effectively alleviate the plant growth
inhibition by abiotic stress. In this study, exogenous Spd was
shown to promote the growth and improve the photosynthetic

capacity of the tomato under high-temperature stress (Figure 1),
which is consistent with a previous finding in rice (Mostofa et al.,
2014). 2-DE analysis was conducted, and 67 differentially
regulated proteins were identified in response to high
temperature and/or exogenous Spd (Figure 2, Table 1).
The regulation of the metabolic processes by Spd and high
temperature is discussed below.

Photosynthesis-Related Proteins
Photosynthesis is highly sensitive to high-temperature stress
and is often inhibited before other cell functions are impaired
(Mathur et al., 2014). Importantly, Rubisco and Rubisco activase
(RCA) are the primary limiting factors of net photosynthesis
under stress (Ahsan et al., 2007; Hu et al., 2015). In this study,
we found that proteins related to Rubisco (spots 6, 28, 49) and
RCA (spots 16, 64) markedly decreased in response to high-
temperature stress, similar to other proteomic studies (Han et al.,
2009; Lin K. H. et al., 2015). High temperature can reduce the
activation state of Rubisco (Law and Crafts-Brandner, 1999),
which is often attributed to the thermolability and loss of activity
of RCA under high-temperature stress (Salvucci and Crafts-
Brandner, 2004; Sharkey, 2005). However, exogenous Spd had
positive effects on Rubisco and RCA in tomato leaves, suggesting
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TABLE 1 | Leaf proteins responsive to high temperature stress and/or Spd identified by MALDI-TOF/TOF MS.

aSpot

No.

Protein name Accession No. bTpI/EpI cTMr/EMr

(kDa)

Score dMP eCov (%) Fold changes

Cont/Cont Spd/Cont HT/Cont HT+Spd/HT

PHOTOSYNTHESIS

6 ruBisCO large subunit-binding protein

subunit alpha

gi|460411525 5.21/4.90 62.03/69 313 17 37.24 1.00 2.02 0.28 2.92

11 glutamate 1-semialdehyde

2,1-aminomutase

gi|642911 6.54/5.84 51.72/46 858 18 56.13 1.00 0.90 1.51 0.62

13 glutamate 1-semialdehyde

2,1-aminomutase

gi|642911 6.54/5.99 51.72/45 361 15 47.61 1.00 1.12 1.68 0.65

14 ribulose bisphosphate

carboxylase/oxygenase activase 1,

chloroplastic isoform X1

gi|460401823 8.15/5.68 49.05/40 1070 26 70.52 1.00 1.54 2.96 0.88

15 ribulose bisphosphate

carboxylase/oxygenase activase 1,

chloroplastic isoform X1

gi|460401823 8.15/5.69 49.05/39 1120 28 73.92 1.00 1.07 1.89 0.74

16 Ribulose bisphosphate

carboxylase/oxygenase activase,

chloroplastic-like

gi|723739979 8.76/5.74 50.97/38 481 16 38.56 1.00 1.06 0.65 1.31

23 ferredoxin–NADP reductase, leaf-type

isozyme, chloroplastic

gi|460373374 8.37/5.99 40.77/34 617 18 55.25 1.00 0.90 0.67 1.23

26 carbonic anhydrase gi|56562177 6.67/6.21 34.84/25 563 16 63.55 1.00 0.72 0.80 1.29

28 ribulose 1,5-bisphosphate

carboxylase/oxygenase large subunit

(chloroplast)

gi|779776586 6.55/6.67 53.43/33 623 24 54.30 1.00 0.81 0.60 1.65

32 oxygen-evolving enhancer protein 1,

chloroplastic

gi|823630968 5.91/5.83 35.15/25 582 13 52.89 1.00 1.20 0.00 +

39 oxygen-evolving enhancer protein 2,

chloroplastic

gi|929045135 7.63/5.54 27.86/19 352 8 42.25 1.00 0.85 0.47 1.85

43 coproporphyrinogen-III oxidase 1,

chloroplastic

gi|460405900 5.92/5.48 45.24/37 744 21 58.40 1.00 1.21 1.59 0.87

49 ribulose 1,5-bisphosphate carboxylase,

partial (chloroplast)

