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Bioenergy sorghum is targeted for production in water-limited annual cropland therefore

traits that improve plant water capture, water use efficiency, and resilience to water

deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was

adapted to predict the growth and biomass yield of energy sorghum and to identify

potentially useful traits for crop improvement. APSIM simulations of energy sorghum

development and biomass accumulation replicated results from field experiments across

multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy

sorghum’s long duration of vegetative growth increased water capture and biomass

yield by ∼30% compared to short season crops in a water-limited production region.

Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits

that reduce crop water use under high vapor pressure deficits (VPDs). The response

of transpiration rate to increasing VPD was modeled as a linear response until a VPD

threshold was reached, at which the slope of the response decreases, representing

a range of responses to VPD observed in sorghum germplasm. Simulation results

indicated that the VPD-limited transpiration trait is most beneficial in hot and dry

regions of production where crops are exposed to extended periods without rainfall

during the season or to a terminal drought. In these environments, slower but more

efficient transpiration increases biomass yield and prevents or delays the exhaustion

of soil water and onset of leaf senescence. The VPD-limited transpiration responses

observed in sorghum germplasm increased biomass accumulation by 20% in years

with lower summer rainfall, and the ability to drastically reduce transpiration under

high VPD conditions could increase biomass by 6% on average across all years. This

work indicates that the productivity and resilience of bioenergy sorghum grown in

water-limited environments could be further enhanced by development of genotypes with

optimized VPD-limited transpiration traits and deployment of these crops in water limited

growing environments. The energy sorghum model and VPD-limited transpiration trait

implementation are made available to simulate performance in other target environments.

Keywords: energy sorghum, vapor pressure deficit, limited transpiration, crop model, water-limited environments,

biomass, APSIM
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INTRODUCTION

Predicted increases in world population and development by
2050 are projected to increase the demand for food, forage,
biofuels, and bio-products from agriculture by ∼50% (Fedoroff
and Cohen, 1999; Bruinsma, 2009; Hall and Richards, 2013).
Crop production requires substantial water resources due to
the linkage between photosynthetic CO2 uptake/assimilation
and transpirational water loss through stomata (Vadez et al.,
2014). Insufficient water supply is a major cause of low
crop productivity annually and periodic drought can cause
large disruptions in agricultural output (Boyer, 1982; Boyer
et al., 2013). Therefore, to meet future demand for agricultural
products, crops with improved water capture, water use
efficiency, and drought resilience are needed to enhance
sustainable production (Boyer et al., 2013; Vadez et al.,
2013).

Sorghum bicolor is a versatile drought resilient C4 grass crop
that currently is used to produce grain and forage on more than
∼65M ha world-wide. Sorghum crops are particularly important
for subsistence farming in the semi-arid tropics (Doggett, 1988).
Bioenergy sorghum is a relatively new type of sorghum hybrid
crop designed for long growing seasons to enhance biomass
yield (Rooney et al., 2007; Olson et al., 2012; Gill et al., 2014).
The development of high biomass sorghum hybrids was initiated
following discovery of a breeding system that allows production
of late flowering hybrids from early flowering inbreds (Rooney
and Aydin, 1999; Rooney et al., 2007). Bioenergy sorghum
hybrids have high photoperiod sensitivity due to the combined
action of Ma1, Ma5, and Ma6 that inhibit flowering in day
lengths greater than 12.4 h (Rooney and Aydin, 1999; Murphy
et al., 2011, 2014; Mullet et al., 2014; Yang et al., 2014). As
a consequence, energy sorghum hybrids that develop past the
juvenile phase in the spring when day length are >12.4 h do
not undergo floral initiation until day lengths decrease below
12.4 h in the fall. The resulting long vegetative growth duration of
energy sorghum hybrids, combined with C4 photosynthesis, high
radiation interception and use efficiency, and annual cropping
seasons that permit rotations and adjustments for economic
conditions, make energy sorghum hybrids a productive high
biomass crop especially useful for water-limited growing regions
(Rooney et al., 2007; Gill et al., 2014; Mullet et al., 2014).

Sorghum is amenable to genetic improvement of hybrids,
due to a diverse germplasm, good genomics platform, and
tractable genetics (Rooney and Aydin, 1999; Rooney et al.,
2007; Mullet et al., 2014). Breeding and genetic improvement
of bioenergy sorghum hybrids has been underway on a small
scale for only ∼15 years and as a consequence, there are many
unexploited opportunities for improving the crop’s productivity
and resilience. One way to increase the rate of crop improvement
is to use models to help identify physiological traits that have
significant predicted yield benefits for optimization through
genetic selection (Zhu et al., 2010; Hammer et al., 2016). This
approach was used in a prior study to examine the utility
of increased leaf angle in bioenergy sorghum using structure-
function modeling (Truong et al., 2015). The predicted beneficial
impact on biomass yield was confirmed by identifying leaf

angle QTL and field-testing genotypes with varying leaf angle
(Truong et al., 2015). The integration of structure-function
modeling, crop-scale modeling, automated phenotyping, and
quantitative genetics is expected to further accelerate crop genetic
improvement.

The Agricultural Production System SIMulator (APSIM) is a
crop modeling framework that enables predictions of the growth
and productivity of crop species under varying environmental
conditions and management practices (McCown et al., 1996;
Keating et al., 2003; Holzworth et al., 2014). The sorghum
module in APSIM has benefitted from continuous development
and improvement since 1994 (Hammer and Muchow, 1994),
incorporating established models of sorghum phenology, canopy
development, growth, and nitrogen use (Sinclair et al., 1984;
Rosenthal et al., 1989; Birch et al., 1990; Hammer and Muchow,
1994; Chapman et al., 2000a,b). APSIM has also been enhanced
to model complex adaptive traits and genotype to phenotype
predictions (Hammer et al., 2010). In addition to its record
of providing accurate predictions of sorghum development
(Hammer and Muchow, 1994; Kumar et al., 2009; Hammer
et al., 2010; Kholová et al., 2014; Lobell et al., 2015), APSIM’s
modular design provides a flexible platform for examining the
impact of variation in traits and physiological processes on plant
development. To date, APSIM has been used predominately for
modeling grain crops and additional work has demonstrated
its efficacy in sugarcane (Nair et al., 2012). APSIM should
be similarly effective for examining biomass accumulation
in bioenergy sorghum hybrids with long vegetative growth
duration. Therefore, we extended the APSIM grain sorghum
model to bioenergy sorghum and examined its performance
relative to experimental data from field experiments across
multiple years and patterns of rainfall and water availability.
Additionally, APSIM was used to investigate the potential impact
of traits that limit transpiration under high vapor pressure deficit
(VPD) in bioenergy sorghum.

