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Chloroplasts originated from an endosymbiotic event in which a free-living
cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the
majority of the chloroplast genetic information was transferred to the host cell nucleus.
As a consequence, proteins formerly encoded by the chloroplast genome are now
translated in the cytosol and must be subsequently imported into the chloroplast.
This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the
designated receptor-equipped target organelle and (iii) the consecutive translocation
process. During import, proteins have to overcome the two barriers of the chloroplast
envelope, namely the outer envelope membrane (OEM) and the inner envelope
membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein
complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants
are constantly exposed to fluctuating environmental conditions such as temperature and
light and must therefore regulate protein composition within the chloroplast to ensure
optimal functioning of elementary processes such as photosynthesis. In this review we
will discuss the recent models of each individual import stage with regard to short-term
strategies that plants might use to potentially acclimate to changes in their environmental
conditions and preserve the chloroplast protein homeostasis.

Keywords: chloroplast, protein import, TOC, TIC, plastid proteostasis, acclimation

INTRODUCTION

Chloroplasts are unique photosynthetic organelles that evolved through an endosymbiotic event
∼1.5 billion years ago. A formerly free-living cyanobacterium was engulfed via phagocytosis by
an ancestral eukaryotic host that already contained mitochondria (Gould et al., 2008). During
evolution, a dramatic reduction in the bacterial endosymbiont genome size occurred, since 95%
of the genes encoding the ∼3000 proteins acting in the chloroplasts were transferred to the host
nucleus that attained control over its new organelle. The plastid genome encodes the residual∼100
genes (Sugiura, 1989; Martin et al., 2002; Timmis et al., 2004). As a consequence, nuclear-encoded
chloroplast proteins that were originally encoded on the endosymbiont genome are now translated
in the cytosol and are post-translationally translocated into the allocated organelle (Leister, 2003).
This translocation process requires a first-sorting event of the so-called preproteins. According

Frontiers in Plant Science | www.frontiersin.org 1 February 2017 | Volume 8 | Article 168

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2017.00168
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2017.00168
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.00168&domain=pdf&date_stamp=2017-02-08
http://journal.frontiersin.org/article/10.3389/fpls.2017.00168/abstract
http://loop.frontiersin.org/people/64117/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00168 February 6, 2017 Time: 12:2 # 2

Sjuts et al. Acclimation of Chloroplast Protein Import

to their chloroplast-specific targeting peptide, which is called
chloroplast transit peptide (cTP), the preproteins are targeted
to the receptor-equipped destination organelle. Previously, this
term has been used to define both the (1) N-terminal peptide
which is cleaved off in the stroma upon import and (2) the
sequence which is necessary and sufficient for import of a
cargo protein into the chloroplast. However, these peptides
differ from each other, as the sequence of (1) is determined by
the processing site and does not contain parts of the mature
protein, whereas (2) could also include domains from the
mature protein. In order to avoid confusion, Rolland et al
tried to find a suitable nomenclature for this issue. The term
cTP refers to the sequence of the preprotein which is required
for chloroplast targeting and cleaved off upon import. The
cTP is determined by the processing site and is not part
of the mature protein. In contrast, the sequence which is
necessary and sufficient for import of a cargo protein into
the chloroplast is called transit peptide. This transit peptide
includes the cTP and possibly part of the mature protein
(Comai et al., 1988; Bionda et al., 2010; Rolland et al., 2016).
During targeting, preproteins can interact with different cytosolic
chaperones that enable the cell to keep the preproteins in an
unfolded, and hence import-competent, state. After recruiting
the chaperoned complexes to the chloroplast outer envelope
membrane, translocation is initiated. In the majority of cases,
import across the outer and inner envelope membrane of
chloroplasts is facilitated by two distinct translocation complexes,
called TOC (translocon on the outer chloroplast membrane)
and TIC (translocon on the inner chloroplast membrane),
respectively. Once inside the stroma, a stromal processing
peptidase (SPP) cleaves off the cTP, and the remaining
mature protein undergoes folding and insertion or further
direction to intraorganeller targets, again with the guidance of
stromal chaperones (Richter and Lamppa, 1998; Richter et al.,
2005).

It has been long known that import activity correlates
with protein demand during plastid development of a plant
life (Dahlin and Cline, 1991). In young and fast dividing
tissues, the protein demand is especially high, in comparison
to adult and non-dividing cell parts. It has been shown that
protein import into plastids is developmentally regulated (Li
and Teng, 2013). However, since plants are sessile organisms,
even mature tissues of a plant are constantly exposed to
fluctuating environmental conditions such as temperature and
light, and plants must therefore regulate their protein content
within the chloroplast to ensure optimal functioning of processes
such as photosynthesis. Specifically, the photosynthesis rate
depends on different intensities of light and temperature,
hence all subunits of the involved complexes have to be
produced, imported and assembled according to the current
demand.

Several studies noticed that the actual chloroplast proteome
is indeed influenced by short-term applications of varying
temperature or light conditions, meaning the plant is
effectively acclimating upon external stimuli (Dutta et al.,
2009; Grimaud et al., 2013). In contrast to adaptation,
during which a trait evolves over a longer period of time

by means of natural selection, in our understanding acclimation
refers to an environmentally inducible and mostly even
reversible event which occurs within the organism’s lifetime.
Several upstream mechanisms exist, such as changes in
the transcription rate of preproteins or involved import
receptors upon stress applications. One mentionable example
is the upregulation of the TOC GTPase genes upon salt
stress in tomato seedlings (Yan et al., 2014). However,
these transcriptional mechanisms will not be part of this
review; instead, the chloroplast protein import process itself
is one advisable target to be highly regulated at different
stages, thus leading to a dynamic acclimation of import
activity. This acclimation can be achieved by means of post-
translational mechanisms such as reversible phosphorylation or
oxidation/reduction of both to-be imported and import-related
proteins.

Here, we review the individual steps involved in protein
translocation into chloroplasts and touch on regulation
mechanisms that plants might use to modulate protein import. It
is worth mentioning that our understanding of import regulation
is still developing. Therefore, we have tried to summarize what
is known so far and what the available data from different
research groups might mean concerning regulatory mechanisms.
These overall speculations might contribute to our current
understanding of how plants potentially acclimate to external
stimuli by fine-tuning their organellar protein import.

