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Phenotyping, via remote and proximal sensing techniques, of the agronomic and

physiological traits associated with yield potential and drought adaptation could

contribute to improvements in breeding programs. In the present study, 384 genotypes

of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water

stress (WS) conditions. The following traits were evaluated and assessed via spectral

reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike

(KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble

carbohydrate concentration and content (WSC andWSCC, respectively), carbon isotope

discrimination (113C), and leaf area index (LAI). The performances of spectral reflectance

indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR),

and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the

prediction of each trait. For the classification approaches, two classes were established

for each trait: The lower 80% of the trait variability range (Class 1) and the remaining

20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed

better when data from FI and WS were combined. The traits that were best estimated

by SRIs and regression methods were GY and 1
13C. For most traits and conditions, the

estimations provided by RR and SVR were the same, or better than, those provided by

the SRIs. PLS-DA showed the best performance among the categorical methods and,

unlike the SRI and regression models, most traits were relatively well-classified within a

specific hydric condition (FI or WS), proving that classification approach is an effective

tool to be explored in future studies related to genotype selection.
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INTRODUCTION

Wheat is one of the most important cereals in the human
diet worldwide. This cereal is consumed in different types of
processed foods, providing around 20% of total daily calories
(Shewry, 2009). Due to world population growth, it is expected
that current wheat production will need to be doubled by
the middle of the century (Tilman et al., 2011; FAO, 2015).
To accomplish this level of production, wheat yield must
increase by 1.60% per year (Dixon et al., 2009), which is
far from the 1.26% increase that was reached during the last
decade (FAOSTAT, 2013). Additionally, the current effects of
climate change on weather patterns, and unexpected events, are
threatening maximum thresholds in many areas (Ayeneh et al.,
2002; Azimi et al., 2010; Rebetzke et al., 2012; Hernández-Barrera
et al., 2016).

This challenging scenario should encourage wheat breeders
to accelerate the development and release of new high-yield
cultivars that are adapted to more complex environmental
conditions (Velu and Prakash, 2013). One strategy for improving
and expediting the selection of these elite genotypes is
the acquisition of high-dimensional phenotypic data (high-
throughput phenotyping) (Bowman et al., 2015; Camargo and
Lobos, 2016; Crain et al., 2016).

Remote sensing techniques, such as spectrometry, are
increasingly used for plant phenotyping (Cabrera-Bosquet et al.,
2012; Araus and Cairns, 2014). Spectral reflectance or the
spectrum of energy reflected by the plant is closely associated
with absorption at certain wavelengths that are linked to
specific characteristics or plant conditions (Lobos and Hancock,
2015). Spectrometers can acquire detailed information regarding
the electromagnetic spectrum in a short time, making this
technology ideal for assessing hundreds or thousands of
genotypes within a few hours (Cabrera-Bosquet et al., 2012).
This would enable researchers and breeders to estimate multiple
morpho-physiological and physico-chemical traits, which would
otherwise be impossible to evaluate due to the time and cost
involved (Lobos and Hancock, 2015). This would be reflected in
reduced breeding program costs and, by allowing for the early
selection of genetic material of interest, increase the chances of
releasing improved cultivars in less time (Lobos and Hancock,
2015; Camargo and Lobos, 2016).

For the estimation of wheat traits, such as grain yield, biomass,
leaf area index, plant height, and isotopic carbon discrimination,
the majority of previous studies have resorted primarily to the
use of “Spectral Reflectance Indices” (SRIs) (Aparicio et al., 2002;
Babar et al., 2006a,b; Marti et al., 2007; Prasad et al., 2007;
Gutierrez et al., 2010; Lobos et al., 2014; Hernández et al., 2015),
whereas there has been less attention paid to the development of
multivariate regression models, using part or all of the spectral
reflectance (Pimstein et al., 2011; Dreccer et al., 2014; Li F. et al.,
2014; Li X. et al., 2014; Hernández et al., 2015; Siegmann and
Jarmer, 2015; Yao et al., 2015).

Current research into plant phenotyping and phenomics for
plant breeding has focused on using the spectral signature
to estimate predicted trait-values rather than exploring other
tools that could directly identify elite genotypes for the desired

trait. The use of reflectance data and categorical methods for
breeding purposes has been scarcely addressed by the scientific
community. Nonetheless, some successful experiments have been
carried out: To classify lines for waxy alleles in durum wheat
(Delwiche et al., 2006; Lavine et al., 2014) and bread wheat
(Delwiche et al., 2011); to identify wheat lines possessing wheat-
rye translocations (Delwiche et al., 1999); to classify barley
varieties (Porker et al., 2017); and to select haploid kernels from
hybrid kernels in maize (Jones et al., 2012).