VPD describes the difference in water vapor pressure within
the leaf and the surrounding air. Since transpiration rate
increases with increasing VPD, limiting transpiration under
conditions of high VPD has been predicted to contribute to the
water use efficiency of grain sorghum and corn (Sinclair et al.,
2005; Kholová et al., 2014; Messina et al., 2015). VPD-limited
transpiration traits enable water conservation and improve
water use efficiency by imposing a restriction on transpiration
rate when VPD becomes sufficiently large (Parent et al., 2009;
Tardieu et al., 2009; McAdam and Brodribb, 2015). Previous
experiments have demonstrated that VPD-limited transpiration
is a genetically regulated trait in sorghum. Some genotypes
display differences in the linear increase in transpiration rate
with increasing VPD, whereas other genotypes display a VPD
breakpoint, defined as the VPD at which the slope of the
linear response between VPD and transpiration rate decreases
(Gholipoor et al., 2010; Choudhary et al., 2013; Choudhary and
Sinclair, 2014b; Riar et al., 2015). These sorghum genotypes
respond to high VPDs by reducing their transpiration rates,
effectively limiting water loss under environmental conditions
that result in low transpiration efficiencies, thereby increasing
overall crop water use efficiency.
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The VPD-limited transpiration trait may be especially
beneficial for bioenergy sorghum hybrids that are grown
in regions subject to high VPD and water limitation. Any
daily advantage that the trait confers would potentially be
compounded over extended periods of high VPD and water
deficit that occur during the crop’s long growing season.
Moreover, enhancing the resilience of energy sorghum by
increasing the crop’s tolerance of long periods of water limitation
will enable the crop to utilize intermittent rainfall for growth
and biomass accumulation. Furthermore, future climate change
modeling predicts increases in VPD that will be detrimental to
vegetation (Lobell et al., 2014; McDowell et al., 2016), therefore
determining the potential beneficial impact of VPD-limited
transpiration traits and potential trade-offs on energy sorghum
biomass yield and resilience is of great interest.

Previous methods for incorporating a limited transpiration
trait into crop models imposed a VPD-independent and a VPD-
dependent maximum transpiration rate. In grain sorghum, VPD-
limited transpiration was modeled as a maximum transpiration
rate per unit leaf area, such that the transpiration rate would
plateau at the designated maximum regardless of further
increases in VPD (Sinclair et al., 2005; Kholová et al., 2014).
In maize, limited transpiration was modeled as a piecewise
function whereby, at or above a designated VPD (the VPD
breakpoint), transpiration rate would plateau and not increase
further (Messina et al., 2015). These models are characteristic
of some sorghum genotypes but do not capture the full
range of VPD modulated transpiration responses reported for
sorghum (Gholipoor et al., 2010; Choudhary et al., 2013;
Choudhary and Sinclair, 2014b; Riar et al., 2015). To capture
this additional complexity, we implemented a dynamic VPD-
limited transpiration modification as part of an energy sorghum
model in APSIM and used this modification to examine
the effects of a range of VPD-limited transpiration traits
on biomass accumulation. Adapting APSIM for bioenergy
sorghum and VPD-limited transpiration enables predictions
of energy sorghum phenology, biomass accumulation in a
range of environments and agronomic practices, and analyses
of the impact of the VPD-limited transpiration on biomass
accumulation.

METHODS

Crop Model Simulations for Energy
Sorghum in APSIM
The daily progression of sorghum biomass accumulation given
environmental data and management practices was simulated
using Agricultural Production Systems Simulator (APSIM 7.7,
www.apsim.info) (McCown et al., 1996; Keating et al., 2003;
Holzworth et al., 2014). Daily maximum temperature, minimum
temperature, and precipitation data for College Station, TX
(Latitude 30.58917, Longitude−97.36472) from the beginning of
year 2000 to the end of year 2014 were obtained from the Daily
Global Historical Climatology Network, GHCN-DAILY (Menne
et al., 2012 access date: January 2016). The values of maximum
and minimum radiation per day were obtained from “Maximum
andMinimumRadiation Incident On An Equator-pointed Tilted

Surface (kWh/m2/day)” from NASA Surface meteorology and
Solar Energy (SSE) data set for Latitude 30.601, Longitude 96.314
(https://eosweb.larc.nasa.gov/). The tav_amp APSIM function
was used to calculate annual average ambient temperature (TAV)
and annual amplitude inmeanmonthly temperature (AMP). The
soil depth parameters were adjusted to be reflective of College
Station, TX, where energy sorghum root systems rarely extend
beyond 1,000mm below the soil surface. This constraint was
implemented bymaking the 6th soil layer (1200–1500mmdepth)
a water table that restricted root growth and water uptake past the
6th soil layer.

Crop management practices used for modeling were based on
standard methods for growing energy sorghum (Rooney et al.,
2007; Olson et al., 2012). Sowing each year was modeled to
occur between April 14th and May 1st. The sowing density
and plant spacing in rows reflect practices applied in College
Station, TX, in 2008 and 2009 with 13.2 plants m−2 and 76
cm row spacing. Fertilization was simulated to apply 100 kg
of nitrogen (N) per hectare based on production practices
described previously (Olson et al., 2012). The unlimited irrigation
regime was implemented using furrow irrigation between rows
approximately every 2 weeks if no rainfall occurred and less often
when rainfall provided water for plant growth (Olson et al., 2012).
For simulations without VPD-limited transpiration, irrigation
of 150mm of water was applied on soil water deficit demand
of 50mm as part of three irrigation scenarios: no irrigation
(other than starting with a fully saturated soil profile prior to
sowing, rainfall was the only water source), limited irrigation
(irrigation stops on July 7th), and unlimited irrigation (irrigation
on demand during the growing season).

Adapting APSIM to Model Delayed
Flowering due to High Photoperiod
Sensitivity
Delayed flowering caused by very high photoperiod sensitivity
is a trait that differentiates energy sorghum from most other
sorghum crops. As a consequence of this trait, energy sorghum
hybrids planted in central Texas in mid-April grow in the
vegetative phase for ∼150 days and initiate flowering in mid-
September when day lengths decrease below 12.4 h (Rooney and
Aydin, 1999). The implementation of photoperiod sensitivity in
the APSIM sorghum module is based on extension of thermal
time in the vegetative phase (Hammer et al., 2010; Holzworth
et al., 2014). Therefore, thermal time (e.g., photoperiod slope)
parameters were set to be consistent with observed time to
floral initiation for energy sorghum hybrids such as TX08001
grown in College Station, Texas (Table 1). Modeling of energy
sorghum hybrid performance other locations and latitudes could
be implemented in a similar way by determining thermal time
from planting until day lengths are <12.4 h.

Adapting APSIM Sorghum Module for
VPD-Limited Transpiration Traits
In APSIM’s sorghum model, daily biomass accumulation
is determined primarily from two inputs: radiation energy
intercepted by the plant canopy (radiation energy supply) and
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TABLE 1 | Parameter values for modeling canopy development and

growth in the energy sorghum crop model used in this study.