gi|488453392 6.99/4.90 48.29/37 189 8 28.24 1.00 1.05 0.55 1.94

57 oxygen-evolving enhancer protein 1,

chloroplastic

gi|823630968 5.91/5.09 35.15/24 692 14 56.53 1.00 1.32 0.52 1.61

60 ribulose-1,5-bisphophate carboxylase/

oxygenase small subunit

gi|170500 3.67/5.13 20.45/12 319 9 55.00 1.00 0.59 1.36 1.31

61 photosystem II reaction center Psb28

protein

gi|460403300 9.42/5.30 20.25/13 121 5 31.67 1.00 1.67 2.51 0.61

62 ribulose-1,5-bisphosphate

carboxylase/oxygenase large subunit,

partial (chloroplast)

gi|778481335 6.18/4.86 5.68/11 84 3 58.82 1.00 1.42 2.69 0.83

64 ribulose bisphosphate

carboxylase/oxygenase activase,

chloroplastic-like

gi|723739979 8.76/5.53 50.97/31 771 21 39.65 1.00 0.69 0.48 1.23

CELL RESCUE AND DEFENSE

3 heat shock protein 70 gi|158635118 5.41/4.80 74.41/78 388 22 33.67 1.00 0.86 1.43 0.60

4 stromal 70 kDa heat shock-related protein,

chloroplastic

gi|460369188 5.20/4.77 74.96/75 1230 33 54.48 1.00 0.76 1.86 0.49

5 stromal 70 kDa heat shock-related protein,

chloroplastic

gi|460369188 5.20/4.74 74.96/77 1090 27 47.08 1.00 0.99 1.90 0.41

25 stromal ascorbate peroxidase gi|807201017 8.48/6.11 38.07/29 945 23 76.81 1.00 1.13 1.56 0.94

29 dehydroascorbate reductase gi|929524249 6.32/6.79 23.71/24 578 17 83.33 1.00 1.02 0.58 1.86

30 temperature-induced lipocalin’ gi|77744859 5.96/6.15 21.30/17 436 10 60.00 1.00 0.87 3.16 0.78

35 superoxide dismutase [Fe] (plastid) gi|33413303 6.60/5.52 27.89/23 131 5 20.08 1.00 0.93 0.50 1.54

36 superoxide dismutase [Cu-Zn],

chloroplastic

gi|915409259 6.02/5.62 22.38/14 760 6 58.53 1.00 1.08 0.64 1.06

(Continued)
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TABLE 1 | Continued

aSpot

No.

Protein name Accession No. bTpI/EpI cTMr/EMr

(kDa)

Score dMP eCov (%) Fold changes

Cont/Cont Spd/Cont HT/Cont HT+Spd/HT

37 class I small heat shock protein gi|349591296 5.57/5.59 17.62/16 551 12 73.38 0.00 0.00 + 1.74

41 thioredoxin-like protein CDSP32,

chloroplastic

gi|460385401 7.57/5.81 33.78/32 175 12 39.19 1.00 1.15 0.49 1.73

44 2-oxoglutarate-dependent dioxygenase

homolog, partial

gi|717140 6.82/5.40 25.86/36 518 11 43.61 1.00 0.65 1.36 0.79

45 plasma membrane-associated

cation-binding protein 1

gi|460405902 5.03/5.20 21.98/28 275 12 73.63 1.00 1.22 2.55 0.57

58 23 kda heat-induced protein {N-terminal} gi|1835994 3.75/5.10 27.86/19 134 1 87.50 1.00 1.19 1.77 0.67

59 inducible plastid-lipid associated protein gi|75266304 5.81/4.79 18.30/13 391 8 70.69 1.00 0.98 1.41 0.65

63 2-Cys peroxiredoxin BAS1, chloroplastic gi|460407951 6.00/4.74 29.73/20 87 3 10.11 1.00 1.92 1.96 0.48

67 class II small heat shock protein

Le-HSP17.6

gi|1773291 6.32/6.46 17.67/15 191 7 53.80 0.00 0.00 + 1.41

AMINO ACID METABOLISM

47 glutamine synthetase, chloroplastic gi|460367196 6.29/5.16 47.85/41 552 17 40.74 1.00 1.15 0.48 1.42