The aim of the present study was, based on plant reflectance
data, to assess the feasibility of using a categorical approximation
to select featured genotypes, by comparing the performance of
a large set of SRIs, multivariate regression models (PCR, PLSR,
ridge regression, and SVR), and categorical models (PCA-LDA,
PLS-DA, and kNN) in the prediction of grain yield, agronomic
yield components, and physiological traits.

MATERIALS AND METHODS

Plant Material and Experimental
Conditions
A set of 384 cultivars and advanced lines of spring bread wheat
(Triticum aestivum L.) with good agronomic characteristics
and disease tolerance were evaluated (list at del Pozo et al.,
2016). These genotypes were sourced from three wheat-breeding
programs (INIA-Chile, INIA-Uruguay, and CIMMYT-Mexico)
and are currently being used to breed for adaptation to drought
stress and to develop suitable genotypes for wheat production in
the drylands of Chile and other countries.

Experiments were conducted in 2012 in two contrasting
Mediterranean environments of Chile: Cauquenes (35◦58′S,
72◦17′W), with typical rain-fed conditions such that the plants
were grown under water stress (WS); and Santa Rosa (36◦32′S,
71◦55′W), under fully irrigated (FI) conditions. The precipitation
in these locations during the experiments was 183 and 700
mm, respectively (Table 1). Under FI conditions, four furrow
irrigations of approximately 50 mm each were applied at the end
of tillering (Zadocks Stage 21; Z21), the flag leaf stage (Z37),
heading (Z50), and middle grain filling (Z70) (Zadoks et al.,
1974). There was a difference of 28 days (77–105 days) between
the earlier and later genotypes in reaching the heading stage; 89%
of the genotypes 81–94 days.

The experiment was conducted in an incomplete block design
(α-lattice), with two replicates per genotype (n = 384 × 2).
Plots had five rows, each 2m in length, the distance between
the rows was 0.2 m, and the distance between plots was 0.4 m.
Similar agronomic practices were performed at the two locations.
Sowing (20 g m−2) dates were 23 May at Cauquenes and 7
August at Santa Rosa. Before sowing, the plots were fertilized
with 260 kg ha−1 of ammonium phosphate (46% P2O5 and 18%
N), 90 kg ha−1 of potassium chloride (60% K2O), 200 kg ha−1

of sul-po-mag (22% K2O, 18% MgO and 22% S), 10 kg ha−1

of boronatrocalcite (11% B), and 3 kg ha−1 of zinc sulfate (35%
Zn). During tillering, an extra 153 kg ha−1 of N was applied.
Flufenacet + Flurtamone + Diflufenican (96 g a.i.) was applied
for pre-emergence weed control and a further application of
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TABLE 1 | Monthly maximum, minimum, and mean temperature, and monthly rainfall at the two experimental sites in central Chile during the trial (May

2012–January 2013).

Cauquenes May Jun. Jul. Aug. Sept. Oct. Nov. Dec. Jan.

Temp. (◦C) Max. 18.1 14.1 15.8 14.7 19.6 19.9 25.7 24.6 30.8

Min. 5.3 5.8 4.5 5.5 6.6 5.9 8.5 9.3 12.5

Mean 11.7 10.0 11.6 11.3 15.0 12.8 16.8 17.0 21.2

Rainfall (mm) 10.0 9.0 14.0 22.8 3.0 24.5 69.6 29.7 0.0

Santa Rosa May Jun. Jul. Aug. Sept. Oct. Nov. Dec. Jan.

Temp. (◦C) Max. 16.2 13.1 12.6 13.2 18.2 18.9 24.2 23.1 30.0

Min. 4.4 5.1 0.8 3.5 4.1 5.3 7.5 8.1 11.1

Mean 9.8 8.6 6.1 7.6 10.6 11.8 15.3 15.6 19.9

Rainfall (mm) 90.0 186.9 52.5 139.3 12.7 48.0 59.2 109.6 1.2

MCPA (525 g a.i.) + Metsulfuron-metil (5 g a.i.) was used for
post-emergence weed control.

Trait Measurements
Grain Yield and Agronomic Yield Components
The number of spikes per m2 (SM2) was determined for a
1m length of an inside row. The number of kernels per spike
(KPS) and thousand-kernel weight (TKW) were determined in
25 spikes selected at random from the central row. Grain yield
(GY) was assessed by harvesting the whole plot.