Parameter description Constants-species-specific

Default Adjusted XML variable

name

SECTION 1—CROP PHENOLOGY: DEVELOPMENT PARAMETERS

Maximum leaf number 40 50 leaf_no_max

Leaf appearance rate 1 (◦Cd) 41 50 leaf_app_rate1

SECTION 2—PHOTOSYNTHESIS BIOMASS GROWTH AND PARTITION

Radiation use efficiency, RUE (g

MJ-1) from juvenile to floral initiation

1.25 2.3 Rue

Extinction coefficient for green leaf

from row spacing 0.5m and 1.0m

0.40 0.70 y_extinct_coef

SECTION 7—SENESCENCE AND DETACHMENT

Light delay factor for leaf senescence

(days)

10.0 25.0 sen_light_time_const

Radiation level for onset of leaf

senescence (MJ m-2)

2.0 0.5 sen_radn_crit

Water supply:demand ratio for onset

of leaf senescence (MJ m-2)

0.25 0.03 sen_threshold

GENOTYPE

late texas_ XML variable

maturity energy name

PHENOLOGY

Photoperiod criteria 1 12.3 12.4 photoperiod_crit1

Photoperiod criteria 2 14.6 13.4 photoperiod_crit2

Photoperiod slope 38.6 1545 photoperiod_slope

LEAF AREA—TPLA APPROACH

Curvature coefficient, α, for leaf area

(1/◦Cd)

0.018 0.003 tpla_prod_coef

Power coefficient, γ , for number of

leaves to total plant leaf area

2.95 2.68 main_stem_coef

Inflection coefficient, β, of total plant

leaf area curve

0.66 0.725 tpla_inflection_ratio

CANOPY HEIGHT

Minimum weight at maximum height

to calculate density of stem

accumulation (g/stem)

80 230 x_stem_wt

Maximum height (m) 2.0 4.0 y_height

The grain sorghum crop model parameters for a late maturity cultivar described in APSIM

sorghum module (apsim.info) were modified to model energy sorghum. Energy sorghum

phenology is approximated such that energy sorghum will initiate floral induction in mid-

September given College Station, TX, environments as observed (Rooney and Aydin,

1999; Olson et al., 2012). Other parameters were modified such that the model output

generally resembled measurements of TX08001 in 2008 (Olson et al., 2012).

soil water supply. For a given day, if water supply is not
limiting, the amount of radiation intercepted determines biomass
accumulation. Daily plant water demand is calculated from
radiation energy supply. The required amount of water for
transpiration (water demand) needs to be extracted by roots
from the soil profile to maximize biomass accumulation. If
water available from the soil profile is less than the water
required by the plant during canopy gas exchange for maximal
biomass accumulation, then water supply reduces daily biomass
accumulation. The amount of water utilized by the plant during

gas exchange required for biomass accumulation is calculated
from plant water demand when soil water supply was sufficient
to meet demand, or from available water supply when supply was
less than plant water demand.

To extend this model, VPD-limited transpiration was
introduced into the calculation of potential change in biomass
per day by impacting plant water demand as a function of VPD.
Daily weather input and biomass accumulation potential were
interpolated at hourly timesteps, and for each daytime hour,
the daily potential for biomass accumulation restricted by water
was calculated as a function of hourly VPD. This effectively
introduced the ability for a plant to slow its transpiration
rate under conditions of high VPD (e.g., mid-afternoon), in
which case the plant would demand less water under conditions
of high VPD. Consequently, this slowed the rate of biomass
accumulation under conditions of high VPD and reduced
the amount of water used in high VPD conditions when
transpiration efficiency is low. The calculations are described
below, and their implementation in the APSIM sorghum C++

module is made available (see Code Availability).
VPD-limited transpiration was modeled using the parameters

{vpdBP,m1,m2} which are typically obtained from experiments
quantifying VPD-limited transpiration (Figure 2, Table 2). A
VPD-limited transpiration trait can be characterized by a VPD
breakpoint (vpdBP), the slope of the linear relationship between
transpiration rate and VPD for VPDs that are less than the
VPD breakpoint (m1), and the slope of the linear relationship
between transpiration rate and VPD for VPDs that are greater
than the VPD breakpoint (m2); these three parameters can be
defined in the .xml sorghum file provided by the user. Given
these parameters, a daily biomass accumulation

∑sunset
t=sunrise B(t) is

calculated on an hourly (t) basis over the course of a day (sunrise
to sunset). In order to evaluate VPD-limited transpiration on an
hourly basis, VPD and biomass data calculated from radiation
energy supply was interpolated hourly with respect to climate
data by implementing the piecewise function described by Eccel
(2010) from sunrise to sunset of sinusoid I and II equations. With
this calculation, for each hour, t, there is an hourly transpiration
rate, Tr (t), based on potential biomass accumulation from
radiation energy, Br(t), leaf area index, lai, and an hourly vapor
pressure deficit, vpd(t), such that the following can be evaluated
(Table 2 describes variables):

Transpiration rate dependent on radiation energy available,

Tr (t) = Br (t)÷
TEc

vpd(t)
÷lai.

Transpiration rate dependent on VPD,

Tv(t) =
((

mT(vpd(t))×vpd (t)
)

+
(

T
(

vpdBP
)

−
(

mT(vpd(t))×vpdBP
)))

,

where mT(vpd(t)) =

{

m1 vpd(t)<vpdBP
m2 vpd(t) ≥ vpdBP

, and Tv (t) ≥ 0 ∀t,

and T
(

vpdBP
)

= m1 × vpdBP − (− (1/4) ×m1) so that at VPD
less than or equal to (1/4) there is no transpiration (Gholipoor
et al., 2010).
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TABLE 2 | Descriptions of variables in the VPD-limited transpiration model modified within the APSIM sorghum module.

Variable Description Time-scale Origin

Br (t) Potential biomass from radiation energy interpolated from daily potential biomass

calculation from radiation energy

Hour Biomass class (APSIM)

lai Leaf area index Day Leaf class (APSIM)

Wsoil Soil water available from water and root class Day Water class (APSIM)

TEc Genotype-specific, stage-dependent transpiration efficiency coefficient Developmental stage Parameterized (Hammer et al., 1997)

m1 The slope of transpiration rate when vpd (t) is less than vpdBP. Fixed Parameterized

m2 The slope of transpiration rate when vpd (t) is greater than or equal to vpdBP. Fixed Parameterized

vpdBP Vapor pressure deficit (VPD) at which transpiration rate transitions into another linear

function.

Fixed Parameterized

vpd(t) Vapor pressure deficit (VPD) at hour t is interpolated from minimum and maximum

daily temperature.

Hour VPD-limited transpiration model

Tr (t) Transpiration rate dependent of radiation energy available Hour VPD-limited transpiration model

Tv (t) Transpiration rate dependent on vapor pressure deficit (VPD) Hour VPD-limited transpiration model

T (t) Transpiration rate dependent on radiation energy available, VPD, and soil water

available.

Hour VPD-limited transpiration model

Wdemand (t) Cumulative soil water demand from plant from sunrise, tsunrise, to evaluated t.

W (tsunset) is the daily soil water demand that is passed back to the water class in

APSIM’s daily process.

Hour VPD-limited transpiration model

B(t) Cumulative biomass accumulated by plant from sunrise, tsunrise, to evaluated t.

B (tsunset) is the daily biomass that is passed back to the biomass class in APSIM’s

daily process.

Hour VPD-limited transpiration model

The time-scale column describes the time-scale (e.g., development stage, day, or hour) on which the variable changes or is evaluated. The origin column describes from where the

variable is initialized or calculated (e.g., from a sub-class of the APSIM sorghum module, from the implementation of the VPD-limited transpiration model, or parameterized from

experimental data).

Transpiration rate dependent on VPD, radiation energy
available, and extractable soil water,

T (t) = min (Tv (t) , Tr (t) ,Wsoil).

