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Seed oil is important not only for human and animal nutrition, but also for various

industrial applications. Numerous genetic engineering strategies have been attempted

to increase the oil content per seed, but few of these strategies have involved

manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty

acid biosynthesis in plastids, and the embryo’s demand for pyruvate is reported to

increase during active oil accumulation. In this study, we tested our hypothesis that oil

biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed

the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER

FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max)

glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants

(OEs), which expressed high levels of BASS2, produced seeds that were larger and

heavier and contained 10–37% more oil than those of the wild type (WT), but were

comparable to the WT seeds in terms of protein and carbohydrate contents. The total

seed number did not differ significantly between the WT and OEs. Therefore, oil yield

per plant was increased by 24–43% in the OE lines compared to WT. Taken together,

our results demonstrate that seed-specific overexpression of the pyruvate transporter

BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of

specific transporters is a feasible approach for increasing the seed oil content.

Keywords: seed oil yield, pyruvate transporter, BASS2, seed-specific promoter, bioenergy

INTRODUCTION

Seed oil is an important source of energy, and is in increasing demand for various industrial
applications (Dyer et al., 2008; Hayden et al., 2011). Thus, methods to increase seed oil yield
are being actively investigated. Many efforts to boost seed oil yield have involved genetically
engineeringArabidopsis and other plants to overexpress transcription factors and enzymes involved
in fatty acid biosynthesis and lipid production and storage (Napier et al., 2014). For example,
overexpression of the transcription factor WRINKLED 1 (WRI1), which controls the expression
of genes involved in lipid metabolism, including glycolysis and fatty acid biosynthesis, increased
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seed oil content by 10–20% compared to the wild type (Cernac
and Benning, 2004; Baud et al., 2007, 2009; Maeo et al., 2009).
Furthermore, the seed-specific overexpression of the Arabidopsis
acyl-CoA:diacylglycerol transferase 1 (DGAT1), which catalyzes
the formation of triacylglycerol (TAG) from diacylglycerol
(DAG) and acyl-CoA, increased oil content by 11–28% compared
with the control (Jako et al., 2001).

In addition to manipulating the levels of transcription
factors and enzymes involved in lipid biosynthesis,
manipulating the expression of transporters, particularly
those that compartmentalize precursors in the intracellular
compartments where lipid biosynthesis occurs, might be
a useful approach for increasing oil content. During seed
development, sucrose imported from maternal tissues is
converted to glucose 6-phosphate (G6P) (Barratt et al., 2009).
Part of the G6P can be transported to the plastid through
Glc6P/phosphate translocator (GPT) (Kammerer et al., 1998),
and can provide pyruvate through glycolytic reactions in the
plastid. Part of the G6P is also metabolized in the cytosol to
phosphoenolpyruvate (PEP), some of which enters the plastid
via the phosphoenolpyruvate/phosphate translocator (PPT) and
the other part of PEP can be converted to pyruvate by cytosolic
pyruvate kinase (Andre et al., 2007). Once inside the plastid,
PEP is converted into pyruvate by plastidial pyruvate kinase.
Plastidial pyruvate can be further metabolized either through
the methylerythrol phosphate (MEP) pathway, or is converted
by plastidial pyruvate dehydrogenase into acetyl-CoA, which
is a substrate of acetyl-CoA carboxylase (ACCase), initiating
de novo fatty acid biosynthesis (Rawsthorne, 2002). Current
evidence suggests that plastidial fatty acid biosynthesis largely
depends on the import of cytosolic PEP into the plastid by PPT
during seed development of Arabidopsis thaliana (Fischer et al.,
1997; Knappe et al., 2003). Adequate provision of PEP by the
PEP transporter PPT appears to be essential for the biosynthesis
of lipids and other storage substances. An Arabidopsis mutant
defective in both PPT and the plastid-localized enolase (ENO1)
involved in glycolytic PEP provision exhibits retarded vegetative
growth and defective flower development (Kubis et al., 2004).
Moreover, this double mutant exhibited frequent seed abortion
and diminished oil amount in seeds, caused by disruption of
multiple pathways including fatty acid synthesis.