Leaf Chlorophyll and Water-Soluble Carbohydrate
Chlorophyll (Chl) content was determined using the SPAD
index for five flag leaves per plot, at anthesis (an) and at grain
filling (gf ), with a portable leaf chlorophyll-meter (SPAD 502,
Minolta SpectrumTechnologies Inc., Plainfield, IL, USA).Water-
soluble carbohydrate was determined using the anthrone reactive
method (Yemm andWillis, 1954), for five main stems (excluding
leaf laminas and sheaths) per plot, at an and at maturity (m),
and expressed as concentration (WSC, mg g−1 DW) and content
(WSCC, mg stem−1).

Carbon Isotope Discrimination
For kernels sampled randomly at m, the stable carbon (13C/12C)
isotope ratio was measured using an elemental analyzer (ANCA-
SL, PDZ Europa, UK) coupled with an isotope ratio mass
spectrometer, at the Laboratory of Applied Physical Chemistry at
Ghent University (Belgium). The carbon isotope discrimination
(113C) was calculated as follows: 1

13C (‰) = (δ13Ca–
δ
13Cp)/[1+ (δ13Cp)/1000], where a and p refer to air and plant,
respectively (Farquhar et al., 1989). δ13Ca was taken as 8.0‰.

Leaf Area Index
The leaf area index (LAI) at an (under FI conditions only) was
determined by measuring the incident light falling on the crop
and the amount of light in each plot at ground level, using a
BF5 Sunshine Sensor and SunScan Canopy Analyser (Delta-T,
Cambridge, UK). The radiation transmitted and dispersed by the
canopy was recorded, and the LAI then calculated.

Spectral Reflectance Measurements
Canopy spectral reflectance (350–2,500 nm) was measured using
a portable spectroradiometer (FieldSpec 3 JR, ASD, Boulder, CO,
USA) at two developmental stages: Anthesis (AN; denoted with
capital letters to avoid confusion with trait measurements stages)
and grain filling (GF). The optical fiber (2.3 mm diameter with
25◦ full conical angles) was placed 80 cm above the canopy,
at a 45◦ angle. From 11:00 to 17:00 h on clear sunny days,
measurements were taken by moving (sweeping) the sensor
over the plot, covering the three central rows. The equipment
was set up to take three scans per plot and the average for
each wavelength was considered in further analyses. To limit
variations in reflectance induced by changes in the angle of
the sun, radiometric calibration was performed every 15 min,
using a white barium sulfate panel as the reference (Spectralon,
ASD, Boulder, CO, USA). Prior to modeling, exploratory
analysis and spectral noise deletion were performed using the
software Spectral Knowledge (SK-UTALCA) (Lobos and Poblete-
Echeverría, 2017).

Modeling Analysis
Spectral reflectance assessed at AN and GF stages was used to
estimate the traits that were evaluated at anthesis (an) (Chl
content, WSC, WSCC, and LAI), grain filling (gf ) (Chl content),
and maturity (m) (SM2, KPS, TKW, GY, WSC, WSCC, and
1

13C). The following analyses were considered.

Spectral Reflectance Indices
Spectral reflectance was used to assess the predictive performance
of a set of 255 SRIs loaded on SK-UTALCA (Lobos and Poblete-
Echeverría, 2017). Using the linear regression analysis option, the
relationships between the each of the measured traits and each of
the SRIs at AN and GF were examined using the coefficient of
determination (r2) and the root mean square error (RMSE). WS
and FI conditions were analyzed independently, but also as one
environment (WS+FI).

Multivariate Regression Methods
Four different regression methods were considered: Principal
Components Regression (PCR), Partial Least Square Regression
(PLSR), Ridge Regression (RR), and Support Vector Machine
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Regression (SVR). Prior to modeling with R 3.1.2 software (R
Development Core Team, 2011), any samples withmissing values
were excluded, outliers were identified by Local Outlier Detection
(LOF), and the data were normalized.

PCR is a combination of Principal Component Analysis
(PCA) and Multiple Linear Regression (MLR), which first
reduces the dimensionality of the spectral data, concentrating
the information into so-called principal components. The
transformed data is then used to train a MLR model that fits a
linear equation (Jolliffe, 2002).

PLSR reduces the dimensionality of the data by constructing
so-called latent factors. Unlike PCA, PLSR produces a set of
factors that take into consideration the values of the independent
and dependent variables simultaneously. In this sense, PLSR finds
vectors that not only represent the variance of the data but that
are also related to the response (Wold et al., 2001; Hastie et al.,
2005).