48 cysteine synthase,

chloroplastic/chromoplastic

gi|460398434 5.41/4.96 41.26/37 900 12 46.89 1.00 0.38 0.26 1.94

50 serine carboxypeptidase-like 20 gi|460393680 5.43/4.83 56.46/36 211 4 11.04 1.00 1.08 0.55 1.63

PROTEIN SYNTHESIS, FOLDING AND DEGRADATION

7 ATP-dependent zinc metalloprotease

FTSH 2, chloroplastic

gi|460395390 6.00/5.22 74.42/69 770 25 51.37 1.00 0.91 0.60 1.44

17 elongation factor TuB, chloroplastic-like gi|460391817 6.69/5.72 56.29/46 98 10 22.97 1.00 0.74 0.58 1.18

20 putative inosine monophosphate

cyclohydrolase

gi|260528216 6.21/5.87 66.20/66 269 16 31.67 1.00 0.81 0.69 1.49

33 proteasome subunit alpha type-2-A-like gi|460405457 5.39/5.54 25.66/26 524 12 71.06 1.00 1.07 0.34 1.72

38 peptidyl-prolyl cis-trans isomerase

FKBP16-3, chloroplastic

gi|460381848 6.75/5.37 25.76/18 324 8 30.64 1.00 1.25 1.59 0.80

46 ankyrin repeat domain-containing protein 2 gi|460369292 4.43/4.33 37.35/39 745 16 56.73 1.00 1.02 1.43 0.82

52 cysteine proteinase 3-like gi|460396286 5.33/4.73 39.63/28 297 9 43.18 1.00 0.89 1.89 0.63

54 haloacid dehalogenase-like hydrolase

domain-containing protein At3g48420

gi|460381143 5.67/4.83 34.50/31 697 17 58.04 1.00 0.92 1.34 0.73

66 mRNA binding protein precursor gi|936975812 7.1/6.00 44.06/38 650 16 47.42 1.00 1.21 0.80 1.41

ENERGY AND METABOLISM

8 ATP synthase CF1 alpha subunit

(chloroplast)

gi|779776563 5.14/5.22 55.43/56 843 20 45.96 1.00 0.93 1.45 0.63

9 ATP synthase CF1 beta subunit

(chloroplast)

gi|779776585 5.28/5.43 53.49/51 1560 26 75.30 1.00 1.08 1.93 0.66

10 transketolase, chloroplastic gi|460406209 5.97/5.87 80.27/70 421 23 39.35 1.00 0.77 0.55 1.53

18 phosphoglycerate kinase, chloroplastic gi|460396820 7.66/5.73 50.59/43 808 27 74.90 1.00 0.94 1.00 1.56

19 2,3-bisphosphoglycerate-independent

phosphoglycerate mutase

gi|460396104 5.59/5.83 61.28/65 535 29 64.94 1.00 0.83 0.53 1.60

21 mitochondrial malate dehydrogenase gi|927442679 8.73/6.34 36.29/38 642 12 50.58 1.00 0.94 0.68 1.28

22 glyceraldehyde-3-phosphate

dehydrogenase B, chloroplastic-like

gi|460415552 6.72/6.28 48.54/41 459 16 37.33 1.00 0.84 0.49 2.05

24 fructose-bisphosphate aldolase 1,

chloroplastic

gi|808175957 8.15/6.09 42.66/36 684 15 51.79 1.00 0.80 1.58 0.52

27 fructose-bisphosphate aldolase,

cytoplasmic isozyme 1

gi|840084522 6.86/6.73 38.41/38 755 13 52.66 1.00 1.05 0.53 1.96

31 nucleoside diphosphate kinase gi|575953 6.84/6.60 15.47/13 608 8 46.48 1.00 1.15 1.79 1.05

34 triosephosphate isomerase, chloroplastic gi|460370086 6.45/5.45 35.04/25 769 19 70.55 1.00 1.09 1.71 0.88

42 fructose-bisphosphate aldolase 1,

chloroplastic-like

gi|460375513 6.07/5.55 42.87/37 816 15 47.59 1.00 0.97 0.48 1.22

(Continued)
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TABLE 1 | Continued

aSpot

No.