Then, for every day time hour, daily soil water used is calculated
as the sum of the hourly products of transpiration rate by leaf
area, T (t) × lai,

Wdemand(t) = lai ×
∑t

i= tsunrise
T(i) (1)

And, daily biomass is calculated as the sum of the hourly product
of transpiration rate, T (t), leaf area, lai, and transpiration
efficiency, TEc

vpd(t)
.

B(t) = lai × TEc ×
∑t

i= tsunrise

T(i)

vpd(i)
(2)

Data and Code Accessibility
The files used to simulate energy sorghum crop growth and
the code to modify growth based on VPD-limited transpiration
can be found on GitHub (www.github.com/MulletLab/sorghum-
energy-crop-model/).

RESULTS

Modeling Bioenergy Sorghum in APSIM
To extend the applicability of APSIM to bioenergy sorghum,
parameters of a sorghum genotype distributed with APSIM were

modified to simulate bioenergy sorghum characteristics, namely
an extended period of vegetative growth, high leaf area index
(LAI), leaf number, radiation use efficiency, height, and stem
density (Table 1). The sorghum model parameters in APSIM
were adjusted based on traits measured as part of previous field
studies conducted in 2008 and 2009 that characterized the growth
and development of the energy sorghum hybrid, TX08001 near
College Station, TX (Olson et al., 2012). In the prior field studies,
data was collected on the energy sorghum hybrid TX08001
grown using three irrigation regimes: a rainfed environment
with no irrigation, a limited irrigation scheme where plants
were watered as needed until July 7th (applied in 2008 and
2009) and an unlimited irrigation scheme where plants were
watered throughout the season (applied in 2009). Above ground
biomass was measured in both years, and in 2008, data on stem
height, leaf number, and leaf area index were collected. After
parameterization based on 2008 trait data, APSIM simulations
were compared to other years and irrigation schemes.

Growth simulations of energy sorghum for the unlimited,
limited, and no irrigation conditions were qualitatively consistent
with field data (Figure 1). A photograph of typical field plot of
TX08001 at 108 DAS grown with limited irrigation is shown in
Figure 1M. The front of the plot has been removed revealing
the onset of leaf senescence at lower levels of the canopy that
is associated with nitrogen recycling to support production
of new leaves at the top of the canopy (Olson et al., 2012,
2013). The model largely tracked LAI, height, and number
of leaves produced during the 2008 limited irrigation season
(Figures 1C–E). The energy sorghum model also qualitatively
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FIGURE 1 | Growth simulations and field data of energy sorghum in unlimited, limited, and no irrigation regimes. Predicted biomass accumulation given

2009 and 2008 environmental conditions under unlimited (H), limited (A, J), and no (F) irrigation regimes fall within the margin of measurement error. Predicted leaf

number (C), plant height (D), and leaf area index (LAI) (E) agree with experimental observations. Simulated water profiles from the three irrigation conditions are

illustrated (B,G,I,K). The respective soil water layers 1–6 are illustrated where the layers are 0–150, 150–300, 300–600, 600–900, 900–1200, and 1200–1500 mm

depth, respectively. Plotting descriptors are provided in panel (L), and experimental data are plotted showing means and error bars representing one standard

deviation where available, and the minimum and maximum range of observations in F (Olson et al., 2012). (N) Average simulated biomass accumulation for the

2000–2014 cropping seasons for different irrigation regimes. The means of unlimited, limited, and no irrigation are plotted with continuous, dashed, and dotted lines,

respectively. Each irrigation regime has 68, 98, and 100 percent confidence intervals depicted with decreasing shades of gray. The mean and confidence intervals

were estimated with 50,000 bootstraps. (M) An image of energy sorghum hybrid, TX08001, in 2016 College Station, TX, cropping season 108 days after sowing.

reproduced the biomass accumulation trajectories observed in
the limited and rainfed plots of 2008 and 2009. In 2008
and 2009, limited irrigation plots produced approximately
4 kg m−2 (∼40 Mg hectare−1) of dry shoot biomass and
unlimited irrigation plots in 2009 produced ∼5 kg m−2 (∼50
Mg hectare−1) of dry shoot biomass. Model predictions of
biomass accumulation in 2009 with unlimited irrigation tracked
field data for most of the season but predicted somewhat
lower biomass accumulation late in the growing season, a
trend also observed when modeling biomass accumulation in
2008 under limited irrigation. In the targeted management

regimes of energy sorghum, under strictly rainfed conditions, the
bioenergy sorghum crop model predicted biomass accumulation
that was within the range observed in 2008 mechanical harvests
of larger plots (Olson et al., 2012). These results indicate
that APSIM is capable of predicting growth and biomass
accumulation trajectories observed in field experiments within
the margin of uncertainty of available data on field grown
bioenergy sorghum across multiple years and water supply
conditions.

The parameterized APSIM energy sorghum model was used
to simulate how an energy sorghum crop would perform in the
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College Station, Texas, environment under different irrigation
regimes and rainfall patterns over the annual growing seasons
from 2000 to 2014 (Figure 1N). Using rainfall data from 2000 to
2014 in College Station, three water input regimes were imposed:
unlimited, limited, and no irrigation (rainfed). As expected, the
crop’s ability to accumulate biomass in the three treatments
diverges between 60 and 100 DAS when water becomes limiting,
that is, when water in the initially saturated soil profile is depleted
(Figures 1 B,G,I,K). Modeling showed that energy sorghum’s
long duration of vegetative growth allowed water capture from
100 DAS to 200 DAS and improved shoot biomass yield by
∼30% in the water-limited production region relative to a crop
harvested at 100 DAS.

Fluctuations in rainfall and VPD during the 2000–2014
growing seasons in College Station, Texas are shown in Figure 2.
The amount and timing of rainfall was highly variable but
generally decreased from planting to ∼120 DAS (mid-summer)
and then increased again during the latter portion of the growing
season (Figure 2A). Profiles of rainfall patterns in 2008, 2009, and
2010 show that rainfall between 75 and 150 DAS is intermittent
and insufficient to recharge the soil profile (Figures 2E–G).
In the location modeled, average daily VPD increased from
planting until ∼120 DAS then declined until harvest at ∼200
DAS (Figure 2B). VPD also fluctuates significantly on a daily
basis (Supplemental Figure 1). Increases in VPD generally result
in higher rates of transpiration and water uptake from the soil

FIGURE 2 | Seasonal fluctuations of rainfall and VPD and their relationship to sorghum transpiration rate and efficiency. (A,B) Distribution of daily rainfall

(mm) and daily vapor pressure deficit, VPD, (kPa) over the 2000–2014 cropping seasons in College Station, TX, calculated as a mean of a 30-day sliding window. The

mean is plotted as a solid line, the lighter transparent fill is the entire data range (minimums and maximums) and the darker transparent fill is one standard deviation

from the mean. (E–G) Distribution of daily rainfall (mm) for the 2008 (E), 2009 (F), and 2010 (G) cropping seasons in College Station, TX, calculated as a mean of a

14-day sliding window. (C) Transpiration efficiency, biomass produced per unit of water transpired (g m−2 mm−2 ), and (D) a hypothetical transpiration rate (solid black

line), the amount of water uptake per unit time (mm m−2 s−2), and their responses to VPD (kPa) are plotted along the x-axes sharing the y-axis of panel (B).