RR works in a similar way to least square fitting, but adds
a term that penalizes the values of the coefficients. The role
of the penalization term is to “shrink” the estimates of the
coefficients toward zero (Hastie et al., 2005). This penalization
can be controlled using a tuning parameter λ, which has to be
estimated independently. The optimization of λ was performed
using a grid of 100 possible values of λ in a range of [10−2, 1010]
with 10-fold cross-validation. The best λ identified was used to
build the model.

SVR is a method derived from the Support Vector Machine
(SVM). The SVM transforms data into a new high-dimensional
space using a kernel function. In this newly created space, a
predictivemodel is built using a subset of representative instances
called support vectors. SVR estimates a linear dependency by
fitting an optimal approximating hyperplane to the training
samples in the multidimensional feature space. In the present
study, several kernels (linear, polynomial, radial basis function,
and sigmoidal) were automatically tested and selected based
on a minimization criterion. The parameters C (regularization
parameter) and ε (loss function parameter) were fixed to 1 and
0.1, respectively.

All models were validated by 10-fold cross-validation
(10xCV) and their performances evaluated by the coefficient of
determination (R2), the root mean square error (RMSE), and the
Index of Agreement (IA) in calibration and validation. The IA
(Willmott, 1981) is a standardized measure for estimating the
prediction error of the model and ranges from 0 (faulty model)
to 1 (perfect fit).

Multivariate Classification Methods
Spectral reflectance data were also modeled by three different
supervised classification methods: Principal Components—
Linear Discriminant Analysis (PCA-LDA), Partial Least Square
Discriminant Analysis (PLS-DA), and the k-Nearest Neighbor
(kNN) algorithm. Two different categories were established
by taking into account the total variation of each trait, as
measured at each of the developmental stages and in each
of the environments (FI, WS, or WS+FI). The first category,
labeled as “Class 1,” corresponds to instances with values in
the lower 80% of the trait range. The remaining 20% of

instances were considered as belonging to the elite group and
were labeled as “Class 2” (Supplementary Table 1). The goal
of this dichotomization was to develop predictive models that
were able to identify those elite genotypes that had the highest
trait performance (the upper 20% of the trait range). Model
calculations were done using the Classification Tool Box (Version
4.2) developed byMilano Chemometrics and the QSAR Research
Group (Ballabio and Consonni, 2013) and implemented in
Matlab 8.2.0 (The Math Works Inc., MA, USA).

PCA-LDA is a classification technique based on the linear
discriminant functions. PCA is used to reduce the dimensionality
of the spectral matrix and LDA acts as the classifier. Classes are
separated by maximizing the variance between the groups, and
minimizing the variance within the groups, to determine the best
fit of parameters for the classification (Lehmann et al., 2015).
Before calculating the PCA-LDA models, the input data were
mean-centered and the optimal number of principal components
was searched in the interval 1–20, with 10xCV, on the basis of
minimizing the error rate of validation. The discrimination of
classes was established as linear.

PLS-DA is a pattern recognition method that combines the
properties of PLSR, discriminating between the categories using
the Discriminant Analysis technique (Ballabio and Consonni,
2013). PLS-DA works by finding the latent variables that describe
the variance in both the independent X variables (spectra) and
the dependent Y variables (classes) and are able to separate the
data into two or more classes (Barker and Rayens, 2003). In
PLS-DA, a model is developed for each class and the probability
that a sample belongs to a specific class is calculated based on
the estimated class values (Ballabio and Consonni, 2013). In the
present study, the PLS-DA models were calculated using mean-
centered data and the optimal number of latent variables was
searched in the range [1, 20], with 10xCV.

Finally, the k-nearest neighbors (kNN) method is based on
the determination of the distances between an instance whose
identity is assumed to be unknown and each instance belonging
to the training set. Once the distances are computed, the elements
are ranked according to their proximity to the query instance,
selecting the k elements that are closest to this. Finally, the
category of the query item is estimated using a majority voting
scheme among the labels of the k selected items (Cunningham
and Delany, 2007). In general, the distance function can be
any mathematical function that expresses dissimilarity but, for
simplicity, a common choice is the Euclidian distance. In this
study, the data was mean-centered and the best value for the
parameter k was obtained from values in [1,10], with 10xCV.

The predictive powers of the categorical PCA-LDA, PLS-DA,
and kNN models were evaluated by calculations of accuracy,
error rate, and prediction rates (determined by the sensibility of
each class) for both classes in calibration and validation.

RESULTS

The range of values, and their means, for each of the traits
evaluated in the 384 wheat genotypes grown under FI and WS
conditions, are presented in Table 2.
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TABLE 2 | Traits evaluated for 384 genotypes of wheat grown under fully

irrigated (FI) and water stress (WS) conditions, in 2012.