Another transporter potentially important for seed oil
accumulation is the pyruvate transporter at the plastid envelope.
The uptake of pyruvate into plastids seems to be an important
step in fatty acid biosynthesis during seed development,
because pyruvate uptake into plastids increases during embryo
development, and isolated plastids from oilseed rape embryos
are able to use pyruvate as a substrate for fatty acid biosynthesis
(Eastmond and Rawsthorne, 2000). A pyruvate transporter
named BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN
2 (BASS2) (Furumoto et al., 2011) has recently been identified
and shown to localize to the plastid membranes of leaves.
BASS2 is a sodium-dependent pyruvate transporter functioning
in C4 photosynthesis and in the MEP pathway in C3 plants
(Furumoto, 2016). Recently, it was reported that a putative
pyruvate transporter TaBASS2 isolated from wheat enhanced
salinity tolerance when transgenically expressed in wheat and

Arabidopsis (Zhao et al., 2016). Moreover, BASS2 and its
homolog might function in oil seed plastids, since BASS2
is expressed during the early stages of seed development
(Arabidopsis eFP browser, http://bar.utoronto.ca/efp/cgi-bin/
efpWeb.cgi), albeit at a much lower level than in the leaves, and
a homolog of AtBASS2 was found to be expressed at 4.7 times
higher levels in mesocarp of oil palm (Elaeis guineensis Jacq) than
in that of date palm (Phoenix dactylifera) (Bourgis et al., 2011).

In this study, we tested our hypothesis that increased pyruvate
uptake into the plastids of developing seeds by overexpressing
the pyruvate transporter BASS2 would increase the supply of
carbon precursors, thus facilitating de novo fatty acid biosynthesis
and eventually enhancing seed oil production (Figure 1). To
test our hypothesis, we generated transgenic Arabidopsis plants
that overexpressed BASS2 under the control of a seed-specific
promoter from soybean (Glycine max). We report that the seed-
specific BASS2-overexpressingArabidopsis plants produced seeds
with an 8–27% increase in oil content.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Wild-type and transgenic Arabidopsis (Arabidopsis thaliana)
plants were of the Col-0 ecotype. Seeds were sterilized and
imbibed in darkness for 3 days at 4◦C. Seeds were sown on
half-strength MS medium (Murashige and Skoog, 1962), pH 5.8,
containing 1% sucrose and 0.8% agar, and placed in a growth
chamber set to a light/dark period of 16 h (22◦C)/8 h (18◦C) and
photon flux density of 40µmol m−2 s−1 light. After 2 weeks,

seedlings were transferred to soil and grown in either a growth
chamber or greenhouse.

Construct Preparation and Arabidopsis

Transformation
BASS2 (At2g26900) was amplified by PCR from Arabidopsis
complementary DNA using the following primer pair: 5′-
GAATTCATGGCTTCCATTTCCAGAATCT-3′ and 5′-CT
CGAGTTACTCTTTGAAGTCATCCTTG-3′. The product
was cloned into T-blunt vector using the T-bluntTM PCR
Cloning Kit (Solgent). BASS2 CDS was excised using EcoRI
and XhoI and inserted into the pBinGlyBar1 vector using the
T4 DNA Ligase Kit (Invitrogen) (Nguyen et al., 2013). The
construct was transformed into Agrobacterium tumefaciens
strain GV3101 by electroporation and into Arabidopsis by the
floral dip method (Clough and Bent, 1998). Transformants
containing ProGly:BASS2 were selected by growing the
plants in medium containing the pesticide BASTA at a final
concentration of 15µg/ml.

Transcript Analysis
The developing siliques from 12 to 14 DAF T2 plants in
seed-specific BASS2-overexpressing lines and WT were sampled
and frozen in liquid nitrogen. RNA was extracted by phenol-
chloroform method and treated with DNase I for 30min to
digest contaminating DNA in samples. The biosynthesis of
complementary DNA was carried out using GoScriptTM reverse
transcriptase fromPromega. Real-time PCRwas performed using
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FIGURE 1 | Our strategy to increase seed oil accumulation by overexpressing the plastidial pyruvate transporter BASS2 under the control of a

seed-specific promoter in developing A. thaliana seeds. A simplified diagram depicting the oil metabolism pathway in developing A. thaliana seeds. During seed