Protein name Accession No. bTpI/EpI cTMr/EMr

(kDa)

Score dMP eCov (%) Fold changes

Cont/Cont Spd/Cont HT/Cont HT+Spd/HT

53 ATP synthase beta subunit, partial

(chloroplast)

gi|159227612 5.18/4.73 35.93/26 102 8 35.71 1.00 0.76 1.31 0.50

55 ribose-5-phosphate isomerase 3,

chloroplastic

gi|460368501 6.00/4.95 31.19/31 458 6 28.33 1.00 1.11 0.65 0.99

65 malate dehydrogenase gi|460404529 5.91/5.94 35.70/38 128 8 25.00 1.00 0.80 1.51 0.95

SIGNAL TRANSDUCTION

1 calreticulin gi|460368893 4.50/4.45 47.80/56 412 21 42.69 1.00 1.46 2.66 0.64

2 calreticulin gi|460368893 4.50/4.42 47.80/56 439 20 52.28 1.00 2.38 1.97 0.53

56 harpin binding protein 1 gi|38679319 6.25/5.04 30.29/25 643 13 55.43 1.00 0.81 0.66 0.99

UNKNOWN

12 Hop-interacting protein THI113 gi|365222922 5.82/6.04 37.34/50 507 13 69.14 1.00 1.26 0.82 2.47

40 unnamed protein product gi|939066554 5.64/5.76 21.84/31 151 10 46.94 1.00 1.09 0.73 1.32

51 uncharacterized protein LOC101260160 gi|460398472 4.66/4.64 35.10/36 164 15 52.85 1.00 0.92 1.27 0.60

aSpot numbers corresponding to spots in Figure 1.
bTpI and EpI are the theoretical isoelectric point and experimental isoelectric point, respectively.
cTMr and EMr are the theoretical molecular mass and experimental molecular mass, respectively.
dThe total number of identified peptides.
ePercentage of sequence coverage by matched peptides.

that the Calvin cycle and photosynthetic carbon assimilation
were maintained at high levels, contributing to the biomass
accumulation under high-temperature stress.

Ferredoxin-NADP reductase (spot 23) is the last enzyme in the
transfer of electrons during photosynthesis from PS I to NADPH,
producing NADPH for CO2 assimilation (Fukuyama, 2004; Tian
et al., 2015). Oxygen-evolving enhancer proteins (spots 32, 39,
57) are also involved in the light reaction of PS II, and are the
most heat-susceptible part of the PS II apparatus (Vani et al.,
2001). The abundances of ferredoxin-NADP reductase and the
oxygen-evolving enhancer (OEE) decreased in response to high-
temperature stress, but the expression significantly increased
with the application of Spd compared with the stress alone,
suggesting that Spd played an active role in the photosynthetic
chain, resulted in a higher stability of PS II and an enhancement
of oxygen evolving complex capacity, and then subsequently led
to an enhancement of the photosynthetic capacity (Shi et al.,
2013; Su et al., 2013).

Three spots were identified as proteins implicated in
chlorophyll biosynthesis. Glutamate-1-semialdehyde 2,1-
aminomutase (spots 11, 13) is an important enzyme to
catalyze the formation of 5-aminolevulinic acid (ALA),
a vital precursor of chlorophyll (Zhu et al., 2013).
Coproporphyrinogen III oxidase 1 (spot 43) catalyzes the
oxidative decarboxylation of coproporphyrinogen III to
protoporphyrinogen IX in the chlorophyll biosynthesis
pathways (Tian et al., 2015). Interestingly, the expression
of chlorophyll biosynthesis proteins was increased under
high-temperature stress, whereas the chlorophyll content
was decreased (Figure 1C). One plausible explanation of
this observation is that chlorophyll biosynthesis in plants is
very complicated and co-regulated by many factors, but the
temperature-related inhibition of the enzyme activity could

be an important reason for the inhibition of the chlorophyll
biosynthesis.