Traity FI WS

Range Mean ± SD Range Mean ± SD

SM2mz 320.0–1125.0 627.7 ± 133.7 75.0–625.0 321.1 ± 69.3

KPSm 15.0–68.9 38.6 ± 6.5 9.4–55.6 32.3 ± 6.3

TKWm (g) 30.8–88.6 49.3 ± 6.6 29.4–89.4 44.4 ± 6.8

GYm (ton ha−1) 5.1–12.9 9.7 ± 1.2 0.9–6.9 3.1 ± 0.9

Chlan (SPAD index) 35.9–58.2 49.3 ± 3.3 31.3–52.0 41.4 ± 3.5

Chlgf (SPAD index) 30.1–56.0 47.8 ± 3.7 0.8–48.8 34.0 ± 10.3

WSCan (mg g−1 DW) 16.1–610.9 141.2 ± 49.2 20.6–708.4 226.8 ± 51.7

WSCm (mg g−1 DW) 5.6–686.3 43.4 ± 33.3 5.0–218.3 48.0 ± 23.5

WSCCan (mg

stem−1 )

19.3–926.0 172.1 ± 86.3 32.7–1271.6 410.8 ± 140.9

WSCCm (mg

stem−1 )

6.1–926.6 47.4 ± 45.1 4.9–262.9 52.1 ± 34.4

1
13Cm (‰) 17.1–20.2 18.8 ± 0.5 12.3–16.5 14.9 ± 0.5

LAIan 2.4–8.4 5.2 ± 1.0 – −

ySM2: spikes m−2; KPS, kernels spike-1; TKW, thousand kernels weight; GY, grain yield;

Chl, SPAD index; water soluble carbohydrates concentration (WSC) and content (WSCC);

∆
13C, isotopic discrimination of 13C; LAI, leaf area index.

zTrait measurement at anthesis (an), grain filling (gf), or maturity (m).

Spectral Reflectance Indices
Coefficients of determination greater than 0.8 were only reached
when the hydric conditions were combined (WS+FI) for GYm
(AN: 0.82 and GF: 0.92) and 1

13Cm (AN: 0.82 and GF:
0.92) (Table 3; Supplementary Table 2). Among the 255 SRIs
tested, NWI-3 [(R970–R920)/(R970+R920) worked at AN andWI2
(R970/R900) worked at GF. When the hydric conditions were
kept separate, predictions with r2 values greater than 0.25 were
achieved only for WS conditions and spectral measurements
performed at GF (NWI-3; GYm: 0.51 and 1

13Cm: 0.26).
Coefficients of determination between 0.40 and 0.79 were

found with combined hydric conditions for the following traits:
SM2m [AN MTCI ((R800–R750)/(R750–R670)): 0.63; GF SAVI2
(1.5∗(R807–R736)/(R807+R736+0.5)): 0.66]; Chlan [AN TCARI2
(3∗((R700–R600)−((0.2∗(R700–R550))∗(R700/(R850+R670)))):
0.59;GFMTCI: 0.60]; Chlgf [AN NWI-3: 0.42;GF NWI-3: 0.44];
WSCan [AN MTCI: 0.41; GF NDSI4 ((R933–R948)/(R933+R948)):
0.44]; and WSCCan (AN MTCI: 0.47; GF WI2: 0.50). When the
hydric conditions were kept separate, r2 values between 0.4 and
0.79 were found only for LAIan under FI conditions [AN DATT
((R850–R710)/(R850–R680): 0.44] (Table 3).

Multivariate Regression Methods
As observed for the SRIs, the four multivariate regression models
(PCR, PLSR, RR, and SVR) showed the highest predictive
power for most traits when data from both hydric conditions
were combined (WS+FI), with the exception of TKWm at
AN under FI conditions (Table 3, Supplementary Figure 1, and
Supplementary Table 2). The R2cv values were similar between RR
and SVR, and greater than those for the other two multivariate
models. Using RR or SVR, R2cv values greater than 0.8 were found
for GYm (AN: 0.90 and GF: 0.93) and 1

13Cm (AN: 0.92 and GF:

0.94). In addition, R2cv values between 0.40 and 0.79 were found
for the following traits when using SVR with combined hydric
conditions: SM2m (AN: 0.73 and GF: 0.74), Chlan (AN: 0.59
and GF: 0.66), Chlgf (AN: 0.44 and GF: 0.51), WSCan (AN: 0.48
and GF: 0.49), and WSCCan (AN: 0.53 and GF: 0.56). When the
hydric conditions were kept separate, r2 values in this same range
were achieved only for GYm (GF: 0.56) under WS conditions,
and for LAI (AN: 0.45) under FI conditions (Table 3).