development, sucrose imported from maternal tissues is converted to G6P. Then, G6P is metabolized to PEP. In the cytosol, PEP is either converted to pyruvate or

enters a plastid via PPT. In plastids, pyruvate is used as a substrate for fatty acid biosynthesis, and the resulting fatty acids are channeled into the TAG biosynthesis

pathway in the ER. Cytosolic pyruvate is used for many metabolic pathways, such as protein biosynthesis and the TCA cycle. By increasing pyruvate flux into plastids

by the seed-specific overexpression of the pyruvate transporter BASS2, we expected to increase fatty acid biosynthesis in the plastids and finally enhance TAG

biosynthesis in developing Arabidopsis seeds. This figure was modified from van Erp et al. (2014) Plant Physiology. Ovals indicate transporters responsible for each

transport process: GPT, Glucose-6-phosphate translocator (green); PPT, phosphoenolpyruvate/phosphate translocator (green); BASS2, bile-acid sodium symporter 2

(red); ABCA9; ATP-binding cassette A subfamily member 9 (blue). Other abbreviations are: Suc, sucrose; G3P, Glucose-3-phosphate; G6P, Glucose-6-phosphate;

PEP, phosphoenolpyruvate; PKc, cytosolic pyruvate kinase; PKp, plastidic pyruvate kinase; Pyr, pyruvate; FAS, fatty acid synthase complex; MEP, methylerythritol

phosphate; PC, phosphatidylcholine; DAG, diacylglycerol; TAG, triacylglycerol; Acyl-CoA, acyl-Coenzyme A; Acetyl-CoA, acetyl-Coenzyme A; TCA, tricarboxylic acid.

Black lines indicate pathways active in the cell during seed maturation. Red indicates the flux of newly incorporated pyruvate by pyruvate transporter (BASS2) in

transgenic lines.

SYBR green. PCR conditions were as follows: 94◦C for 3min,
45 cycles of 94◦C for 5 s, 56◦C for 15 s, and 72◦C for 30 s, and
one cycle of 94◦C for 15 s, 60◦C for 30 s, and 95◦C for 15 s. The
expression of the housekeeping gene UBQ11 (At4g05050) was
used as a reference. The expression level was normalized by that
of UBQ11. The primer pairs used for real-time PCRwere (BASS2:
5′-AGGTGACTTACCTGAGAGTACT-3′ and 5′-GTAAGTAG
CAACGTTTGACGC-3′) and (UBQ11: 5′-GAACCAAGTTCAT
GTATCGT-3′ and 5′-ACACTCATCAAACTAAGCAC-3′).

Seed Size Measurement
Seeds were observed using a dissecting microscope and
photographs of seeds were taken under the same magnification.
Seed size was measured using Image J software, and normalized
to that of the WT.

Metabolite Analyses
Fatty Acid Composition and Oil Content
Seeds were placed in a glass tube with a Teflon screw cap and
10µl of 2mM triheptadecanoin (C17:0 TAG) was added as
an internal standard for quantification. Then, 1ml of 5% (v/v)
H2SO4 inmethanol with 300µl toluene as a co-solvent was added
to the glass tube. Samples were incubated for 90min at 90◦C
to convert oils into their FAMEs. FAMEs were extracted with
hexane and 1.5ml of 0.9% KCl was added to enhance phase
separation. FAMEs were quantified using gas chromatography-
mass spectrometry (GC-MS) on a HP-INNOWAX capillary
column (30 m, 0.25mm, 0.25µm) with SHIMADZU GC-2010.
The TAG content was estimated based on the content of

eicosenoic acid (C20:1), a signature fatty acid of crucifer seed oils.
Fatty acid composition was expressed in mol%.

Protein Extraction and Quantification
Protein was extracted from 50 seeds using extraction buffer
(100µl of 1% SDS and 6M urea) after grinding. Samples were
centrifuged at 10,000 g for 10min. The supernatant was used for
protein quantification using the Bio-Rad Protein Assay Kit (Bio-
Rad, USA). A known amount (0, 2, 4, 8, 16, and 32µg) of BSA
was used to generate a standard curve. After adding Bio-Rad
Protein Assay solution to BSA standard and samples, OD595nm

wasmeasured using a spectrophotometer (Pharmaspec UV-1700,
Shimadzu).