CYTOSOLIC SORTING OF
PREPROTEINS AND TARGETING TO THE
ORGANELLE – THE ROLE OF
REVERSIBLE PHOSPHORYLATION

After completion of translation on cytoplasmic ribosomes, the
initial step of protein import is the accurate targeting of
these newly synthesized preproteins. To avoid mistargeting,
chloroplast-destined preproteins harbor an N-terminal cTP that
specifically targets them to the chloroplast outer membrane
(Bruce, 2001). Unexpectedly, conserved characteristics specific
to chloroplast proteins across plant species are missing and
the sequences of cTPs are highly heterogeneous in their length
and properties. They merely display an overall positive net
charge, resulting from the lack of acidic amino acids (Bruce,
2001). Regarding the fact that mitochondrial proteins have
specific and conserved features within their N-terminal targeting
sequence across plant species, the lack of such a consensus
sequence for chloroplast-targeted proteins is striking, thus
rendering the question of how specificity for the chloroplast
is achieved and mistargeting between these organelles is
avoided. One potential hypothesis for the heterogeneity could
be different preferences of the preproteins for plastid types,
which is determined by distinct cTP features (Li and Teng,
2013).

To sustain import competency by keeping preproteins in an
unfolded structure, cytosolic chaperones are involved. Up to now,
the most prominent chaperone thought to facilitate appropriate
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recruiting of preproteins is Hsp70. Both cTPs and the mature
part of preproteins have been shown to interact directly with
this chaperone, and import activity is clearly stimulated in the
presence of Hsp70 (Rial et al., 2000).

Apart from Hsp70, another component has been identified
in cytosolic preprotein targeting: a 14-3-3 protein preferentially
binds to phosphorylated serines or threonines within the
cTP, which in association with the chaperone Hsp70 leads to
increased import efficiency of preproteins. This assembly has
been designated the cytosolic guidance complex (May and Soll,
2000) (Figure 1). Phosphorylation is mediated by the recently
identified STY kinases 7, 18, and 46; a knockout of two
and concurrent knockdown of the third kinase led to severe
phenotypes in chloroplast biogenesis during greening (Lamberti
et al., 2011). However, it seemed that dephosphorylation
plays a more crucial role in the actual import process than
phosphorylation. It could be shown that under the applied
conditions – removal of the phosphorylation site within the
binding motif of the cTP for 14-3-3 proteins – the kinetics,
rather than the fidelity, of targeting to chloroplasts was
impaired (May and Soll, 2000; Nakrieko et al., 2004). In
contrast, phosphorylated precursors, or those containing a
glutamic acid residue instead to mimic phosphorylation, are
only imported very slowly (Waegemann and Soll, 1996). In vivo
studies showed that an Arabidopsis mutant which mimicked
the phosphorylated serine in the cTP of the photosynthetic
precursor pHcf136 resulted in reduced import activity, and
hence impaired photosystem II assembly, most prominent
in cotyledons (Nickel et al., 2015). This is probably due
to the impossibility of dephosphorylation occurring within
the cTP and clearly demonstrates that import and assembly
of photosynthetic proteins is highly dependent on a proper
phosphorylation/dephosphorylation cycle prior to translocation.
Once this process cannot be completed, the chloroplast protein
homeostasis is misbalanced.

Like Hsp70, the chaperone Hsp90 is able to bind to both
the cTP and mature region of a different subset of preproteins.
Its presence alone stimulates protein import into isolated
chloroplasts (Qbadou et al., 2006; Fellerer et al., 2011). In contrast
to the Hsp70/14-3-3 guidance complex, Hsp90-bound preprotein
favors a distinct docking station at the OEM, which will be
defined below.

As neither the guidance complex nor the phosphorylation
event is essential for successful import, it is highly tempting
to speculate that under specific conditions phosphorylation
has a regulatory function rather than an essential role in
protein import. As phosphorylation is generally a fast response,
one can assume that different external stimuli trigger the
phosphorylation to regulate protein import. Independent from
protein import, this has been shown not only for light-dependent
phosphorylation in photosynthetic reactions, but also as a general
response to different stress stimuli (Grieco et al., 2016).

It would be interesting to know if the in vivo
phosphorylation/dephosphorylation circuit of preproteins
is enhanced or reduced under stress conditions such as high
light treatment, and to define the influence of this regulation
mechanism on protein import. Furthermore, whether this effect

FIGURE 1 | Chaperone involvement in cytosolic targeting and
recognition of preproteins at the outer envelope membrane of
chloroplasts. Preproteins could be chaperoned by the guidance complex or
by Hsp90 alone. The guidance complex is represented by Hsp70 that binds
to both mature region and cTP of the preprotein and 14-3-3 proteins which
bind to the phosphorylated cTP. Hsp70-chaperoned preproteins are
recognized by the GTP-dependent receptor proteins Toc159 and Toc34,
followed by delivery to the import channel Toc75, whereas precursor proteins
bound to Hsp90 are docked to the third receptor Toc64 via its TPR domain
and are then handed over to Toc34.

would be due to either an enhanced activation of the mentioned
STY kinases or due to the inhibition of the yet unknown
phosphatase remains an interesting question to address.

CROSSING THE OUTER ENVELOPE
MEMBRANE VIA THE TOC COMPLEX

After synthesis and sorting in the cytosol, the preproteins are
recognized at the OEM. This is mainly mediated by the two
GTP-dependent receptor proteins Toc34 and Toc159 (Kessler
and Schnell, 2009). Both proteins are anchored C-terminally in
the OEM and expose their GTP-binding domains toward the
cytosol, in consistency with their role as preprotein receptors.
Together with a third protein, Toc75, which is deeply embedded
in the lipid bilayer and forms the protein conducting channel
(Hinnah et al., 1997), they build up a stable complex, resulting
in a heterotrimeric TOC core complex (Figure 1). Determination
of the apparent mass of 500 kDa of the pea multiprotein complex
leads to a stoichiometry of 1:4:4 of Toc159/Toc34/Toc75 (Schleiff
et al., 2003). Both receptors belong to a plant-specific family of
eukaryotic-originated GTPases, sharing some general features.
Toc159 is a tripartite protein consisting of three functional
domains: an intrinsically disordered acidic domain (A-domain),
the GTPase domain (G-domain) and the membrane anchor
domain (M-Domain with a mass of ∼54 kDa) (Bölter et al.,
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1998a; Chen et al., 2000; Richardson et al., 2009). Toc34 contains
a cytosolic GTPase domain and is anchored into the OEM by a
single transmembrane domain. Both proteins Toc34 and Toc159
bind to distinct regions of the N-terminal cTP, hence they could
act simultaneously in receiving preproteins (Becker et al., 2004).

The GTPase activity plays a central role in preprotein
recognition and delivery, as non-hydrolyzable GTP analogs
inhibit preprotein binding and translocation (Young et al., 1999).
Interestingly each individual GTPase domain is dispensable for
the plant (Agne et al., 2009; Aronsson et al., 2010), however,
a viable plant lacking both domains from both receptors could
not yet be isolated. The minimal structure required for sufficient
assembly of the TOC complex and to support protein import is
the M-domain of Toc159, which can partially complement the
loss of Toc159 in ppi2 mutant plants (Lee et al., 2003).