Multivariate Classification Methods
The general performances of the categorical models were very
similar in terms of model accuracy with 10xCV (Figure 1A);
PCA-LDA, kNN, and PLS-DA showed average accuracies of 0.81,
0.76, and 0.71, respectively. PLS-DA, however, showed the lowest
error rate of validation (Figure 1B); the average errors were
approximately 0.42, 0.42, and 0.30 for PCA-LDA, kNN, and PLS-
DA, respectively. Moreover, the error rate of validation showed
differences within each model, being similar for the two hydric
conditions when these were kept separate, but higher when the
WS and FI conditions were combined.

The general performance of the three categorical models was
evaluated based on the prediction rate of cross-validation for
both classes (Figure 2), which proved to be different between
models. PCA-LDA and kNN showed greater prediction levels for
samples included in Class 1 (0.96 and 0.88, respectively), but very
low prediction levels for samples from Class 2 (0.21 and 0.27,
respectively) (Figures 2A, B). Meanwhile, PLS-DA showed lower
prediction levels for Class 1, however, the prediction rates were
similar for both Class 1 (∼0.70) and Class 2 (∼0.71) (Figure 2C).

Considering the prediction rates for both classes, the best
genotype discriminations were obtained for most traits by
PLS-DA when both hydric conditions were combined, with
the exception of WSCm and WSCCm, at WS (AN and GF).
Prediction rates from cross-validation by PLS-DA for Class 1
under WS+FI conditions ranged from 0.64 (KPSm at AN and
GF, and WSCCm at AN) to 0.77 (SM2m at AN and GF), while
prediction rates for Class 2 were between 0.52 (WSCm at AN)
and 0.98 (GY at GF). However, the prediction rates for several
traits were greater when the hydric conditions were kept separate,
when compared to those rates achieved with combined WS+FI
conditions. This was observedmainly for Class 1 (e.g., KPSmAN-
FI, GYm GF-WS, and 1

13Cm GF-WS) but also for Class 2 (e.g.,
TKWm AN-FI, WSCm GF-WS, and WSCCm AN-WS).

Importantly, unlike the SRI and multivariate regression
methods, the PLS-DA model generated high prediction levels for
the individual hydric conditions, in both classes, for most of the
traits evaluated. Under FI conditions, the prediction rates for
Class 1 ranged from 0.56 (Chlan at GF) to 0.85 (LAIan at AN),
while the prediction rates for Class 2 were between 0.47 (KPSm at
AN) and 0.82 (TKWm and LAIan at AN). Under WS conditions,
the prediction rates for Class 1 were between 0.56 (WSCCan
at GF) and 0.85 (GYm at GF), while those for Class 2 ranged
from 0.43 (KPSm at AN) to 0.78 (GYm at GF). Prediction levels
between 0.40 and 0.79 for both classes were found for most traits
when the hydric conditions were combined, although some of
these showed prediction levels greater than 0.80 in one of the two
classes: Class 1 (SM2m AN-FI and GF-FI, GYm GF-WS, 113Cm
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FIGURE 1 | Performance of classification models on the basis of the

average of model accuracy (A) and error rate of cross-validation (B)

calculated to all traits and estimated by spectral reflectance at anthesis (AN)

and grain filling (GF ). Wheat genotypes growing under two hydric conditions

(FI: fully irrigated and WS: water stress); combination of both conditions

(WS+FI) for modeling purposes. Vertical bars represent the standard error.

GF-WS, and LAIan GF-FI) and Class 2 (TKWmAN-FI and Chlgf
AN-FI). Prediction levels greater than 0.80 for both classes under
the individual hydric conditions were only achieved for LAIan
with prediction rates of 0.85 and 0.82 for Class 1 and Class 2,
respectively (Table 3; Supplementary Table 3).

DISCUSSION

Despite the present study being conducted in a single year,
it generated an interesting database for testing approximation
methodologies. This was due to the use of a large number of
cultivars/advanced lines of wheat that were grown under two
contrasting hydric conditions and evaluated for a large number
of traits, with spectral reflectance assessed at two developmental
stages (AN and GF).

Unlike other studies, this work covers a large proportion of
the SRIs reported in the remote sensing literature (Lobos and
Poblete-Echeverría, 2017). In general, the regression analysis
between the traits and SRIs showed an important increase
in predictive potential when the experimental data from both
hydric conditions were combined. Nonetheless, when compared
with previous reports (Lobos et al., 2014), lower coefficients
of determination were found for GYm and 1

13Cm when the
individual environments were considered.
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FIGURE 2 | Performance of each classification method (A: PCA-LDA, B:

kNN, and C: PLS-DA) on the basis of the average of prediction rate of

cross-validation calculated to all traits and classes, and estimated by spectral

reflectance at anthesis (AN) and grain filling (GF ). Wheat genotypes growing

under two hydric conditions (FI: fully irrigated and WS: water stress);

combination of both conditions (WS+FI) for modeling purposes. Vertical bars

represent the standard error.