Sucrose and Starch Extraction and Quantification
Carbohydrates were analyzed as previously described (Focks
and Benning, 1998) with some modifications. Three hundred
seeds were homogenized in 80% (v/v) ethanol and incubated
at 70◦C for 90min. After centrifugation at full speed for
5min at room temperature, the supernatant was transferred
to a new test tube. The pellet was extracted three times with
400µl of 80% (v/v) ethanol, and the solvent of the combined
supernatants was evaporated under a vacuum freeze dryer. This
residue was dissolved in 100µl of water and used for sucrose
quantification. The insoluble fraction from the ethanol extraction
was suspended in 200µl of 0.5M KOH and incubated at 95◦C
for 30min. After the addition of 100µl of 1M acetic acid
and centrifugation for 5min at full speed, the supernatant was
used for starch quantification. Sucrose and starch contents were
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determined using Sucrose colorimetric/fluorometric assay kit
and Starch colorimetric/fluorometric assay kit from BioVision
(Bio Vision, USA).

Seed Yield Measurement
Four individual plants for each seed-specific BASS2-
overexpressing line and the WT were harvested to measure
the total seed yield of plants grown in the greenhouse. To count
silique number per plant and seed number per silique, plants
with inflorescence meristems on the main stem that had ceased
growing were used. Then, the number of siliques on the main
stem was counted. Developing siliques were sampled and treated
in 1:1 (v/v) acetic acid/ethanol solution for 3 h. The samples
were incubated in 1 N NaOH solution overnight and transferred
to 50% glycerol solution. The total seed number of plants was
estimated by multiplying the silique number per plant and the
seed number per silique.

Seed Germination and Seedling Growth Assays
The seeds were imbibed in water for 1 h and were then
sown in plates containing half-strength MS-agar medium. Other
growth conditions were the same as described above. The
number of germinated seeds, and the number of roots that
reached a line drawn 2 cm below the seeds were counted
every 12 h until 10 d after sowing. The germination results
were plotted to obtain germination curves. The time required
for 50% of the seeds to germinate [50% germinated (days)]
was calculated from the curves. Seedling growth time [2 cm
root length (days)] was calculated by subtracting the 50%

germination time from the time for the roots to grow to 2 cm for
each seedling.

RESULTS

Generation of Transgenic Plants
Overexpressing BASS2 Driven by the
Glycinin-1 Seed-Specific Promoter
Constitutive overexpression of a gene that increases seed oil
content often results in plants with decreased height and seed
yield (Li et al., 2013; Guo et al., 2014). To overcome such
limitations, we overexpressed the BASS2 coding sequence in
Arabidopsis under the control of the seed-specific promoter of
soybean (Glycine max) glycinin-1 (resulting in transgenic lines
OE1–OE4; Figure 2A). Glycinin-1 encodes one of the major seed
storage proteins in soybean and is expressed during the mid to
late stages of seed development (Nielsen et al., 1989; Iida et al.,
1995). We initially selected 65 transgenic plants on antibiotics-
containing selection medium, and then measured their seed
size using Image J, as explained in Materials and Methods. An
increase in seed size was observed in 49 lines of the transgenic
plants (75%). Six independent lines of the transgenic seeds were
sown to obtain the next generation of plants.

We next performed quantitative RT-PCR analysis to confirm
that BASS2 was overexpressed in the seeds of the T2 generation.
We evaluated the expression of BASS2 in the developing siliques
12–14 days after flowering (DAF), when the biosynthesis and
accumulation of storage lipids increase drastically (Ruuska et al.,
2002). We then chose four lines that showed a range of BASS2

FIGURE 2 | Expression levels of the pyruvate transporter (BASS2) in the developing siliques of transgenic plants overexpressing BASS2. (A) Schematic

representation of the T-DNA of the binary vector used to express BASS2 under the control of the seed-specific soybean glycinin-1 promoter. (B) Relative levels of