Toc34 is believed to exist as a homodimer in its GDP-
bound state, which exhibits a preprotein-binding site in its
GTPase domain (Sun et al., 2002). Upon preprotein delivery,
GTPase activity is stimulated and exchanges GDP to GTP.
Toc34 in its GTP-bound state binds preproteins with high
affinity, which triggers not only the disruption of the Toc34-
dimer but also promotes heterodimerization of Toc34 and
Toc159. This GTP-heterodimer-complex is now referred to as
the active TOC complex (Becker et al., 2004). GTP hydrolysis
results in reduced affinity toward the preprotein, the subsequent
transfer of the preprotein into the Toc75 channel and the
initiation of membrane translocation (Oreb et al., 2007). Taken
together, the hypothesized model clearly demonstrates that
the receptors are working as GTP/GDP-regulated switches to
control preprotein binding and delivery. However, there are
still missing factors, such as the GTPase-activating protein
or GTP-exchange factor, although it could be shown that
peptides from cTPs can stimulate GTPase activity (Jelic et al.,
2003).

In Arabidopsis, different homologs of the TOC receptors
exist, which enhances complexity and specificity toward binding
proteins. The Toc159 family consist of four genes, each of them
differentially participating in chloroplast biogenesis. These are
atToc159, atToc132, atToc120 and atToc90, which show high
similarity in their G and M domains, but a high variation in
sequence and length of the dynamic A-domain (Bauer et al., 2000;
Kubis et al., 2004).

The most abundant isoform is atToc159, consequently the
knockout toc159 (ppi2) mutant shows an albino phenotype and is
seedling lethal, but can grow hetero-autotrophically (Bauer et al.,
2000; Bischof et al., 2011). The latter, and the fact that atToc159
exhibits high expression levels in juvenile developmental stages,
led to the suggestion that atToc159 constitutes the primary
receptor for photosynthetic precursor proteins, which will be
discussed below (Bauer et al., 2000). AtToc90 can complement
the albino phenotype of ppi2 and restores photoautotrophic
growth, indicating that atToc90 has a similar function to
atToc159 (Infanger et al., 2011). Based on expression pattern
and the ability to rescue the toc159 mutant phenotype, the
different TOC receptors are classified in two groups: the above-
mentioned group of atToc159 and atToc90, and a second
group consisting of atToc132 and atToc120. AtToc132 and

atToc120 are expressed at similar levels throughout all tissues
and are functionally exchangeable (Ivanova et al., 2004; Kubis
et al., 2004). However, atToc120 cannot rescue the phenotype
of toc159, clearly emphasizing a distinct specificity toward
preproteins.

The Arabidopsis Toc34 family comprises atToc34 and
atToc33, which likewise display differential developmental
expression profiles. AtToc33 is highly expressed in juvenile,
photosynthetic-active tissues, whereas atToc34 is expressed
at low levels throughout all developmental stages and all
organs. In line with this expression profile, the toc33 (ppi1)
mutant showed a pale phenotype during early development, but
reached near-WT appearance after 2 weeks of growth. AtToc33
and atToc34 functionally overlap. Different observations
led to this conclusion. First, both proteins show 65%
sequence similarity; secondly, a small fraction of atToc33
co-immunoprecipitated with atToc120/atToc132, which
was originally shown only for atToc34; thirdly, the double
knockout of atToc33 and atToc34 is embryo lethal; and
last and most critically, atToc34 can complement the ppi1
phenotype (Jarvis et al., 1998; Ivanova et al., 2004; Kubis et al.,
2004).

Different studies led to the overall assumption that various
isoforms of the GTPases associate with distinct TOC complexes
and may prefer a particular set of precursors. It was suggested that
atToc159/atToc90 bind to atToc33, whereas atToc120 and/or
atToc132 form a complex together with atToc34 (Ivanova
et al., 2004). Originally the idea was favored that the various
TOC complexes represent distinct pathways for incoming
preproteins. It was stated that the complex consisting of the
most abundant isoforms atToc159 and atToc33 preferentially
imports highly demanded photosynthetic preproteins, whereas
the other TOC isoforms form a translocation complex with
specificity toward housekeeping proteins (Ivanova et al., 2004;
Kubis et al., 2004; Smith et al., 2004). However, this over-
simplified model has been rejected due to a large-scale proteomic
and transcriptomic approach by Bischof et al. (2011), in which
they identified an import defect for different functional subsets of
preproteins in ppi2 protoplasts. Similar to this observation, equal
numbers of photosynthetic and non-photosynthetic preproteins
were identified to interact with both atToc159 and atToc132
(Dutta et al., 2014). Nevertheless, the distinct preferential
import pathways could be a subtle hint for selectivity of
target preproteins, possibly in different developmental stages
or under diverse external environmental conditions. As the
Toc34 isoforms are functionally interchangeable, preprotein
selectivity could be mediated by the Toc159 family. Recent
hints are pointing toward a specificity-conferring role of the
variable A-domains of the Toc159 receptor family (Inoue et al.,
2010).

A third component was identified to assist in receiving
preproteins, named Toc64. Its potential role in protein import
has been concluded from its ability to bind a precursor protein
and the transient association with the other TOC components
(Sohrt and Soll, 2000). In contrast to the above-mentioned
receptor proteins, Toc64 serves as an initial docking station
for Hsp90-bound preproteins und subsequently delivers these
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preproteins to Toc34 (Qbadou et al., 2006). Toc64 harbors three
cytosolic tetratricopeptide repeat (TPR) domains, mediating the
interaction with Hsp90 (Figure 1). This is a typical feature of
proteins interacting with Hsp70/90-associated proteins (Young
et al., 2003). The same holds true for a plant ER receptor TPR7
(Schweiger et al., 2012) and interestingly, a Toc64 homolog,
namely OM64, was found in plant mitochondria, replacing
the mitochondrial TOM70 present in mammals and fungi but
absent in plants. Instead, the protein OM64 with a C-terminal
TPR domain serves as a receptor for mitochondrial-destined
proteins (Chew et al., 2004). Although in vitro a strong
interaction between Hsp90 and Toc64 could be measured with
a KD of 2.4–15.5 µm (Schweiger et al., 2012) the essentiality
of these TPR proteins in vivo is still under debate. Since
chloroplasts lacking Toc64 sustain their import capacity, it is
feasible that this docking protein rather constitutes more an
additional regulatory component to the general TOC receptor
complex than being an essential constituent. However, it could
be shown that atToc33 and Toc64 cooperate in preprotein
import, hence it is reasonable to say that atToc33 can overcome
the loss of Toc64 function as preproteins are still recognized
(Sommer et al., 2013), while only chaperone binding is
lost.