Cell Rescue and Defense
Plants have evolved a complex sensory mechanism to monitor
and adapt to prevailing environmental conditions (Ahsan et al.,
2007). Heat shock proteins (HSPs) are typically induced when
cells are exposed to high-temperature stress, and are closely
related to the acquired thermo-tolerance (Charng et al., 2006). In
our study, three forms of HSP70 (spots 3, 4, 5) were identified and
significantly up-regulated under high-temperature stress, which
is a key part of the high-temperature response (Liao et al., 2014).
In addition, two small heat shock proteins (sHSPs, spots 37, 67)
were found to be newly induced by high-temperature stress, and
were both found to be absent under normal conditions. The
sHSPs were further up-regulated by exogenous Spd, suggesting
that Spd played a crucial role in maintaining proper folding,
facilitating the refolding and preventing the aggregation of the
denatured proteins under high-temperature stress (Shi et al.,
2013). In this experiment, the stimulation of the heat shock
protein with the application of Spd may be relevant to the
influence of polyamines on the DNA-binding capacity of heat
shock transcriptional factor HSF (Desiderio et al., 1999).

Reactive oxygen species (ROS) metabolism is a universal
response to environmental stresses. The stress-induced
accumulation of ROS seriously damages the cellular membrane
and internal function components, and plants have developed
an antioxidant system to regulate the ROS level (Li et al.,
2015). In the present study, five proteins were found to have
antioxidant-related functions. Among them, Spd increased the
abundances of stromal ascorbate peroxidase (APX, spot 25)
and dehydroascorbate reductase (DHAR, spot 29) under high-
temperature stress (Figure 6A). Further analysis revealed that
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FIGURE 3 | Functional classification of the 67 identified differentially expressed proteins in tomato leaves.

FIGURE 4 | The number and functional classification of identified proteins changed in abundance in tomato leaves. (A) Differentially expression proteins

responded to high temperature (HT) stress compare with the control. (B) Differentially expression proteins responded to Spd under high temperature stress (HT+Spd)

compare with high temperature stress alone.

the activities of APX and DHAR were increased significantly
with the application of Spd under high-temperature stress
(Figure 6B). The enhanced activities could be largely explained
by the up-regulated mRNA levels of APX2, APX6, DHAR1,
and DHAR2 (Figure 6C). Interestingly, the expression of
superoxide dismutases [Fe] (Fe SOD, spot 35) in the plastid
was not in accordance with the superoxide dismutase [Cu-Zn]
(Cu/Zn SOD, spot 36) in the chloroplast. Moreover, the protein
expression, activities of enzymes and related mRNA levels
also showed different change patterns in response to high-
temperature and/or Spd treatment. The variance might be due
to the post-transcriptional regulation and post-translational

modification of SOD through complex mechanisms, which
needs further study. Taken together, the exogenous Spd is
involved in antioxidant and detoxification defense mechanisms,
mitigating oxidative damage and intensifying the resistance
to high-temperature stress (Mostofa et al., 2014; Sang et al.,
2016).

Protein Synthesis, Folding and Degradation
Generally, abiotic stress causes a transient suppression of
de novo protein synthesis (Capriotti et al., 2014). In this
study, proteomic analysis identified two spots related to
protein synthesis, including elongation factor TuB (spot 17)
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FIGURE 5 | Hierarchical clustering of differentially accumulated, tomato leaves protein spots in response to Spd and/or high temperature stress. The

four columns represent four treatments. Rows represent individual protein spots, and the protein names were labeled to the right of the corresponding heat maps.

Protein spots not detected in any of the treatments are indicated in gray. Red and green show the higher and lower expression levels, respectively.

and mRNA binding protein precursor (spot 66), which
were markedly decreased under the high-temperature stress.
However, the expression was enhanced after the application
of Spd. According to previous data (Li et al., 2012), it can
be hypothesized that stimulating the synthesis of specific
proteins by exogenous Spd may play important roles in
regulating the proteins synthesis and translational machinery,

which are important components of the stress response in
plants.