BASS2 expression. RNA was extracted from T2 developing siliques (12–14 DAF) of four independent BASS2-overexpressing lines (OE1, OE2, OE3, and OE4) and the

wild type (WT). BASS2 transcript levels were determined by real-time quantitative RT-PCR, normalized to transcript levels of the control gene UBQ11, and presented

relative to values of the WT, which were set to 1. Error bars depict standard error (±SE; n = 3). Asterisks indicate significant difference from the WT (N = 3,

6 ≤ n ≤ 15, **P < 0.01, ***P < 0.001), as determined using Student’s t-test. Values above the columns indicate fold changes when compared with WT. pGly, soybean

glycinin-1 promoter; BASS2, bile-acid sodium symporter 2; gly, glycinin-1 terminator; pNos, nopaline synthase promoter; BAR, BASTA resistance gene; nos, nopaline

synthase terminator sequence; LB, left border; RB, right border; DAF, day after flowering.
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transcript levels in siliques containing developing seeds. BASS2
gene expression levels in the developing siliques of OE1, OE2,
OE3, and OE4 plant lines were found to be 21-, 16-, 11-, and 7-
fold higher than that in the WT at a similar developmental stage,
respectively (Figure 2B). The data presented below are based on
the seeds produced by the T2 generation.

Seed-Specific Overexpression of BASS2
Increases the Seed Oil Content
We firstly examined whether seed-specific BASS2 overexpression

increased the seed oil content by measuring the amount of
total fatty acid methyl esters (FAMEs), which reflect changes
in seed oil content, because >94% of fatty acids in seeds are
stored in the form of TAG (Li et al., 2006). The total seed
oil content in OE1, OE2, OE3, and OE4 was significantly
increased by 15, 10, 8, and 27%, respectively, compared with
those of WT (Figure 3A). The fatty acid composition of seeds
of the OE lines was indistinguishable from that of the WT
(Figure 3B), suggesting that BASS2 overexpression did not affect
fatty acid desaturations or elongations. C20:1 FA is present
almost exclusively in seed TAG, and is often used as a marker
of TAG content (Lemieux et al., 1990). C20:1 FA levels in OE1,
OE2, OE3, and OE4 seeds were 32, 13, 10, and 37% higher

than in WT seeds, respectively. There was also a net increase in
quantity of almost all FAs (Supplementary Figure 2). Thus, the
seed-specific BASS2 overexpression increased general fatty acid
biosynthesis and thereby TAG biosynthesis, but did not affect
fatty acid modifications.

Seed-Specific BASS2 Overexpression
Increases Seed Biomass, but Does Not
Alter the Protein and Carbohydrate
Content
Pyruvate is an intermediate not only in the biosynthesis of
oil, but also of branched chain amino acid (BCAA) and
terpenoid biosynthesis in the plastid. Besides oil, the other major
components of Arabidopsis seeds are proteins and carbohydrates
(Li-Beisson et al., 2010). We thus first investigated whether
BASS2 overexpression induced an increase in seed biomass, by
measuring the size and weight of BASS2 overexpressing seeds
(Figure 4, Supplementary Figure 1). T2 seeds of the BASS2
overexpression lines were imaged and the mean values of the
cross sectional area were compared to those of theWT.We found
that the OE1, OE2, OE3, and OE4 lines produced seeds that were
132, 112, 112, and 121% larger than those of WT (Supplementary
Figure 1). The increase in seed size was confirmed in T3 lines;

FIGURE 3 | Seed oil contents and fatty acid (FA) composition in seed-specific BASS2-overexpressing (OEs) seeds. (A) The oil contents of seeds produced

by the T3 WT and OE lines. (B) FA composition (mol%) of seeds of WT and OE lines. Error bars depict standard error (±SE). Asterisks indicate significant difference

from the WT (N = 3, 24 ≤ n ≤ 90, ***P < 0.001), as determined using Student’s t-test. Values above the columns indicate FA content as a percentage of that in WT

seeds.
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FIGURE 4 | BASS2-overexpressing plants produce larger and heavier seeds than the WT. (A) Seed size of wild-type (WT) and BASS2-overexpressing lines

(OE1, OE2, OE3, and OE4). The T3 seeds of BASS2-overexpressing lines were photographed and the mean values of the cross sectional area were compared to that

of WT. Error bars depict standard error (±SE; n = 3). Asterisks indicate significant difference from the WT (1092 ≤ n ≤ 4308, ***P < 0.001), as determined using

Student’s t-test. Values above the columns indicate seed size as a percentage of that of the WT. (B) Seed weight of WT and OEs. For each replicate, 300 seeds of the

WT and BASS2-overexpressing lines (OEs) were collected and weighed. Seed weight was positively correlated with seed size. Error bars depict standard error (±SE).