After the preprotein has been delivered to the receptor
proteins, it has to be translocated through the membrane. The
preprotein-conducting channel in the OEM is represented by the
beta barrel protein Toc75 (Schnell et al., 1994). The essential
nature of Toc75 is demonstrated by its gene being a single copy
conserved throughout all plant lineages and the embryo lethality
of knockout lines (Jackson-Constan and Keegstra, 2001). The
protein belongs to the Omp85 superfamily, which is exclusively
found in gram-negative bacteria, mitochondria and plastids
(Bölter et al., 1998b). Typically for this family, the structure of
Toc75 exhibits two features: 16-18 arranged beta strands forming
the C-terminal beta domain, and several POTRA domains at
its N-terminus (Clantin et al., 2007). Irrespective of the fact
that POTRA domains are required for Toc75 function (Paila
et al., 2016), the orientation and thus exact molecular function
of these POTRA domains remain a matter of debate. On the one
hand, it is assumed that these domains are facing the cytosolic
side of the OEM, assisting in preprotein interaction (Sommer
et al., 2011). However, a recent study proposed a localization of
the POTRA domains in the intermembrane space (Chen et al.,
2016).

In vitro analyses showed preprotein binding during import
and the import process itself being inhibited with Toc75
antibodies (Tranel et al., 1995). Electrophysiological analyses
revealed that reconstituted Toc75 in lipid bilayers forms a
voltage-gated channel with a pore size of 14Å at its narrowest part
(Hinnah et al., 2002). In contrast to the other TOC components,
Toc75 harbors an N-terminal bipartite transit peptide. One part
directs the protein into the stroma where the SPP cleaves off
this portion once the extreme N-terminus reaches the stroma,
whereas the second cleavage site is processed by a plastidic type
I signal peptidase (Plsp1), which is localized to the IEM (Inoue
et al., 2005).

CROSSING THE INTERMEMBRANE
SPACE AND INNER ENVELOPE
MEMBRANE VIA THE TIC COMPLEX

Successful import requires not only the interaction between
preproteins and outer membrane receptors, but also the
formation of super complexes between the translocons of both
OEM and IEM via contact sites that enable the preprotein to pass
through both membranes simultaneously (Schnell and Blobel,
1993). Both complexes are facing the intermembrane space, thus
some proteins localized in this compartment have to be involved
in the import process. However, only limited knowledge about
import-related factors of the intermembrane space is available.
Presently, the only member identified in this compartment to
be involved in protein translocation is the soluble protein Tic22.
Tic22 has been shown to interact with preproteins during protein
import (Kouranov et al., 1998). Structural and functional studies
led to the hypothesis that Tic22 is working as a molecular
chaperone, as Arabidopsis mutants lacking Tic22 showed growth
and biogenesis defect and a decreased import activity (Kasmati
et al., 2013; Rudolf et al., 2013). One potential role for Tic22
would be, like the cytosolic counterparts, to ensure proper
targeting and prevent misfolding during the transfer between
TOC and TIC. However, this role has not been confirmed yet.

The TIC counterpart of the TOC core channel Toc75 is
Tic110. Tic110 was the first TIC component described Schnell
et al. (1994) and is the second most abundant protein in the IEM
(Lübeck et al., 1996). It was found in a supercomplex associated
with TOC components and incoming preproteins, suggesting a
functional role as the central part of the IEM translocon (Lübeck
et al., 1996).

Reconstitution of a Tic110-protein lacking its two N-terminal
hydrophobic transmembrane stretches (pea sequence: aa91-966,
1N-110) resulted in a cation-selective channel with a diameter
of 1.7 nm, which is similar to the diameter of the channel
of Toc75 and hence sufficient for preprotein threading (Heins
et al., 2002; Balsera et al., 2009) (Figure 2). However, two
controversial models concerning the topology and function of
Tic110 still persist. Undoubtedly and universally accepted is the
fact that the 110-kDa protein is anchored into the membrane
by its two N-terminal, highly hydrophobic helices (Inaba et al.,
2003; Balsera et al., 2009). In our current topological model,
we can combine the essential functions of Tic110, which has
been under discussion for a long time. On the one hand, Tic110
assembles into its channel-like structure via its four amphipathic
helices, substantiating its function as the main translocation
pore. The four membrane-spanning helices consequently lead
to the formation of two loops that are extended into the
intermembrane space, which could be confirmed by limited
proteolysis experiments (Lübeck et al., 1996; Balsera et al.,
2009). On the other hand, a large part of the C-terminus is
protruding into the stroma and thus could fulfill the additional
function of Tic110 acting as a scaffold for chaperones and
co-chaperones (Inaba et al., 2005). The crystal structure of a
Cyanidioschyzon merolae Tic110 version, which consists of the
C-terminus including only the last amphipathic helix, is proposed
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FIGURE 2 | Crossing the inner envelope membrane of chloroplasts via
the TIC complex. The counterpart of the outer channel protein is the IEM
protein Tic110 which is a functional dimer. Two hydrophobic domains anchor
the protein into the IEM whereas further eight amphipathic helices are involved
in the channel formation. Tic40 is supposed to interact with Tic110 with its
Sti1 domain and acts further as a scaffold for stromal chaperones.
Controversial, the 1MDa-complex depicted on the right side comprises
atTic20 as the channel protein, atTic56 embedded in the complex, atTic100
located at the IMS and the plastid encoded Ycf1 (atTic214) with its six
transmembrane domains and a large stromal C-terminus.

to be too flattened and elongated to form a channel protein (Tsai
et al., 2013). However, as it is unlikely that such a shortened
protein can fold into its native conformational structure, it is
still reasonable to assume that the full-length Tic110 protein is
able to build the channel protein via its amphipathic, membrane-
spanning helices.

Like Toc75, Tic110 is encoded by a single gene and
constitutively expressed in all tissues. Homozygous T-DNA
insertion lines are embryolethal, and heterozygous plants already
exhibit a clear growth and greening defect, clearly emphasizing
the necessity of Tic110 in chloroplast biogenesis and overall plant
viability (Kovacheva et al., 2005). Import of Tic110 is achieved by
targeting the protein into the stroma and after cleavage of the cTP,
Tic110 is re-inserted into the lipid bilayer of the IEM (Vojta et al.,
2007).

Using a cross-linking strategy, another TIC component could
be directly associated to Tic110, named Tic40. Tic40 consists
of a single transmembrane helix which anchors the protein at
the IEM, resulting in a large stroma-facing, soluble domain.
This C-terminal part harbors two Hip/Hop/Sti domains, building
binding sites for Tic110 and the stromal Hsp70/93 chaperones.
The main function of Tic40 is to co-chaperone the translocation
process of incoming preproteins by coordinating Hsp93 activity
(Chou et al., 2006) (Figure 2).