VPD-limited transpiration trait parameters {vpdBP,m1,m2} is denoted in blue.
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profile by the root system, and lower efficiency of conversion of
atmospheric carbon to plant biomass per unit of water transpired
(TE) (Figures 2C,D). In simulations where water is not a limiting
factor (unlimited irrigation) and transpiration efficiency is not
influencing biomass yield, energy sorghum is predicted to yield
5.4± 0.3 (mean± SD) kg m−2 of biomass while using 1132± 82
(mean± SD) mmm−2 of water during a 200 day growing season
in College Station cropping environments. In contrast, in the
absence of irrigation, energy sorghum was predicted to produce
on average 2.7 ± 0.8 (mean ± SD) kg m−2 of biomass and used
485 ± 120 (mean ± SD) mm m−2 of water (Figure 1N). The
results of modeling indicate that water supply significantly limits
sorghum biomass accumulation, especially after 60–75 DAS, in
this location consistent with field observations (Olson et al., 2012;
Gill et al., 2014; Mullet et al., 2014).

Modeling VPD-Limited Transpiration Traits
Transpiration efficiency (TE) decreases with increasing VPD
(Hammer et al., 1997). Therefore, the APSIM sorghum model
was used to examine the potential utility of traits that limit
transpiration at higher VPD for improving the biomass yield,
water use efficiency, and resilience of bioenergy sorghum.
Previous experimental work demonstrated that VPD-limited
transpiration traits are dependent on VPD and sensitive to
1 kPA changes in VPD (Gholipoor et al., 2010; Choudhary
et al., 2013; Choudhary and Sinclair, 2014b; Riar et al., 2015).

Energy sorghum crops are exposed to a range of VPDs
greater than 1 kPA over the course of a day due to daily
variation in temperature (Supplemental Figure 1). Therefore,
the APSIM model was modified so that the calculated daily
water uptake could be altered by a VPD-limited transpiration
trait calculated in hourly timesteps, an approach similar to that
implemented by Sinclair et al. (2005), Kholová et al. (2014),
and Messina et al. (2015). VPD-limited transpiration traits were
modeled using two different linear response slopes, m1 and
m2 where the transition between m1 and m2 is determined
by a VPD threshold, vpdBP (Figure 2D, denoted in blue). The
potential utility of genotypes with variation in m1 or m2,
or combinations of VPD-breakpoints and values of m2 was
examined. Modeling enabled the impact of various combinations
of VPD-traits on the time course of biomass accumulation,
LAI development and soil water extraction dynamics to be
investigated.

Modeling Genotypes That Vary in m1 That
Lack VPD-Breakpoints
Modeling was used initially to investigate genotypes that vary
in m1 slopes that lack a vpdBP (Figure 3). Specifically, Tx436
(m1 = 6.62; Choudhary et al., 2013), BQL41 (m1 = 20.26;
Choudhary et al., 2013), BTx623 (m1 = 56.3; Gholipoor
et al., 2010) and a hypothetical extreme (m1 = 200.0) were
simulated using the VPD-limited transpirationmodification with

FIGURE 3 | Energy sorghum biomass accumulation from 2000 to 2014 cropping seasons simulated in College Station, TX, with water supply regimes

of unlimited irrigation and only rainfed. (A–H) Growth simulation of plants with no vpdBP (m1 = m2) are plotted with continuous colored lines that correspond to

their m1 ∈ {6.62, 20.26, 56.3, 200}. (C,F) Cumulative biomass, (D,G) leaf area index (LAI), and (E,H) extractable soil water are plotted as the means and 98%

confidence intervals estimated with 50,000 bootstraps for the respective rainfed and unlimited irrigation conditions.
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no vpdBP (m1 = m2) (Figure 3A). In fully irrigated conditions,
genotypes with higher values of m1 accumulated more biomass
(Figure 3F). A modeled genotype similar to BTx623 (m1 =

56.3) accumulated almost twice as much biomass (an additional
∼26 Mg/ha) compared to Tx436 (m1 = 6.62) under these
conditions (Figure 3F). Values ofm1 > 56.3 did not increase end-
point biomass accumulation. Interestingly, the genotype with an
m1 = 20.26 (BQL41) accumulated less biomass during the first
75 days of development in fully irrigated conditions compared
to BTx623 (m1 = 56.3), however biomass accumulation by
the two genotypes was similar between 75 and 200 DAS. This
occurred because later in the season when the genotypes reached
canopy closure and VPD was higher, both genotypes extracted
the maximum available soil water each day.

In rainfed cropping conditions a genotype with an m1 of 56.3
was predicted to yield approximately 2.5 kg m−2 approximately
50% less biomass than in non-water limiting conditions
(Figure 3C). In rainfed environments, increased values of m1 on
average also resulted in higher biomass accumulation, however,
the benefit of a higher m1 in water limited environments
was much smaller than in fully irrigated conditions (∼1–3
Mg/ha) (Figure 3C). While biomass accumulation was positively
related to larger m1 values, it came at the expense of leaf area
development and maintenance under water limiting conditions
(Figure 3D). During the first 60–75 days of crop development,
genotypes with larger m1 (BTx623) accumulated biomass more
rapidly in rainfed and fully irrigated environments compared
to genotypes with lower m1 values. The rate of LAI increase
was similar in all genotypes until ∼60 DAS because leaf area
development in all genotypes was limited by thermal time in
the model. Genotypes with larger m1 values use water more
rapidly therefore by 60 DAS the genotype with an m1 = 56.3
(BTx623) had depleted ∼50% of available soil water in rainfed
environments, more than the other genotypes (Figure 3E). For
a genotype similar to BTx623, lack of sufficient water supply
in rainfed environments constrained biomass accumulation
and leaf area development for the remainder of the season
(Figures 3C, D). Compared to a genotype with a genotype with
an m1 = 56.3, genotypes with lower m1 values used water
more slowly and accumulated less biomass in rainfed and
fully irrigated conditions (Figures 3C,F). In rainfed conditions,
slower use of water provided additional thermal time for canopy
development before soil water was depleted resulting in higher
LAI (Figure 3D). In rainfed environments, modeling predicted
that LAI would decrease once soil water resources were expended
beginning about 100 DAS (Figures 3D,E). LAI declined sooner
in genotypes with higher m1 because they used up water
resources more rapidly. Despite lower leaf area after 150 days
in rainfed environments, genotypes with higher m1 (56.3, 20.26)
accumulated similar amounts of biomass between 150 and 200
DAS on average over the 14 years analyzed as the genotype with
a lowerm1 (Tx436,m1 = 6.62)

Modeling Energy Sorghum Genotypes with
VPD-Breakpoints and Variation in m2
The VPD-limited transpiration trait model was next used to
model energy sorghum genotypes that regulate transpiration
using a vpdBP where the slope of the transpiration rate response

TABLE 3 | VPD-limited transpiration parameters { m1, m2, vpdBP } of

genotypes used in this study.

