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S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-

translational lipid modification in which long chain fatty acid, usually the 16-carbon

palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a

thioester bond. It is involved in an array of important biological processes during growth

and development, reproduction and stress responses in plant. S-acylation is a ubiquitous

mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl

Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in

S-acylation has accelerated in the mammalian system and followed by in plant. However,

it is still a difficult field to study due to the large number of PATs and even larger number

of putative S-acylated substrate proteins they modify in each genome. This is coupled

with drawbacks in the techniques used to study S-acylation, leading to the slower

progress in this field compared to protein phosphorylation, for example. In this review

we will summarize the discoveries made so far based on knowledge learnt from the

characterization of protein S-acyltransferases and the S-acylated proteins, the interaction

mechanisms between PAT and its specific substrate protein(s) in yeast and mammals.

Research in protein S-acylation and PATs in plants will also be covered although this area

is currently less well studied in yeast and mammalian systems.

Keywords: lipid modification, S-acylation, PATs, substrate recognition and specificity, yeast, mammalian, plants

INTRODUCTION

Lipid modification is a common mechanism in organisms, in which a fatty acid attaches to specific
amino acid residues, leading to increased hydrophobicity of proteins which aids their anchoring
to membranes or specific lipid rafts (Levental et al., 2010). The three most commonly known lipid
modifications are N-myristoylation, prenylation and S-acylation (Figure 1). N-myristoylation is an
irreversible, co-translational protein modification in which 14-carbonmyristoyl group is covalently
attached to N-terminal glycine residue via an amide bond (Martin et al., 2011). Prenylation is a
post-translational lipid modification which involves the transfer of either a 15-carbon farnesyl or
a 20-carbon geranyl-geranyl moiety to CaaX C-terminal cysteine of the target protein. S-acylation,
more commonly known as S-palmitoylation, is a post-translational lipid modification in which a
long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to the specific cysteine
residue(s) throughout the protein via a thioester bond (Resh, 2006; Greaves and Chamberlain,
2011).

It is noteworthy that three types of protein palmitoylation are found so far, including S-
palmitoylation, N-palmitoylation and O-palmitoylation. While S-palmitoylation can occur at any
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FIGURE 1 | Formulae of N-myristoylation, S-acylation and prenylation.

For N- myristoylation, a 14-carbon myristoyl group is covalently attached by an

amide bond to the alpha-amino group of an N-terminal glycine (G, in red);

S-acylation is the attachment of a 16-carbon palmitate to cysteine residue (C,

in red) via thioester bond; and Prenylation makes a 15-carbon farnesyl link to

the CaaX cysteine residue in C-termini.

Cys residues along the protein sequence in which the palmitate
is reversibly attached via thioester bond as shown in Figure 1,
N-palmitoylation is a stable lipid modification at the N-terminal
residue (very often Cys) through amide linkage. A small group
of secreted proteins have been identified as N-palmitoylated
proteins, including the epidermal growth factor (EGF) like
ligand “Spitz” and Hedgehog family members in Drosophila and
mammals (Pepinsky et al., 1998; Chamoun et al., 2001; Miura
et al., 2006; Buglino and Resh, 2012). Since N-palmitoylation
can be easily converted by S-palmitoyl migration, it is still
not very clear whether N-palmitoylation is an independent
enzyme-catalyzed reaction or just from S- to N-palmitoyl transfer
(Ji et al., 2016). Less frequently, palmitoyl group can also be
linked to a serine residue through ester bond via the so-called
O-palmitoyltion. The identified O-palmitoylated targets so far
include Wnt/Wg proteins and the peptide hormone preghrelin
(Takada et al., 2006; Yang et al., 2008). Although, palmitate
is thought to be the most common fatty acid found to be
attached to S-palmitoylated proteins recent studies proved that
other acyl groups such as stearate (C18:0) or oleate (C18:1)
are also accepted in S-palmitoylation. Therefore, S-acylation is
a more representative term than palmitoylation (Jones et al.,
1997; Sorek et al., 2007; Hurst and Hemsley, 2015). In contrast
to other lipid modification, such as myristoylation, prenylation,
N-palmitoylation or O-palmitoylation, S-acylation is a unique
posttranslational modification in that it is usually reversible
(Fukata and Fukata, 2010). As such it is important for cellular
protein sorting, vesicle trafficking, activation state control,
protein stability, membranemicrodomain partitioning of protein
and protein complex assembly (Greaves and Chamberlain, 2007;
Baekkeskov and Kanaani, 2009; Charollais and Van Der Goot,
2009; Hemsley, 2009; Hemsley et al., 2013).