Two proteins (spots 38, 46) that induce proper protein folding
and/or prevent the aggregation of stress-damaged proteins were
preferentially upregulated under high-temperature stress. In
agreement with this observation, the upregulation of peptidyl-
propyl cis–trans isomerase FKBP 16-3 (spot 38) had been

Frontiers in Plant Science | www.frontiersin.org 10 February 2017 | Volume 8 | Article 120

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Sang et al. Comparative Proteomic Analysis of Tomato Leaves

FIGURE 6 | Analysis of antioxidant responses to Spd and/or high temperature stress. (A) Magnified 3D comparison of differentially expressed protein spots.

(B) The activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD) in the leaves of tomato exposed to the high

temperature stress. (C) qRT-PCR analysis of antioxidant enzymes related genes expression. Each histogram represents a mean ±SE of three independent

experiments (n = 3). Different letters indicate significant differences between treatments (P < 0.05) according to Duncan’s multiple range tests.

reported in Arabidopsis and rice in response to high-temperature
stress (Palmblad et al., 2008; Gammula et al., 2011). The two
proteins showed a decreasing pattern under the stress with Spd,
indicating that exogenous Spdmight regulate protein folding and
assembly, participating in the high-temperature stress tolerance.

Proteolysis is a complex process involving many enzymes
and pathways in various cellular compartments. Proteases play
a central role in metabolism under abiotic stress as they
are involved in protein inactivation and the degradation of
damaged proteins (Capriotti et al., 2014). In our study, the
cysteine proteinase 3-like (spot 52) was up-regulated under
high-temperature stress, in agreement with previous studies
(Koizumi et al., 1993; Callls, 1995). Interestingly, the expression
of ATP-dependent zinc metalloprotease (spot 7) and proteasome
subunit alpha type-2-A-like (spot 33) were decreased under
high-temperature stress but increased significantly with the
application of exogenous Spd. Stimulating the proteolysis
of specific proteins by Spd accelerated the degradation of
misfolded/damaged proteins, and made tissues more stable by
covalently attaching with proteins (Li et al., 2013). Furthermore,
the PAs regulated the proteinmetabolism andmay reprogram the
proteome in response to abiotic stress (Yuan et al., 2016), which
may also account for the resistance to high-temperature stress of
the tomato seedlings.

Energy and Metabolism
It is well-known that sufficient ATP is necessary in response to
abiotic stress in plants (Hu et al., 2014). Three proteins associated
with ATP synthase (spots 8, 9, and 53) were significantly

upregulated under the high-temperature stress, suggesting a
higher energy demand for the degradation and biosynthesis of
proteins (Das et al., 2015). However, the ATP synthase proteins
were down-regulated by the exogenous application of Spd under
high-temperature stress, stabilizing the process of ATP synthesis,
and energy metabolism.

ATP is mainly produced by carbohydrate metabolism, such as
glycolysis, the tricarboxylic acid cycle and the pentose phosphate
pathway (Hu et al., 2015). The first group included 7 proteins
involved in glycolysis pathway. Among them, our results showed
that fructose-bisphosphate (FBP) aldolase in the cytoplasm
(spot 27), and chloroplastic (spot 42) decreased significantly
under high temperature. Moreover, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, spot 22), and 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase (spot 19) also decreased
under the stress, which would inhibit the glycolysis pathway and
glycolysis associated with intermediate metabolism. However,
exogenous Spd up-regulated these proteins, allowing more
carbohydrates to enter the glycolic pathway and maintain
the normal physiological metabolism of the tomato seedlings,
thereby supporting the high-temperature resistance (Shan et al.,
2016). The second group included malate dehydrogenase
(MDH, spots 21, 65), involved in the tricarboxylic acid cycle.
In this study, MDH showed different accumulation patterns
in response to high temperature, whereas exogenous Spd
sprayed on the leaves maintained the MDH expression at a
high level. The third group was protein participating in the
pentose phosphate pathway. Under high-temperature stress, the
abundance of transketolase (TK, spot 10) and ribose-5-phosphate
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FIGURE 7 | Interaction network of the identified proteins. Mapping of the network was performed using the STRING system (http://string.embl.de) based on

confirmed and predicted interactions. Lines of different colors indicate different evidence types for the association of the proteins.

isomerase (spot 55) decreased. Spd application further improved
the abundance of TK, whereas it affected ribose-5-phosphate
isomerase unremarkably. Adjusting the EMP-TCA-PPP pathway
to produce more energy may be an important mechanism for Spd
to alleviate stress induced damage (Li et al., 2015).