A further TIC component, named Tic20, was identified by
its ability to covalently cross-link with a precursor protein
en route to the chloroplast (Kouranov and Schnell, 1997;
Kouranov et al., 1998). Structural prediction indicated three or
four hydrophobic transmembrane domains (Kouranov et al.,
1998). Tic20 is essential in Arabidopsis. Chloroplasts isolated
from Tic20 antisense lines are impaired in preprotein import
(Chen et al., 2002). In addition, early phylogenetic analysis
indicated a relation of Tic20 with bacterial amino acid transporter

and cyanobacterial proteins of unknown function suggesting a
role as a translocation channel (Reumann and Keegstra, 1999).
However, a latter study including many more genomes was
unable to reproduce these claims (Gross and Bhattacharya, 2009).
Nonetheless, the important role of Tic20 in chloroplast biogenesis
is evident and it was proposed early on by Reumann et al. (2005)
that Tic20 and Tic110 form independent preprotein translocation
channels. Besides this circumstantial evidence for the notion,
direct support comes from electrophysiological studies using
either heterologously expressed and purified Tic20 (Kovács-
Bogdán et al., 2011) or a 1MDa-complex from Arabidopsis, of
which Tic20 is one constituent (Kikuchi et al., 2009, see below),
which both showed the channel-forming capacity of the applied
material. Using a cleavable proteinA-tagged variant of Tic20
expressed in transgenic Arabidopsis plants, the authors were
able to purify the 1MDa complex via affinity purification. The
obtained complex contained three other proteins in addition to
Tic20: atTic56, atTic100 and atTic214 (Ycf1) (Kikuchi et al., 2013)
(Figure 2).

Interestingly, Ycf1 is one of the last enigmatic open-reading
frames of the chloroplast genome without an assigned function
(Drescher et al., 2000). It is predicted to contain at least six
transmembrane helices at its N-terminus (de Vries et al., 2015).
AtTic56 and atTic100 are nuclear-encoded proteins, the first
deeply embedded in the holo-complex without any predicted
transmembrane domain, whereas the latter is supposed to
associate with the complex on the intermembrane space site
(Kikuchi et al., 2013). However, major questions came up
concerning the exact physiological roles of the involved proteins.
So far, for the potential involvement of Tic100, no data are
available. However, for atTic56, a proteomic analysis showed
that most of the chloroplast proteins are still imported into
the organelle in atTic56 mutant plants, pointing toward a still
functioning import machinery (Köhler et al., 2015). Furthermore,
an alternative role independent from protein import for atTic56
was suggested, since Köhler et al. established a link between
processing of plastid rRNA and the assembly of plastid ribosomes.
They stated that a defect in plastid ribosome construction
is responsible for the albino phenotype of atTic56-1 mutant
plants, thus leading to a potential role of atTic56 in ribosome
assembly and establishment of a functional plastid translation
machinery (Köhler et al., 2016). Even more importantly, since
Ycf1 is missing not only in all grasses but also in a variety
of dicotyledonous plants, one can speculate about its overall
significance in protein import. The critical question is: how do
plants that are completely lacking this gene manage to retain
their functional import machinery (de Vries et al., 2015)? Since
Ycf1 is an essential protein in Arabidopsis, it is difficult to study
protein import in knockout plants. Nonetheless, ecotypes of
Arabidopsis can be grown on media containing spectinomycin,
which is a specific inhibitor of plastid translation (Wirmer and
Westhof, 2006). Under these conditions it could be shown
that Ycf1 is truly absent in Arabidopsis plants, thus enabling
to study its role in protein import (Bölter and Soll, 2016;
Köhler et al., 2016). Presumably, the seed contains sufficient
Ycf1 protein for the plants to germinate, and spectinomycin-
induced signaling leads to compensatory mechanisms that ensure
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survival on the antibiotic. Interestingly, as these two studies
show, precursor proteins that depend on the general protein
import machinery are still efficiently imported into the plastids,
thus excluding the role of Yfc1 as a constituent of the main
protein channel. Furthermore, the nuclear-encoded Tic20 is
also not detectable under spectinomycin treatment, implying a
feedback mechanism between plastid and nucleus concerning
the assembly of the 1MDa complex (Bölter and Soll, 2016).
Instead of being a main translocation factor, Ycf1 could be
involved in the assembly of a plastid fatty acid synthase (ACCase).
Under spectinomycin, plants are also lacking the plastid-encoded
subunit AccD but are able to complement for that loss by
upregulating the expression and import of a nuclear-encoded and
plastid-targeted protein (Acc2). This upregulation only appears
if Ycf1 is strongly diminished, suggesting a functional role of
Ycf1 in assembling the ACCase holoenzyme (Bölter and Soll,
2016). Recently, Ycf1 was shown to be a target of a nuclear-
encoded translational activator named PBR1, which is important
for thylakoid biogenesis, suggesting it could play a role in this
process (Yang et al., 2016). Although a potential role of Ycf1
in protein import cannot entirely be excluded, more research is
needed to clarify its functional role(s).

Besides the discrepancies concerning the main translocation
machinery, additional TIC components have been identified
which are called the redox regulon. This regulon includes the
proteins Tic55, Tic62, and Tic32 (Stengel et al., 2009). Tic55 is
a Rieske protein, while both Tic62 and Tic32 are dehydrogenases.
All proteins have been found in complexes containing Tic110;
specifically, Tic32 shows a direct interaction with the N-terminus
of Tic110 (Hörmann et al., 2004; Stengel et al., 2009). The role of
these redox regulon members will be discussed in detail below.

COMPLETION OF THE TRANSLOCATION
PROCESS: THE STROMAL CHAPERONE
SYSTEM

Upon reaching the stroma, the preprotein translocation proceeds
by removing the cTP and subsequently folding into an active
structure. Four distinct destinations for the imported proteins
are possible: stroma, IEM, thylakoids and thylakoid lumen.
The mature protein is either re-inserted into the IEM or, due
to a bipartite transit peptide, directed to the thylakoids using
different sorting mechanisms for further processing and assembly
(Schünemann, 2007). The removal of the cTP is carried out by a
soluble SPP which is essential for plants (Richter and Lamppa,
1998; Trösch and Jarvis, 2011). Import is an energy-consuming
process resulting from nucleotide-hydrolysis. Although the TOC
members are able to hydrolyze GTP, this provides only the
minimal energy required for the irreversible initiation of protein
import and is not the driving force for sufficient and complete
import, so the energy must originate from a different source.
It has been shown that the energy is provided in the form of
ATP, which is hydrolyzed by stromal chaperones, leading to a
sufficient motor activity for preprotein crossing of the OEM
and IEM of the chloroplast (Pain and Blobel, 1987). Various
chaperones have been determined as being involved in the folding

of proteins and/or consuming the required energy via ATP
hydrolysis, mainly the chloroplast Hsp70, Hsp90, Hsp93 and
Cpn60 (Kessler and Blobel, 1996; Akita et al., 1997; Nielsen
et al., 1997; Inoue et al., 2013). However, Cpn60, the homolog
of bacterial GroEL, is most likely exclusively involved in protein
folding and assembly of the newly imported mature proteins,
especially Rubisco (Goloubinoff et al., 1989).