Genotype m1 m2 vpdBP Literature

BQL41 20.26 7.27 1.17 Choudhary et al., 2013

BTx623 56.3 10.4 2.05 Gholipoor et al., 2010

SC803 39.8 −6.1 2.29 Gholipoor et al., 2010

SC35 8.96 −12.49 2.91 Choudhary et al., 2013

Tx436 6.62 − − Choudhary et al., 2013

These values were experimentally obtained from their respective citations.

to VPD changes from m1 to m2. BQL41 is characterized by
a low vpdBP of 1.17 kPA and the genotype’s transpiration
response to VPD is postulated to improve performance of grain
sorghum in water limited environments (Choudhary et al., 2013).
To examine the physiological effect of BQL41’s low vpdBP on
biomass yield and water use efficiency of bioenergy sorghum in
water-limited environments, biomass accumulation of a VPD-
limited transpiration trait that reflects the m1 and vpdBP of
BQL41 was combined with variation inm2 values. Fivem2 values
were evaluated: (a) m2 = 7.27, the transpiration rate that was
experimentally obtained from the BQL41 genotype, (b) m2 =

0.0, a maximum transpiration rate which reflects how VPD-
limited transpiration was modeled previously (Sinclair et al.,
2005; Kholová et al., 2014; Messina et al., 2015), (c) m2 = 20.26,
a response that reflects a lack of a vpdBP (i.e., m1 = m2 =

20.26), (d) m2 = −6.1, and (e) m2 = −12.49 transpiration
responses to VPD that were experimentally obtained from
SC803 and SC35 genotypes by Gholipoor et al. (2010) and
Choudhary et al. (2013), respectively (Table 3). In rainfed College
Station environments the total biomass accumulated by each of
the genotypes with VPD-breakpoints investigated ranked from
largest to smallest was: 2.35 kg m−2 (SC803;m2 = −6.1), 2.31 kg
m−2 (no vpdBP; m2 = 20.26), 2.29 kg m−2 (maximum limited
transpiration; m2 = 0), 2.28 kg m−2 (BQL41; m2 = 7.27), and
2.25 kg m−2 (SC35; m2 = −12.49) (Supplemental Table 1). In
these simulations, SC803 (m2 = −6.1) marginally outperformed
the genotype lacking a vpdBP over a 14 year average by 1.6 %
(Supplemental Table 1).

The relatively small improvement in biomass yield in
genotypes with VPD-breakpoints was further analyzed to identify
trade-offs that occur over the course of the growing season in
the rainfed environments of College Station, TX (Supplemental
Figure 2). The genotypes with a vpdBP have slower growth and
biomass accumulation at the beginning of the season (through
100 DAS) and accumulate more biomass during the latter part
of the season (Supplemental Figure 3D). This shift in the timing
of water use from early in the season to the summer months
when VPD is higher may contribute to lower biomass yield even
though the trait partially mitigates the influence of higher VPD.
Genotypes with the lowerm2 reach a higher LAI between 100 and
150 DAS than the genotypes with the higher m2 (Supplemental
Figure 2). This trend in genotypes with higher m2 is correlated
with a reduced rate of depletion of extractable soil water that
allows for a longer period of canopy production (Supplemental
Figure 2F). Most genotypes show a significant loss of LAI once
soil water supply is depleted beginning between 100 and 150 DAS
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depending on genotype (Supplemental Figures 2E,F). Genotypes
with a low m2 such as SC35 maintain higher LAI for the
remainder of the growing season (Supplemental Figure 2E).

Since the VPD-limited transpiration trait has a negative
impact on biomass accumulation during the early portion of the
season, but a potentially beneficial impact during the summer
months, a simulation was run where the trait was induced after 75
DAS in a terminal drought environment to better understand the
dynamics involved (Supplemental Figure 3). In this simulation,
the VPD-limited transpiration trait reduced the rate of water
utilization, delayed the onset of leaf senescence, and increased
water use efficiency and biomass accumulation. A genotype with
no breakpoint accumulated 0.85 kg m−2, whereas genotypes with
VPD-limited transpiration accumulated 1.2 kg m−2 between
75 DAS until all soil water was extracted. Simulations showed
that induction of the VPD-limited transpiration trait under
well watered conditions reduced biomass yield (Supplemental
Figure 3F).

Integrated Modeling of VPD-Traits
The differences in biomass accumulation relative to timing of
water limitation indicates that the benefits of the VPD-limited
transpiration trait are greater when VPD is high and water supply
is limiting during the cropping season. To examine this dynamic
further, years in the College Station cropping environment
were identified where the average rainfall per day fell below
1.2 mm between DAS 107–139 given a 75-day sliding window
average (Figures 4A,B). On average, years with lower rainfall
from 107 to 139 DAS also had lower total rainfall and higher
average VPD (Supplemental Table 1). Applying this criterion
to rainfed cropping environments of College Station, TX, for
2000—2014, and then evaluating the previous combination of
m1, m2, and vpdBP indicated that the VPD-limited transpiration
trait is beneficial in the more water-limited environments, since
VPD-limited transpiration plants with negative m2 parameters
always yielded greater biomass (Figures 4A–C, Supplemental
Table 1). For example, the sorghum genotype with maximum
limited-transpiration (m2 = 0) on average yielded more
biomass than a sorghum genotype lacking a vpdBP (m2 =

m1 = 20.26) in the water-limited low yield environments
(Supplemental Figure 4). Moreover, differences in predicted
canopy maintenance was correlated with, and may help explain
why VPD-limited transpiration plants outperform their non-
limited transpiration counterparts (Figures 4D,E). In summary,
more restrictive transpiration responses associated with more
negativem2 values perform progressively better in water-limited,
low-yielding environments that lead to loss of canopy, but
progressively worse in higher rainfall conditions (Figures 4A,B).

To examine the influence of all three parameters describing
VPD-limited transpiration, vpdBP andm2 were varied within the
genetic range observed to date for sorghum, and their impact
on biomass yields given different m1 parameters were evaluated
(m1 ∈ {6.62, 20.26, 56.3}). A range of vpdBP values (vpdBP ∈

[1.17, 2.91]) representing the range bounded by BQL41 and
SC35, respectively, and m2 values (m2 ∈ [−12.49, 56.3]), the
range bounded by SC35 and BTX623, respectively, were explored
(Gholipoor et al., 2010; Choudhary et al., 2013). Combinations

of these parameters were simulated in rainfed College Station,
TX, environments of 2000—2014 cropping seasons (Figure 5).
The total biomass accumulated at 200 DAS was used as a
measurement of seasonal crop productivity. These productivity
landscapes illustrate the influence of VPD-limited transpiration
traits, and indicate that, on average, in the target environment
of College Station, TX, m1 is the greatest driver of average
productivity of the sorghum crop. All simulated genotypes with
an m1 = 56.3 produced more biomass than those with an
m1 = 20.26 or 6.62, regardless of m2 and vpdBP. Contour
plots of the three m1 values show that the extent of phenotypic
variation introduced by the other two parameters m2 and vpdBP
is influenced by the magnitude of m1, where the variation in
cumulative biomass increases asm1 decreases.