Signal Transduction
Signal transduction pathways play an important role in abiotic
stress at the cellular level, leading to changes in metabolic
pathways and cellular processes. After the perception of the
stress, a signal would be transferred from the cell surface
to the nucleus, and then the responsive proteins would be
translated (Guo et al., 2013). Within this functional category, we
identified calreticulin (spots 1, 2) and harpin binding protein 1
(spot 56). Calreticulin, a major endoplasmic reticulum Ca 2+-
binding chaperone, is involved in a variety of cellular signaling
pathways. Calreticulin also plays a crucial role in regulating

Ca2+ intracellular homeostasis (Nakamura et al., 2001). In
our study, calreticulin was significantly up-regulated under the
high-temperature stress, but was down-regulated by Spd. These
observations suggested that Spd has a relationship with the stress-
induced Ca 2+ signal transduction, probably allowing the release
of free Ca 2+ to relieve stress. Interestingly, harpin binding
protein 1 was significantly down-regulated in the tomato leaves
under the high-temperature stress, which was concordant with
the finding in spring soybean under cold stress (Tian et al., 2015).
However, the protein level recovered the controlled level after
Spd treatment, and the regulatory mechanism remains unclear.

CONCLUSION

In conclusion, our results demonstrated that exogenous Spd
improving tomato seedlings growth and high temperature
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FIGURE 8 | Schematic presentation of main metabolic pathways regulated by Spd in tomato leaves exposed to high temperature stress. Changes in

protein abundance marked in red ellipse were integrated. Arrows on the life side of the ellipses indicate changes induced by high temperature stress as compared with

the control, and arrows on the right side indicate changes induced by Spd under high temperature stress conditions. Red or green arrows represent up-regulation or

down-regulation, respectively, and the black short lines indicate no change. ADZM, ATP-dependent zinc metalloprotease FTSH 2; ANKRD2, ankyrin repeat

domain-containing protein 2; APX, stromal ascorbate peroxidase; CA, carbonic anhydrase; CPO1, coproporphyrinogen-III oxidase 1; CYP, cysteine proteinase 3-like;

DHAR, dehydroascorbate reductase; EFTuB, elongation factor TuB; FBA, fructose-bisphosphate aldolase; FNR, ferredoxin–NADP reductase; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase B; GSAM, glutamate 1-semialdehyde 2,1-aminomutase; HDHDP, haloacid dehalogenase-like hydrolase

domain-containing protein At3g48420; HSP70, heat shock 70 kDa protein; mBP, mRNA binding protein precursor; MDH, malate dehydrogenase; OEE,

oxygen-evolving enhancer protein; PCI, peptidyl-prolyl cis-trans isomerase FKBP16-3; PGAM, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase;

PGK, phosphoglycerate kinase; PSα-2A, proteasome subunit alpha type-2-A-like; RPIA, ribose-5-phosphate isomerase 3; sHSPs, class I small heat shock protein;

IMPCH, putative inosine monophosphate cyclohydrolase; SOD, superoxide dismutase; TK, transketolase; TPI, triosephosphate isomerase; Trx, thioredoxin-like

protein CDSP32.

tolerance, could be associated with the following processes:
(1) stimulating protein related to photosynthesis and
energy metabolism, enhancing photosynthetic capacity,
providing higher energy for various metabolic processes
to cope with high-temperature stress; (2) activation of cell
rescue and defense response to alleviate stress induced
injuries, activating the antioxidant system; (3) stimulating
protein synthesis and degrading misfolded/damaged

proteins induced by high temperature stress. Schematics
(Figure 8) was formed to illustrate the detailed mechanism
to reveal cell metabolism regulated by high temperature
and/or Spd. This study provides comprehensive insights
through comparative proteomics, and would be able to
better enrich our understanding of the mechanism of
Spd improves the tolerance of under the high-temperature
stress.
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