The developmental stage at which spectral reflectance was
assessed influenced the relationship between the traits and the
SRIs, which has been reported previously (Marti et al., 2007;
Lobos et al., 2014). The best predicted traits, GYm and 1

13Cm,
had a greater r2 at GF, while TKWm and LAIan had a greater
r2 at AN; no major changes were observed for the other traits.
The better prediction of GYm at GF could be related to the fact
that the three main yield components (SM2, KPS, and TKW) are
determined in the crop during this stage. In the case of 1

13Cm,
both stomatal conductance and carboxylation rate influence the
carbon isotope ratio (13C/12C) in kernels, and are affected by WS
in Mediterranean environments at the GF stage (Condon et al.,
2004).

Regarding to GYm and 1
13Cm assessed at GF, among the 255

SRIs tested, water indices were the ones explaining the highest
variability on each environment: NWI-3 on WS and WI2 on
WS+FI, while on FI WI and NWI-3 highlighted. Water indices,
which combines near infrared spectra wavelengths (NIR), do not
directly measure water content but instead detect the changes in
leaf anatomy and cell structure that are induced by the state of
hydration (Lobos et al., 2014), which influences the productivity
of the plant. For GYm, similar results have been reported by
other authors (Babar et al., 2006a; Prasad et al., 2007; Gutierrez
et al., 2010; Lobos et al., 2014), while for 1

13Cm, this has
been reported just once (Lobos et al., 2014). This highlights the
effectiveness of water indices over vegetation indices. Traits such
as SM2m, Chlan, Chlgf, WSCan, and WSCCan correlated better
with vegetation and chlorophyll SRIs, which combine visible and
NIR wavelengths, but also with water indices.

Although SRIs are easy to calculate, they are limited by the use
of fewwavelengths. Of themultivariate regressionmodels studied
(PCR, PLSR, RR, and SVR) (Table 3, Supplementary Figure 1,
and Supplementary Table 2), PCR and PLSR generally performed
the same, or worse than, the SRIs. Although PLSR, which is the
most popular technique used in studies of this kind, has the ability
to reduce the effect of the spectral signatures collinearity through
a reduction in the dimensionality of the data (Hastie et al., 2005);
our results show that SRIs may perform similarly, or better, when
used in plant phenotyping. On the other hand, the RR and SVR
models performed the same, or better than, the SRIs (e.g., GYm
and 1

13Cm estimations increased by 8 and 10%, respectively,
when using SVR). This highlights that there are multivariate
regression analysis models other than PLSR that should be used
in plant phenotyping to improve prediction statistics in plant
breeding.

RR is a method of multivariate linear regression that includes
a contraction of the multivariate model regression coefficients
(Hastie et al., 2005). Although there are fewer reports of RR in
remote sensing studies, this method performed better than PLSR
for the estimation of plant biomass from satellite images (Cai
et al., 2009) and was successfully used by Hernández et al. (2015)
to predict GY in a large set of wheat genotypes. RR is known to be
useful when the number of observations is much lower than the
number of variables (James et al., 2013). In the present study, the
number of observations is ∼800, while the number of variables
(reflectance values space) is around 2,000. Furthermore, RR is
recognized to be an effective prediction model when there is high
collinearity in the data (James et al., 2013), which is typical of
spectroscopy studies where a full spectrum of reflectance is used.
Our results provide empirical evidence that RR performs well
in the context of spectral reflectance data, and better than more
popular methods such as PLSR.

Optimization of a SVR model does not depend on
the dimensionality of the input space (Smola and Vapnik,
1997). Thus, it has the ability to handle complex non-linear
dependencies in high-dimensional feature spaces (Smola and
Vapnik, 1997; Hastie et al., 2005), such as those modeled in this
study, where it performs better than PCR and PLSR. SVR has
been the subject of several comparisons in spectral studies. Wang
et al. (2011) achieved more accurate estimates of rice LAI when
using LS-SVM (Least Squares Support Vector Machines) rather
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than PLSR and MLR models. Similarly, better estimations of the
nitrogen, phosphorus and potassium content in plant leaves were
obtained by Zhai et al. (2013) when using SVR rather than PLSR.
On the other hand, Yao et al. (2015) showed similar performance
for PLSR and SVR in the prediction of nitrogen concentration in
wheat leaves.