The results of modeling show that genotypes with a high m1

(∼56) accumulate more biomass when soil water resources are
not limiting during the early portion of the season, and that
the VPD-breakpoint trait is beneficial when water is limiting
during the middle of the growing season when VPD is higher.
There may exist a theoretical m2 for m1 = 56.3 that would
be predicted to increase productivity beyond the 0.2% in the
observed parameter space. For an m1 = 56.3, the exploration
of a theoretical m2 outside what has been previously observed
for VPD-limited-transpiration predicted that an m2 = − 290
with a vpdBP = 2.05 would increase biomass by 6.5%, yielding
an average of 2.73 kg m−2 in rainfed College Station, TX (2000-
2014) (Figure 6). This extreme m2 = − 290 would be reflective
of a genotype that essentially stops transpiration at VPDs higher
than its vpdBP. Furthermore, observation of the fitness landscape
suggests that it is not essential to find the exact combination of
vpdBP and m2, but that there is a gradual ridge constructed by
combinations of the two VPD-limited transpiration parameters
that would improve biomass accumulation by ≥ 5% (Figure 6).
This ridge shows the relationship between the vpdBP and m2

for increasing biomass by ≥ 5% in rainfed College Station, TX
(2000–2014) in the VPD-limited transpiration diagram, where
as vpdBP increased, the range of m2 parameters that could be
combined for beneficial productivity increases. This relationship
with vpdBP is likely related to the effect of VPD on transpiration
efficiency, TE, which is inversely proportional to VPD through

the TEc coefficient: TE =
TEc
vpd

.

DISCUSSION

Crop modeling and structure-function trait analyses can be
used to help identify constraints that limit plant productivity,
assess the benefits of traits, and to increase productivity by
optimizing crop deployment across variable environments. Since
energy sorghum is a relatively new C4 grass biomass crop
with an unusually long vegetative growth phase, crop modeling
could help identify traits useful to select in breeding programs.
The APSIM bioenergy sorghum model developed in this study
was able to replicate the developmental time course of leaf
area development, leaf number, plant height and biomass
accumulation observed in field trials in College Station, Texas.
Field data from other locations/years and from newer energy
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FIGURE 4 | Performance of genotypes with VPD-limited transpiration traits determined in years with low and higher rainfall from 107 to 139 DAS and

determined by canopy maintenance. (C) Boxplots show the biomass difference across 14 years between genotypes with a VPD-limited transpiration trait and the

genotype that lacks a vpdBP (m2 = 20.26). The notches represent the 95% confidence interval of the median. The red square represents the means. These statistics

are plotted against end biomass accumulated (DAS 200) by the genotype that lacks a vpdBP, where the vertical sets of plots are separated by years categorized on

the (A,B) water supply condition and (D,E) canopy divergence condition. (A,B) For the drought condition, rainfall per day is calculated from sliding windows of 75

days. For sliding windows that center from DAS 107 to 139, if the average rainfall per day ever falls below 1.2 mm, then the year is considered a drought year. The

mean, standard deviation, and entire range of rainfall in sliding windows for the years considered low and high are plotted, respectively. The center of sliding windows

evaluated for the water supply condition is highlighted orange. (D,E) For the canopy divergence condition, where the vertical sets of plots are separated by the

condition that occurs in the latter half of the cropping season. For each year, for each pairwise comparison between a genotype with and without a vpdBP, and for

each day in the latter half of the cropping season (≥ 100 DAS), if the canopy of genotype lacking a vpdBP senesced (< 0.5 LAI) and the genotype with a vpdBP
maintained a larger canopy, then VPD-limited transpiration genotype (with a vpdBP ) was predicted to out perform the genotype lacking a vpdBP. LAI is plotted as

averages of the conditions met and the 12.5–87.5 inter-percentile range.
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FIGURE 5 | Landscapes of energy sorghum productivity for varying m1, m2 and vpdBP within the observed phenotypic parameters. End biomass at

200 DAS predicted from rainfed College Station, TX (2000 – 2014) was used as a measure of productivity. (A) m1 was varied to reflect the extremes (6.62,

Tx426, and 56.3, BTx623) and a moderate transpiration rate (20.26, BQL41). (B) m2 ∈ [−12.49, 56.3] and vpdBP ∈ [1.17, 2.91] are evaluated for each m1 and the

predicted average end biomass was interpolated to construct the topological surfaces. (D–E) The topology of each m1 surface is also plotted two-dimensionally, with

contour lines to depict variation of end biomass at 200 DAS. The red star in panel (D) represents the VPD-limited transpiration parameters of BQL41.

sorghum hybrids would be useful to further validate and enhance
the accuracy of modeling predictions. In addition, collection of
detailed information on soil profiles, root system development,
architecture, rates of soil water extraction and information on

water deficit induced changes in ABA levels would further
improve the energy sorghum model and to enable modeling of
root traits in conjunction with canopy architecture and VPD-
transpiration traits.

Frontiers in Plant Science | www.frontiersin.org 12 March 2017 | Volume 8 | Article 335

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Truong et al. Modeling VPD-Limited Transpiration in Bioenergy Sorghum

FIGURE 6 | Theoretical energy sorghum productivity landscape. A combination of m1 = 56.3 representing BTx623, a range of vpdBP values

(vpdBP ∈ [1.17, 2.91]) representing BQL41 and SC35, and a range of m2 values (m2 ∈ [−1000,−10]) beyond the observed genotypic parameters were evaluated

for end biomass in rainfed College Station, TX, cropping environments 2000 – 2014, and their averages are interpolated to create the topology of end productivity.

Model evaluation was done using the College Station, TX,
cropping environment, a location with a long growing season
(∼200 days) and hot and dry summers where bioenergy sorghum
hybrids are currently under selection in a breeding program.
In fully irrigated conditions, modeling and field data show
that energy sorghum has the genetic potential to accumulate
∼50 Mg/hectare per year (Olson et al., 2012). However, due to
sorghum’s water use efficiency and drought resilience during the
vegetative phase, it is likely that energy sorghum will often be
grown in water limited environments less suitable for other crops.
Under rainfed conditions where the median rainfall over the
growing season used for the simulations was 52.3 cm, bioenergy
sorghum is projected to yield approximately 25Mg hectare−1 per
year. This model prediction is consistent with the biomass yield
of TX08001 (∼15–26 Mg hectare−1) grown without irrigation
in large plots that were machine harvested in 2008 and 2009
(Olson et al., 2012). Modeling of energy sorghum production
in this location based on 2000–2014 environments indicated
that energy sorghum would capture additional water resources

and increase biomass yield by ∼30% by extending the growing
season from ∼100–120 days typical of grain crops to 200 days.
A crop designed to capture the additional water resources during
a long growing season in this environment would benefit from
high water use efficiency and resilience to water deficit. Sorghum
exhibits many useful traits for water limited environments
including high cuticular wax, deep rooting capacity, induction of
leaf rolling and osmotic adjustment in response to water deficit,
stay-green, and VPD-limited transpiration traits (Borrell et al.,
2006). In this study the APSIM bioenergy sorghum model was
used to examine the utility of VPD-limited transpiration traits
by evaluating the impact of VPD modulated transpiration in
hourly intervals during the day. The model extension was used
to identify the benefits and trade-offs associated VPD-limited
transpiration traits during growing seasons using College Station,
TX environments as the context for this case study (mean ± SD:
56± 18 cm of rainfall per cropping season for 2000–2014).