Asterisks indicate significant difference from the wild-type (N = 3, 8 ≤ n ≤ 30, ***P < 0.001) as determined using Student’s t-test. Values above the columns indicate

seed weight as a percentage of that of the WT.

the seeds of OE1, OE2, OE3, and OE4 lines of the T3 generation
were 115, 104, 108, and 112% the size of WT seeds, respectively
(Figure 4A). Consistent with the increase in seed size, BASS2-
overexpressing seeds were significantly heavier than those of the
WT (Figure 4B). The average seed weights measured from 300
seeds of the BASS2 overexpression lines were 7–21% larger than
those of the WT.

Because seed biomass was increased in the BASS2
overexpression lines, we determined whether other storage
substances increased accordingly in the OE lines. As shown in
Figure 5A, the total protein contents were similar among all lines
tested, i.e., about 4µg per seed, although the levels were slightly
higher in the OEs than in theWT. Carbohydrate content, i.e., the
sum of starch and sucrose contents, was much lower than those
of other storage compounds, and varied among BASS2-OE lines,
with no statistically significant difference between the seeds of
different genotypes (Figure 5B).

Seed Vigor Traits of Seed-Specific BASS2

Overexpression Lines Are Comparable to
Those of the WT
Seed vigor, including rapid uniform germination and seedling
growth, is an important agronomic trait (Finch-Savage et al.,
2010). To determine whether seed-specific overexpression causes
any negative impact on seed vigor, we measured the germination
rate and seedling growth rate of OE lines. The average
time required for 50% of the seeds to germinate was not
significantly different between theWT and OE lines (Figure 6A).
The initial seedling growth rate, measured as the period
between germination and the seedling root length reaching
2 cm, was also similar (Figure 6B). Therefore, the seed-specific
overexpression of BASS2 did not affect germination or initial
seedling establishment.

The BASS2 Overexpressing Lines Produce
Larger Seeds without Compromising Seed
Number
Total seed yield is an important factor contributing to net oil
production in an agricultural field. Because increased seed size is
often offset by decreased seed number in a silique, we examined
seed yield in each OE plant as well as silique number and seed
number per silique. First, seed-specific overexpression plants
of BASS2 were grown and the seeds from those plants were
harvested to compare total seed yield. The seed yield (mg per
plant) was 24–43% higher in the OE lines than in the WT
(Figure 7A).

To test whether the increased seed yield was due to an increase
in silique number or seed number per silique, we counted the
number of siliques on the main stem and the seed number per
silique when flowering ceased and the siliques began to turn
yellow. As shown in Figure 7B, the silique number on the main
stem was comparable to that of WT. Only OE3 and OE4 lines
showed slight increases, of about 10%, compared with the WT.
The seed number per silique did not differ significantly from the
WT, except in OE4 (Figure 7C). The total seed number of OE
plants, estimated from these values, was indistinguishable from
that of WT; the total seed numbers among different OE lines
varied between 87 and 113% of the WT value, and no significant
difference was observed. Therefore, we concluded that silique
number or seed number per silique did not change in the seed-
specific overexpressing lines of BASS2. This implies that the total
yield increase observed in the BASS2-overexpressing lines was
mainly due to an increase in individual seed weight (Figure 4B).