In addition to GYm and 1
13Cm traits, improvements of

between 6 and 22% were shown for the estimation of the traits
SM2m, WSCan, and WSCCan, when assessed with spectral
reflectance at AN, and SM2m, and TKWm, when assessed at GF.
The best improvement in prediction was achieved for TKWm;
this was 17 and 22% when using RR and SVR, respectively.
Additionally, RR, SVR, and SRIs showed similar trends in their
estimations of most traits when assessed with spectral data
measured at AN or GF. The best predicted traits, GYm and
1

13Cm, as well as SM2m, KPSm, Chlan, Chlgf, and WSCCan,
were better-predicted using measurements of reflectance at GF.
Meanwhile, LAIan was better-predicted with measurements of
reflectance at AN, although this trait was evaluated only for
well-watered plants.

The SRIs and multivariate regression models all performed
much better when the data from both hydric conditions were
combined (WS+FI). This situation was likely produced due to
the increase in the number of samples but potentially the increase
in the trait-range responses associated with the two contrasting
environments was more important (Table 2). The increase in
the trait-range by combining contrasting environments, and the
effects on modeling improvement has been reported previously
in wheat (Aparicio et al., 2002; Royo et al., 2003; Lobos et al.,
2014). Because of this, special attention was paid to identification
of elite genotypes (Class 2) in individual environments with
a categorical approximation (PCA-LDA, PLS-DA, and kNN).
Although the quality of a model is usually shown by its accuracy
and error rate, the main difference in model performance was
found to be the model’s ability to identify samples from either
individual (WS or FI) or combined (WS+FI) environments
as Class 2, with PLS-DA being shown to be the stronger
methodology (Figure 2C, Table 3). There are currently a few
reports regarding the use of reflectance data and categorical
methods for cereal breeding purposes (Delwiche et al., 1999,
2006, 2011; Lavine et al., 2014; Porker et al., 2017); however, all of
these studies were carried out using the reflectance information
from kernels or ground meal.

The selection of wheat genotypes suitable for water deficit-
prone environments has traditionally been based on grain yield
under irrigation conditions (yield potential) and under water
deficit conditions (Araus et al., 2008; Cattivelli et al., 2008;
Araus and Cairns, 2014). Even though both selected sites in this
study where relatively close (70 km apart), the environmental
conditions were different. Clearly the environment where
the plants grew influenced the phenotype of each genotype,
and therefore the spectral signature of a given genotype at
each site. This could explain, in part, the differences in the
estimation of each character; traits such as SM2m, TKWm,
Chlgf, WSCan, and WSCCan showed higher predictions at
FI, while GYm, WSCm, WSCCm, and 1

13Cm were better
estimated at WS.

The aim of this study was to assess the feasibility of using
a categorical approximation to select featured genotypes, by
comparing the performance of a large set of SRIs, multivariate
regression models, and categorical models in the prediction
of several traits using plant reflectance data. Even though
information from only 1-year was considered, the data set used
for modeling was large enough to determine the potential of
each approach in plant breeding programs. Unfortunately, there
are no previous studies contemplating the number of genotypes,
SRIs, or the regression/categorical methods covered in this
article.

Although data from additional studies and a greater number
of years are needed, the present results suggest that future works
oriented at plant breeding should focus on identification of elite
genotypes in preference to predicting specific trait-values. The
assessment of agricultural and physiological traits, such as those
examined in this study, could contribute to the improvement of
plant breeding programs and accelerate the selection and release
of wheat genotypes/cultivars with greater adaptation to adverse
environmental conditions.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Field measurement of canopy spectral reflectance is an efficient
and fast way to collect plant status information for a large number
of genotypes simultaneously. Analysis of reflectance data,
gathered from different hydric conditions and developmental
stages, by SRIs, multivariate regression, and categorical models,
allows for the prediction of agricultural and physiological
traits that are related to wheat yield and water deficit
adaptation. The categorical model PLS-DA proved to be a useful
tool for identifying elite genotypes grown under FI or WS
conditions, improving upon genotype selection based on SRIs
and multivariate regression methods.

Although GY and some of the other traits evaluated in this
study were predicted using SRI, multivariate regression, and
categorical models, there remains a need for assessing other
secondary traits that have yet to be explored in plant breeding
programs.

To improve trait prediction, it will be crucial to consider
other tools, such as machine learning approaches (e.g., random
forest or tree-based neural networks), or include other variables
that are usually assessed by remote sensing (e.g., plant
temperature).
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