Hsp93 (bacterial ClpC) is a member of the Hsp100 family,
which itself belongs to the broader AAA+ family (ATPases
associated with various cellular activities) (Moore and Keegstra,
1993). Hsp100 proteins contain one or two AAA+ domains,
and are typically arranged into a hexameric structure with a
central pore which is sufficient for protein threading (Rosano
et al., 2011). Arabidopsis features two genes encoding for the
isoforms Hsp93-V and Hsp93-III. Beside the putative function of
providing energy coming from ATP hydrolysis, Hsp93 has been
shown to be a regulatory chaperone for the Clp protease system,
thus functioning in quality control and potential degradation of
the incoming preproteins (Kovacheva et al., 2005).

Originally, three chloroplast Hsp70 isoforms in pea were
reported. Two of them are located in the stroma whereas one
is supposed to reside in the intermembrane space (Ratnayake
et al., 2008). However, inArabidopsis the gene coding for the latter
has not yet been identified, leaving doubts about the existence or
identity of such an intermembrane-space chaperone. Arabidopsis
double null mutants of the stromal Hsp70 isoforms are embryo
lethal and single mutants already exhibit biogenesis and import
defects (Su and Li, 2010).

CpHsp90 was identified in complexes containing import
intermediates at late import stages that also contain Tic110 and
Hsp93 (Inoue et al., 2013). A specific and reversible Hsp90
ATPase inhibitor arrests protein import in chloroplasts, whereas
initial binding to the TOC complex is not impaired, clearly
emphasizing a role of cpHsp90 in late import stages (Nakamoto
et al., 2014).

Due to the complexity of the chaperone system in chloroplasts,
there is an ongoing discussion about the specificity and import-
related function of each individual chaperone, resulting in
different models. It is still not completely clear which protein
is the potential candidate to constitute the main motor protein
for providing the import energy. In mitochondria and ER, the
responsible driving force is believed to come from ATP hydrolysis
performed by Hsp70 chaperones which are located in the matrix
and lumen, respectively (Park and Rapoport, 2012; Dudek et al.,
2013). Thus, it was long thought that cpHsp70s are likewise
the main motor in chloroplasts. In that context, it seems logic
that the responsible ATPase interacts directly with the incoming
preproteins, or at least associates with the TIC translocon and
for a long time, this scenario could not be shown for stromal
Hsp70, hence it seemed unlikely that Hsp70 alone provides the
required power. However, it could be shown in 2010 for the moss
P. patens that Hsp70 is indeed involved in protein import into
chloroplasts as a stromal Hsp70 co-immunoprecipitated with
early-import intermediates, as well as with Tic40 and Hsp93 (Shi
and Theg, 2010). In agreement with this, Arabidopsis mutants
lacking the chloroplast isoforms of Hsp70 showed a reduced
import level of preproteins, which could also be demonstrated in
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the moss Physcomitrella patens (Su and Li, 2010; Shi and Theg,
2010). Furthermore, it was suggested that the ATP requirements
correlate with the activity of moss Hsp70, emphasizing the idea
that cpHsp70 is the only energy-providing motor, at least in
moss (Shi and Theg, 2010). Interestingly, Arabidopsis double
mutants of Hsp93 and Hsp70 showed an additive effect in
decreased import capacity compared to the single knockout
mutants, leading to the theory that both proteins are acting at
least partially in parallel as independent import players (Su and
Li, 2010). This idea was somewhat supported later on: it was
hypothesized that Hsp70 is the motor protein whereas Hsp93
is stably associated with the Clp protease complex at the IEM,
suggesting a permanent role in quality control and degradation
of preproteins and not a role in powering protein translocation
(Figure 3A). In this study, the authors used a transgenic line
in which the interaction of Hsp93 with the protease ClpP was
disrupted, but the protein itself was still localized to the IEM
and interaction with Tic110 was also ensured (Flores-Pérez
et al., 2016). This enabled the study of the role of Hsp93 in
protein import independent from its role in proteolysis. However,
the truncated version could not complement the hsp93 import
defective phenotype, thus excluding the possibility of Hsp93
being the main motor functioning in protein import (Flores-
Pérez et al., 2016).

In remarkable contrast to the above-mentioned observations,
a recent study on that topic could show that Hsp93 directly binds
to both the N-terminal cTP and the mature part of incoming
preproteins, thus clearly indicating a role in early import stages
and challenging the above-mentioned theory (Huang et al.,
2015). These authors favor the hypothesis that both chaperones
could prefer different regions of the preprotein and thus provide
different modes of translocation force, which would result in
additive import defects in the double mutants. This would
also hold true if Hsp93 was to be the primary motor for the
cTP and Hsp70 for the mature region (Figure 3B). Preprotein
processing takes place during binding to Hsp93 and thus, binding
to the mature protein is also detected. In their model, Hsp70
is entirely responsible for interacting with the mature protein,
acting in parallel and one defined step after the action of Hsp93
(Figure 3B).

Taken together, and taking the described discrepancies into
account, it remains unclear why the chloroplast evolved such
a complex and divergent chaperone system in comparison to
other subcellular compartments such as mitochondria or the ER.
However, as the cytosolic chaperones display distinct preprotein
affinities, it is still reasonable to say that the stromal counterparts
do the same, while keeping the opportunity to react efficiently
toward different import conditions resulting from potential
environmental stimuli.

POTENTIAL INVOLVEMENT OF IMPORT
REGULATION IN PLANT ACCLIMATION

Translocation efficiency of chloroplast proteins is highly
dependent on post-translational modifications, enabling the
plant to react quickly and efficiently toward external stimuli.

The above-mentioned import steps can be influenced by various
regulation mechanisms, including redox-mediated circuits of
both cytosolic and stromal pathways, and phosphorylation-
dependent activities.

Redox-Sensing at the Outer Envelope
Membrane
Redox-mediated communication and regulation within cellular
processes had already been present in the prokaryotic ancestor,
thus leading to a range of reduction- and oxidation-driven
regulation in the organelle. One of the best-studied mechanisms
in the bacterial ancestor is the bacterial disulfide bond (Dsb) that
ensures accurate folding of periplastic proteins (Guddat et al.,
1998). The central component is DsbA, which contains a highly
redox-active CXXC motif and can bind to its substrate during
protein import. Similar to this, a thiol-dependent oxidation
mechanism has been addressed to the thylakoid lumen (Gopalan
et al., 2004).