CONCLUSION AND DISCUSSION

In this study, we show that increasing pyruvate flux into the
plastids of developing seeds can increase seed lipid content.
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FIGURE 5 | Protein and carbohydrate contents of WT and

BASS2-overexpressing (OEs) seeds. (A,B) Protein and carbohydrate

contents in T3 seeds of WT and BASS2-overexpressing lines. Carbohydrate

contents were measured as the sum of sucrose and starch extracts. Values

are the mean contents of each metabolite ±SE as a percentage of the

corresponding WT value, which was set to 100%. Asterisks indicate significant

difference from the wild-type (*P < 0.05, **P < 0.01, ***P < 0.001), as

determined using Student’s t-test. (A) N = 3, 42≤ n ≤90, for OE2, OE3, and

OE4. N = 1, n = 3 for OE1. (B) N = 3, 6 ≤ n ≤ 29 for all samples.

Four independent OE lines showed increased BASS2 expression
levels in developing siliques (Figure 2B) and produced larger
seeds than those of the WT in both the T2 and T3 generations
(Figure 4A, Supplementary Figure 1). We also showed that the
seed oil content was greater in the OE lines than in the WT
(Figure 3A, Table 1), but that the protein and carbohydrate
contents of seeds were comparable among the OE and WT lines
(Figures 5A,B). These results suggest that the increase in seed
weight in the OE lines was mainly due to the increased seed oil
content, and not due to changes in other seed storage compounds
(Table 1).

The additional increase in seed weight may have been due
the increase in cell wall and seed coat compounds, which would
have accompanied the increase in seed size. Most importantly,
the changes in seed reserves of the four OE lines (0.87,
0.51, 0.43, and 1.31µg/seed, respectively) corresponded closely
with the change in their lipid weight (0.69, 0.47, 0.35, and
1.26µg/seed). The lipid content as a percentage of the total

seed weight (% of dry weight) was similar in the OE and
WT seeds. Moreover, BASS2 overexpression resulted in non-
selective increases in all fatty acid species including C20:1
(Figure 3B, Supplementary Figure 2), suggesting an overall
increase in cellular fatty acid biosynthesis, i.e., in both plastids (de
novo) and the endoplasmic reticulum (ER) (elongation). This is
consistent with the idea that partitioning more pyruvate into the
plastids may provide more acetyl-CoA for synthesis of all fatty
acids.

Constitutive overexpression of genes often causes a tradeoff
between seed size/oil content and seed number. Our data show
that this problem did not occur when a seed-specific glycinin-1
promoter of soybean was used; in OE lines, seed number
per silique was similar to that of the WT (Figure 7C) and
the total seed yield (mg) of the plant increased (Figure 7A),
suggesting that seed oil production can be improved without
altering the total seed number produced per plant. The increased
total seed yield in OE lines was due mainly to the increase
in individual seed weight. Moreover, BASS2 overexpression did
not alter physiological processes of the plants, such as seed
germination and seedling growth were not compromised in
the OEs (Figure 6). This is of economic value in real-world
situations.

In addition to fatty acid biosynthesis, pyruvate can be
used in plastids for many biosynthetic pathways, including
the biosynthesis of terpenoids and BCAAs (Schulze-Siebert
et al., 1984; Hemmerlin et al., 2003; Schwender et al.,
2004). However, it seems unlikely that pyruvate is used
for the terpenoid biosynthesis pathway in the seeds of the
overexpressors, since terpenoids are not a major constituent
of Arabidopsis seeds. Neither are BCAAs a major constituent
of seed weight that could explain the increase in seed weight
we observed in BASS2 overexpressors; BCAAs are only minor
components of Arabidopsis seeds (0.67 nmol/mg; <0.1µg/mg
dry seeds; Angelovici et al., 2013). The storage protein content,
which accounts for about 30% of the Arabidopsis dry seed
weight, did not differ much between the OE and WT lines
(Figure 5A). Thus, the additional pyruvate compartmentalized
into plastids by overexpressed BASS2 seems to have been
used mainly for lipid biosynthesis. This may be, at least
in part, because the glycinin-1 promoter activity is highest
during the maturation phase of seed development (Li et al.,
2015), when lipid biosynthesis sharply increases in Arabidopsis
seeds (Nielsen et al., 1989; Baud et al., 2002; Ruuska et al.,
2002).