Prior studies demonstrated that limited transpiration can
result in improved grain yield in drought and heat stressed
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environments by shifting water utilization from the vegetative
and booting phases to the anthesis and post anthesis phases
where grain yield is more sensitive to water deficit (Sinclair et al.,
2005; Kholová et al., 2014; Messina et al., 2015). This change in
the timing of water use improves harvest index and reduces the
risk of large reductions in grain associated with water limitation
during the reproductive phase (Messina et al., 2015). The
improvement is not attained if water is not sufficiently limited,
an emergent property associated with limited transpiration traits
in grain sorghum (Kholová et al., 2014; Hammer et al., 2016).
We hypothesized that VPD-limited transpiration traits could also
be beneficial for energy sorghum but for different reasons since
the crop is harvested for biomass and grows most of the season
in the vegetative phase. The analysis showed that restriction of
transpiration by reducing m1 or by VPD-limited transpiration
involving low VPD-breakpoints, reduced biomass accumulation
early in the season and that this had a negative impact on
overall biomass yield. There are several factors that could explain
this prediction. First, at the start of the growing season the
soil profile is saturated and excess rainfall is not captured due
to run off until a portion of the soil water has been used for
biomass production or is lost through evaporation. In this part
of the season, modeling showed that genotypes with high m1

values like BTx623 that accumulate biomass and use water at
a high rate outperform genotypes with lower m1 values. If a
higher rate of biomass accumulation also results in more rapid
leaf area development, then this would increase the efficiency of
radiation interception during the phase of canopy development
(0–60 DAS). However, the results showed that a higher biomass
accumulation rate did not influence LAI development, a topic
worth further investigation. Second, shifting water use for
biomass accumulation from the early portion of the season (0–
75 DAS) when average VPD is lower to later in the season
(75–150 DAS) when VPD is higher and TE is lower reduces
water use efficiency. The negative impact of this shift in the
timing of water use can be mitigated in part by VPD-breakpoint
limited transpiration traits. However, genotypes with current
vpdBP andm2 values still use water at higher VPD in the summer,
although at lower rates, compared to water used at lower VPD
during the first portion of the planting season. This interpretation
is consistent with the predicted benefits of a theoretical m2

that completely shuts off transpiration above the vpdBP. In
that hypothetical genotype, transpiration would be restricted to
VPD below the breakpoint during the entire growing season
mitigating the impact of shifting the seasonal timing of water
use. Third, in high rainfall years, VPD-limited transpiration
could reduce the use of all available water resources for biomass
production, especially when significant rainfall occurs in the
last 60 days of the growing season. These trade-offs may help
explain why in optimization simulations (Figure 5), genotypes
with higher m1 values and higher VPD-breakpoints (i.e., m1 =

56.3, vpdBP = 2.05) were found to accumulate more biomass
in the environments analyzed because these parameters allowed
maximal biomass accumulation early in the growing season.

The value of vpdBP and m2 traits that restrict use of
water during portions of the day with high VPD and low TE
for energy sorghum was evident during the summer months

when VPD is high and water supply is limited. In a simulated
summer terminal drought environment, genotypes with this type
of VPD-limited transpiration trait accumulated more biomass
compared to genotypes lacking the trait consistent with higher
TE (Supplemental Figure 3). The trait also slowed the use of
water and delayed the onset of leaf senescence that begins
when most of the soil water supply has been depleted. The
delay or reduction in the extent of leaf senescence during
summers with low rainfall would improve the crop’s ability to
use rainfall that occurs in the fall for biomass accumulation
without the added cost and delay involved in rebuilding the
canopy. The value of the VPD-limited transpiration trait was
also found to be higher in environments with more elevated
VPD and lower rainfall. Examining the rainfall distribution and
its effect on VPD-limited transpiration trait impacts showed
that in years when water supply was low during the summer
months, genotypes withm2 = −12.49 gained 20%more biomass
than genotypes lacking a vpdBP. However, in years with higher
summer rainfall these genotypes generate 10% less biomass,
illustrating the trade-off associated with this trait (Supplemental
Table 1).

Efforts to identify optimal trait ideotypes for specific crops
and environments has been promoted as a way to speed up
the rate of crop genetic improvement. For example, a maize
root ideotype that is steep, deep and cheap has been identified
and used to guide genotype selection and testing (Lynch, 2013).
Consideration of the benefits and trade-offs of VPD-limited
transpiration in energy sorghum in this study suggest that a
beneficial ideotype would combine; (i) a high m1 and rapid
leaf area development during the early portion of the season
to maximize biomass accumulation under conditions of low
VPD and high water supply and, (ii) induction of a VPD-
limited transpiration trait (m2 < −200) later in the season
when VPD is higher, possibly in response to water deficit.
Prior research showed that traits that limit transpiration can be
environmentally triggered by changes in VPD (Lobet et al., 2014;
Vadez et al., 2014; McAdam and Brodribb, 2015), by altering
the level/activity of root aquaporins (Choudhary and Sinclair,
2014a), and by foliar accumulation of the phytohormone abscisic
acid (ABA) (Assmann et al., 2000; Bauer et al., 2013; McAdam
and Brodribb, 2015; McAdam et al., 2015) that reduces stomatal
aperture and plant transpiration (Tardieu and Davies, 1992;
Parent et al., 2009; Boyer, 2010; Cutler et al., 2010). Stomatal
closure can be further engineered via the ABA pathway, whereby
application of agrochemicals on plants expressing genetically
engineered ABA receptors drastically reduces transpiration on
demand (Park et al., 2015). Genetic engineering approaches like
these may provide a means to design plants with inducible
and more negative m2 that enhance biomass yield in water
limited environments. This type of genotype would be useful for
environments that experience summer water deficit or terminal
drought.

Determining target production environments for energy
sorghum with VPD-limited transpiration will be critical for
capturing the utility of the trait as well as in screening for
energy sorghum hybrids that exhibit VPD-limited transpiration
(Tardieu, 2012). Given the ideotype described above, selection
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for genotypes with high rates of LAI development and biomass
accumulation during the first 75 DAS, combined with selection
for genotypes that show delayed leaf senescence under water
limiting conditions could be employed. Numerous QTL for stay-
green have been identified in sorghum, and a subset of these loci
maymodulate VPD-traits that restrict transpiration at high VPD.
High resolution yield mapping, and landscape models are being
used to optimize crop productivity, yield stability, and return on
investment by considering alternative distributions of available
crops on perennial and annual cropland. For example, analysis of
production regions in the US mid-west identified the potential
utility of Miscanthus, a high biomass perennial C4 grass, for
perennial cropland (Eranki et al., 2013). In a similar way, energy
sorghum, with its high biomass yield, water use efficiency and
resilience to water deficit could be usefully deployed in annual
cropland landscapes, including sub-portions of fields that have
shallow soils that are more often subject to water deficit. The
APSIM energy sorghum cropmodel could be used in conjunction
with landscape design modeling to optimize utilization of this
new high biomass crop.

In conclusion, this study (i) demonstrated that modeling of
energy sorghum in the APSIM framework is able to track field
growth and biomass accumulation in different environments,
(ii) extended the daily APSIM-sorghum model to incorporate
hourly VPD-limited transpiration, (iii) found that VPD-limited
transpiration can improve crop productivity in water-limiting
environments by increasing TE and by maintenance of crop
canopies to enable utilization of sporadic rainfall, and (iv) this
model is made available for further evaluation of bioenergy
sorghum production in other targeted environments and for
other traits such as facultative CAM (Borland et al., 2009) that
could further enhance water use efficiency and drought resilience.
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