Since even mitochondrial intermembrane-destined
proteins are imported in an oxidation-driven reaction by
the mitochondrial disulfide relay (Herrmann et al., 2009), this
might also be the case for chloroplast import. However, this
field has only recently gained more attention. Redox-mediated
regulation could be observed at different stages of the import
process. Both in the OEM as well as in the IEM, import-involved
proteins exhibit redox-active properties.

Import activity is highly stimulated in vitro upon the addition
of reducing agents like DTT or TCEP, and impaired by oxidizing
substrates, suggesting a potential role of cysteines and disulfide
bridges (Stengel et al., 2009). Interestingly, all TOC components
contain several conserved cysteines. Seven are found in Toc75,
present in both vascular and non-vascular plants. The POTRA
domain contains four of them. In the case of cytosolic-facing
POTRA domains, these cysteines could be involved in redox-
mediated regulation. Toc159 displays five cysteines; two of them
are conserved and are located within the GTPase domain. One of
these two is also present in the GTPase domain of Toc34 and is
fairly exposed (Sun et al., 2002), suggesting a suitable target for
redox reactions. In the last identified TOC component, Toc64,
ten cysteines could be found, of which six are conserved through
vascular and non-vascular plants.

In their reduced state, Toc159, Toc34 and Toc75 are loosely
attached, harboring different reduced thiols and thus, forming
the so-called ‘active’ TOC complex, prepared for preprotein
recognition and binding (Figure 4A). Upon oxidation, intra-
and intermolecular disulfide bridges are generated, commonly
between Toc159, Toc34 and Toc75, resulting in a heteromeric
TOC complex (Seedorf et al., 1995). Different hypotheses
concerning the mode of action have been suggested. Oxidized
on the one hand, this bulky complex could inhibit the import
rate by simply blocking the channel and thus preventing the
entrance of incoming proteins (Figure 4B). However, another
mechanism suggests that not only does channel blocking occur,
but also the preprotein-binding capacity of the receptor proteins
is already altered as the cysteines are located within the preprotein
binding, the GTPase, domain (Stengel et al., 2010). Up to now,
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FIGURE 3 | The stromal chaperone system. Two different models have been hypothesized concerning the main import motor of the chaperones. One model (A)
involves a secondary function of Hsp93, assuming that this protein acts mainly in the quality control pathway by degrading mistargeted or wrongly folded proteins. In
this model the main energy is consumed by Hsp70 and not by Hsp93 (Flores-Pérez et al., 2016). A recent study suggest that Hsp93 interacts subsequently with
incoming preprotein at the N-terminal cTP, whereas Hsp70 binds to the mature parts of the protein (Huang et al., 2015). This enable the two chaperone systems to
interact at least partially in parallel with the preproteins. After completing of the import by processing the cTP, proteins are folded with the help of various chaperones
like Cpn60 and Hsp70 (B).

FIGURE 4 | Redox regulation at the outer envelope membrane. Disulfide
bridges between conserved cysteine residues of the TOC constituents are
involved in the redox modulation of the constituents of the OEM. Under
reducing conditions, the TOC receptors are loosely attached, thus forming the
open and active TOC complex (A). Upon oxidation due to various external
stimuli the generated intra- and intermolecular disulfide bridges lead to a
blocked TOC complex which inhibits import of precursor proteins either by
blocking the channel or altering the binding capacity of the receptor toward
the preproteins (B).

all these experiments have been carried out by adding, reducing
or oxidizing agents in vitro, and so far, a discrete physiological
role is still missing. However, it is still reasonable to assume that
changing environmental conditions led to different redox states
in the cytosol, due to the production of reactive oxygen species
for example, and hence affecting the redox modulation of the
translocation apparatus.

Redox Sensing at the Inner Envelope
Membrane
Regarding the fact that the TOC complex could be regulated
in a thiol-dependent mechanism, it can be supposed that this
regulation is also effective for the translocase of the IEM.

Indeed, a thiol-dependent interaction between Tic110 and
Tic40 has been observed, but its in vivo role has to be clarified
(Stahl et al., 1999). Tic110 itself has been found to contain one
or two regulatory disulfide bridges (Balsera et al., 2009). These
intramolecular bridges could have a critical influence on the
structure and function of the central TIC component. Switches
between reduction and oxidation of these disulfide bridges could
either lead to an open or closed formation of Tic110, respectively,
and thereby limit the amount of incoming preproteins (Figure 5).
The stromal thioredoxin family has been demonstrated to operate
on disulfide bonds of Tic110 (Balsera et al., 2009). The redox
state of thioredoxins is directly linked to both photosynthetic
activity and other redox-dependent mechanisms in the organelle,
thus it might act as a transport signal that eventually reaches
the import machinery to regulate the chloroplast import rate.
The intermembrane space protein Tic22 contains a conserved
cysteine (Glaser et al., 2012), which could be involved in
intramolecular disulfide bridges leading to dimerization of Tic22.
Furthermore, since Tic110 exposes one cysteine into the IMS, a
possible disulfide bond between the soluble Tic22 and the pore
protein Tic110 during preprotein is also a hypothesis. However,
no redox-mediated modulation has been reported so far and this
hypothesis has to be addressed experimentally.

A direct read-out for the stromal redox state is the ratio
between NADPH and NADP+. These reduction equivalents
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FIGURE 5 | Import regulation of the TIC complex from the stromal site.
Similar to the redox regulation at the OEM import of precursor proteins is
accelatered under reducing conditions, suggestively due to an open
conformation of the main channel, Tic110. A second regulation mechanism
involves the stromal redox state, which is reflected by the NADPH/NADP+

ratio. A low NADPH/NADP+ ratio could be shown to enhance the import rate
compared to a higher NADPH/NADP+ ratio.