Taken together, our study demonstrates that overexpressing
a plastidial pyruvate transporter driven by a seed-specific
promoter is a useful approach for increasing the oil content
without impacting the deposition of other storage materials
in seeds. Despite their obvious importance in transporting
metabolites across distinct subcellular compartments housing
lipid biosynthesis, transporter genes have only recently been
identified and explored as a strategy to increase seed oil
yield. Overexpression of AtABCA9, which is localized to the
ER, enhanced TAG content by up to 40%, most likely by
facilitating the transport of fatty acids to the site of TAG
biosynthesis (Kim et al., 2013). Thus, genetic engineering
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FIGURE 6 | Germination rate and early seedling growth rate of seed-specific BASS2-overexpressing lines (OEs). The time required for 50% of the seeds to

germinate (A) and the time for seedlings to grow roots to 2 cm (B) were scored. Values are means ±SE. N = 2, 29 ≤ n ≤ 71, Student’s t-test (*P < 0.05).

FIGURE 7 | Seed yield of WT and seed-specific BASS2-overexpressing (OEs) plants. (A) Seed yield of WT and OEs. Seed yield of plants was measured as the

total seed weight from a plant (N = 2, n = 7, 8). (B) Silique number of the main stem of WT and OE plants. After inflorescence meristem growth of the main stem had

ceased, the number of siliques on the main stem was counted (N = 6, 10 ≤ n ≤ 30). (C) Seed number per silique. Developing siliques were sampled, and the seed

number in the siliques was counted under a dissecting microscope (N = 3,6 ≤ n ≤ 14). Error bars indicate standard error (SE). Asterisks indicate significant difference

from the WT (*P < 0.05), as determined using Student’s t-test. Values above the columns indicate seed yield, the number of siliques per plant or the number of seeds

per silique as a percentage of the corresponding WT value.

employing organellar transporters can be used to increase the
flux between organelles, resulting in increased seed oil yield.
This study provides an additional element (i.e., BASS2) that can
be manipulated to further increase oil content using a gene

stacking approach. For example, overexpression of BASS2 and
other factors such as AtWRI1 or AtABCA9, or overexpression
of BASS2 in lines in which lipid catabolism is shut down might
result in lines with increased oil contents. Such approaches
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TABLE 1 | Lipid, protein, and carbohydrate contents of WT and BASS2-overexpressing (OE) seeds.

Parameter WT OE1 OE2 OE3 OE4

Seed weight, µg/seed 15.74 ± 0.43 18.00 ± 1.02*** 16.89 ± 0.92*** 17.79 ± 0.88*** 19.01 ± 0.61***

Lipid weight, µg/seed 4.62 ± 0.14 5.31 ± 0.28*** 5.09 ± 0.23*** 4.97 ± 0.23*** 5.88 ± 0.20***

Protein weight, µg/seed 3.92 ± 0.01 4.10 ± 0.04* 3.96 ± 0.02* 3.99 ± 0.01*** 3.97 ± 0.01**

Carbohydrate weight, µg/seed 0.079 ± 0.002 0.081 ± 0.004 0.075 ± 0.004 0.084 ± 0.004 0.076 ± 0.004

Total reserves, µg/seed 8.62 9.49 9.13 9.04 9.93

1Seed weight (OE-WT), µg/seed 2.26 1.15 2.05 3.27

1Seed reserve weight (OE-WT), µ g/seed 0.87 0.51 0.43 1.31

1Lipid weight (OE-WT), µg/seed 0.69 0.47 0.35 1.26

Lipid, % of dry weight 28.65 ± 0.92 29.19 ± 1.70 29.67 ± 0.94 27.57 ± 1.45 30.59 ± 1.07

Protein, % of dry weight 25.45 ± 0.73 21.29 ± 1.33* 24.41 ± 1.29 23.13 ± 1.10* 21.17 ± 0.71***

Carbohydrate, % of dry weight 0.51 ± 0.02 0.46 ± 0.04 0.45 ± 0.02* 0.48 ± 0.03 0.40 ± 0.02***

Values are averages ± SEs from three replicates. Numbers in red indicate values that are significantly different from those of the WT at P < 0.001. Note that the increase in seed reserve

weight is related mainly to an increase in lipid weight (numbers in bold). *P < 0.05; **P < 0.01; ***P < 0.001, Student’s t-test.

might be applicable to oil seed crops, such as rapeseed, flax, and
sunflower.
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