deliver electrons which are required for enzymatic activities
of many biosynthetic pathways within the organelle. All the
required enzymes for a subset of different pathways have to
be imported at a specific rate depending on the actual need
within the organelles. Therefore, protein import activity must
be regulated according to these requirements, which could be
mediated by the stromal redox state. Independent studies have
shown that the stromal redox state influences the import activity
of a subset of preproteins (Stengel et al., 2009; Zhang et al.,
2016). Interestingly, several components, namely Tic62, Tic55
and Tic32, have been shown to associate dynamically with the
core complex, leading to the assumption that these transient
TIC components act in a regulatory mechanism in response to
the stromal redox state (Stengel et al., 2008). One prominent
candidate was Tic62, which showed a triple-localization pattern,
shuttling from a membrane associated state at the IEM as
well as the thylakoids to the stroma in response to changing
NADP+/NADPH ratios, and thus being able to mediate signals
from the photosynthetically active thylakoids to the import
machinery (Stengel et al., 2008). Since one important function
of Tic62 in vascular plants is the binding of the chloroplast-
targeted ferredoxin-NADP(+) oxidoreductase (FNR) to these
membranes via specific C-terminal motifs (Alte et al., 2010), its
shuttling could significantly influence electron-transfer processes
from this photosynthetic enzyme to different acceptor proteins
which could display a signal transduction chain. As Tic62
possesses a NADPH binding site and acts as a dehydrogenase
in vitro, it might also be involved in a direct electron transfer
onto yet unknown acceptor proteins (Stengel et al., 2008).
Furthermore, another binding partner of FNR, named Trol,
has been characterized. This thylakoid-localized protein harbors
a similar single C-terminal extension as is found repeatedly
in Tic62 and was demonstrated to interact with FNR (Jurić
et al., 2009; Lintala et al., 2014). It could be shown that Trol
also associates with the IEM, thus it might also participate
in the signal transduction chain involving Tic62/FNR (Jurić
et al., 2009). Interestingly, the FNR binding C-terminal motif is
exclusively found in vascular plants, leading to the assumption
that this regulatory mechanism has evolved later in evolution.

This might suggest that, for all other plants, the ecological
pressure was not high enough to evolve a system that regulates
their protein import activity in response to changing stromal
redox conditions, which is in contrast to the old evolutionary
regulation mechanism of thiol oxidation. A second protein
possibly involved in redox regulation is Tic32, which is another
member of a dehydrogenase family capable of transferring
electrons. Like Tic62, the affinity toward the TIC complex is lower
under reduced conditions. Interestingly, Tic32 is also subject
to calmodulin/Ca2+ dependent regulation. It could be shown
that calmodulin (CaM) directly binds to Tic32, which promotes
import, and that specific inhibition of this interaction decreased
import efficiency (Chigri et al., 2006). Thus, two very different
modes of action can regulate the TIC translocon (Figure 5). The
third member of the redox regulon is Tic55, a Rieske protein
found in close proximity of Tic110. It is anchored to the IEM
by two alpha helices and exposes its C-terminal region into the
stroma. Recently, Tic55 was identified as a potential thioredoxin
target by affinity chromatography on a Trx-column (Bartsch
et al., 2008), which is supported by the presence of a CXXC motif.
The molecular function of Tic55 is still unclear, but recently, a
study was published in which a hydroxylation activity during leaf-
senescence-dependent chlorophyll breakdown was demonstrated
for Tic55 (Hauenstein et al., 2016). This potential function
of Tic55 connects chlorophyll metabolism to the chloroplast
import demand and could function as a coordinator of the
chloroplast homeostasis, similar to GUN1, which is a mediator of
retrograde signaling. Under stress conditions, when chlorophyll
is degraded, Tic55 could relay the required information which
would eventually reach the nucleus in order to respond efficiently
toward external stimuli. All the presented import regulation
mechanisms are clearly involved in fine-tuning of the process
rather than representing a molecular on/off switch, since single
knockout mutants of the redox regulon components have, so far,
no reported defects in protein import (Bölter et al., 2015).

Phosphorylation of the TOC Complex
The number of import sites per chloroplast was estimated,
leading to different results: counting the number of radioactive
mature proteins inside the organelle led to an estimated number
of 3,500 (Friedman and Keegstra, 1989), whereas the approach
using immunogold labeling of ultrathin sections with antibodies
against main import components resulted in a higher number
of 35,000 import sites (Morin and Soll, 1997). The discrepancy
between these numbers can be explained by the fact that
the immunogold labeling informs us about the total number
of import complexes in the envelope, while the radioactive
experiment gives us a measure of the fraction of these complexes
that are actively importing. The switch between activity and non-
activity of import complexes is likely to be modulated by the
number of preproteins in need of being imported, amongst other
signals.

It has been suggested that heterodimerization of the receptors,
as well as their preprotein-binding capacity, is regulated by
phosphorylation. PsToc34 and atToc33 are phosphorylated,
whereas atToc34 is not, giving the opportunity to hypothesize
that this represents specificity toward a different subset of
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preproteins (Jelic et al., 2003). The phosphorylation might
negatively affect GTP and preprotein binding of the respective
receptor, and the whole TOC integrity is negatively influenced by
phosphorylation in vitro (Oreb et al., 2007).

Signals triggering phosphorylation are, however, still not well
defined. Data from transgenic Arabidopsis mutant lines showed
that a phosphomimicking mutant of atToc33 is indeed affected
in import capacity, whereas a non-phosphorylatable version
of atToc33 exhibited a WT-like phenotype (Aronsson et al.,
2006; Oreb et al., 2007). The latter observation in particular
clearly indicates that phosphorylation mediated regulation is not
a common or permanent regulation mechanism during plant
development but rather an on/off switch in response to either
a short period of a developmental change or to different, yet
undefined, external stimuli. This could be the case, for example,
upon cold or high light stress where the protein demand in the
chloroplast is changed, or a specific subset of proteins is required.
Under these conditions, fast post-translational modification
machinery is required and phosphorylation of the TOC receptors
might represent a relevant and efficient target for such an event.
Regulation could occur in two ways. On the one hand, the
overall import rate is affected (reduced, if phosphorylated) by
downregulating the affinity to preproteins. On the other hand,
phosphorylation could change the TOC complex stability, which
would lead to the import of a distinct subset of client proteins.

Under this aspect, it would make sense if the responsible
kinase was located in close proximity to avoid long shuttling
pathways and to ensure specificity. In pea chloroplasts a
98-kDa, ATP-dependent outer membrane-attached kinase was
identified as the responsible kinase (Sveshnikova et al., 2000).
However, an Arabidopsis homolog is still missing, thus the
identity of the responsible kinase remains elusive. Besides
atToc33 (psToc34), the Toc159 family is also a target for
phosphorylation, which is putatively mediated by a 70-kDa, ATP-
dependent kinase (Fulgosi and Soll, 2002). All members are

highly phosphorylated in their variable A-domain, consequently
leading to a distinct phosphorylation pattern, ranging from
many phosphorylation sites (atToc159) to few (all others) (Agne
et al., 2010). As the A-domain between the members already
displays a heterogeneous profile in sequence characteristics, the
phosphorylation event could either be irrelevant or, contrarily,
even enhance specificity toward preproteins.

Besides having a direct effect, phosphorylation could also act
as part of a signaling cascade or promote indirectly another post-
translational mechanism, like ubiquitination. It has been shown
that phosphorylation can indeed have a negative or positive effect
on ubiquitination (Hunter, 2007). This would provide a link to
a recently made observation. Ling and Jarvis (2016) identified
an OEM E3 ubiquitin ligase (SP1), which upon abiotic stress
marks TOC components for degradation. It must be clarified if
phosphorylation enhances this effect, which would provide new
insights into the regulation made by phosphorylation.
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