Some other lipid modifications, such as Glycosylphosphatidy
linositol (GPI) and glycosylinositolphosphorylceramide (GIPC)

anchors can link the whole glycolipids to the protein instead of
the simple fatty acid or polyisoprene group (Hemsley, 2015). GPI
and GIPC anchors modify proteins at the lumen side instead
of in the cytosol as do the other three lipid modifications
(Ganesan and Levental, 2015). Lipid modifications which are
only found in specific proteins, such as cholesterol addition at the
C-terminal glycine of proteins have also been reported (Buglino
and Resh, 2012). All these lipid modifications are widely present
in mammals and plants (except for N- or O- palmitoylation
which is only found in mammals so far) and all play important
roles during growth and development through the modification
of an array of proteins.

Although all lipid modifications can facilitate the attachment
of proteins to membranes, modification with palmitoyl groups
provide more affinity, about 10 times stronger than myristoyl
groups and 100 times than farnesyl groups (Silvius and L’heureux,
1994; Hemsley, 2009).

S-ACYLATION

S-acylation can occur both on soluble and transmembrane
proteins (Roth et al., 2006; Blaskovic et al., 2013). S-acylation
of soluble proteins allows their association with membranes,
trafficking, regulation and signaling (Roth et al., 2006; Blaskovic
et al., 2013). For example, a constitutive de/re-acylation of H- and
N- small Rat sarcoma (Ras) drives their subcellular localization
from plasma membrane (PM) to Golgi which initiates RAS
activation (Rocks et al., 2005). Although, the direct mechanism
of S-acylation on transmembrane proteins is not very clear it is
thought that it plays multiple roles in altering signaling capacity
(Merrick et al., 2011), reducing activity (Huang et al., 2010),
trafficking modification (Abrami et al., 2008; Flannery et al.,
2010) and changing stability of these proteins (Abrami et al.,
2006; Maeda et al., 2010; Blaskovic et al., 2013). For example,
S-acylation of transmembrane proteins, such as death receptor
4 (Oh et al., 2012), β-secretase BACE1 (Motoki et al., 2012),
cannabinoid receptor (Oddi et al., 2012) and influenza virus
M2 protein (Thaa et al., 2011), can promote their association
with membrane lipid rafts. However, for some peripheral
membrane proteins such as transferrin receptor and caveolin,
their palmitoylation sites are localized to non-raft domains,
therefore palmitoylation is not necessary for their raft localization
(Alvarez et al., 1990; Dietzen et al., 1995; Charollais and Van
Der Goot, 2009). In the case of the tumor endothelial marker 8
(TEM8) palmitoylation was actually found to negatively regulate
its raft association (Abrami et al., 2006).

S-acylation in Yeast
A proteomic method using the acyl-biotinyl exchange (ABE)
chemistry combining with the traditional [3H] palmitate in vivo
labeling protocol identified 48 S-acylated proteins that span a
wide range of cellular functions in Saccharomyces cerevisiae (Roth
et al., 2006). These include a large number of SNAREs (soluble
N-ethylmaleimide-sensitive fusion protein-attachment protein
receptor) that are involved in vesicle fusion. Redundant SNAREs,
such as plasma membrane (PM) localized synaptobrevin
homologs Snc1 and Snc2, were first identified to be S-acylated

Frontiers in Plant Science | www.frontiersin.org 2 March 2017 | Volume 8 | Article 346

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Li and Qi Importance of Protein S-acylation in Plants

proteins in 1995 (Couve et al., 1995), and subsequently confirmed
independently (Valdez-Taubas and Pelham, 2005; Roth et al.,
2006). Ykt6 is another commonly known S-acylated SNARE.
It requires both C-terminal prenylation and palmitoylation to
target to the membrane, which is different from all other single
transmembrane domain (TMD) containing SNAREs (Fukasawa
et al., 2004). Tlg1 lacking S-acylation undergoes ubiquitination,
implying S-acylation can protect proteins from degradation
(Valdez-Taubas and Pelham, 2005). Other SNAREs that have
been confirmed to be S-acylated are Sso1, Sso2, Vam3, Tlg2,
and Syn8 (Valdez-Taubas and Pelham, 2005; Roth et al., 2006).
S-acylation is also very common in many important signaling
proteins, such as the heterotrimeric G protein alpha and gamma
subunits Gpa1 (Song andDohlman, 1996; Song et al., 1996), Gpa2
(Harashima and Heitman, 2005), and Gγ (Ste18, Hirschman and
Jenness, 1999); small monomeric G proteins (GTPases) such
as Rho1, Rho2 (Roth et al., 2006), Rho3 (Zhang et al., 2013),
Ras1 and Ras2 (Deschenes et al., 1990; Mitchell et al., 1994;
Bartels et al., 1999). A recent study shows that the pathogenesis,
morphogenesis and sexual differentiation of an encapsulated
yeastCryptococcus neoformans is achieved through the important
roles that S-acylation plays in modulating the localization of Ras1
(Nichols et al., 2015). Interestingly, all of these signaling proteins
acquire prenylation or myristoylation before S-acylation occurs
(Roth et al., 2006).

In addition, many amino acid permeases (AAP) were proved
to be S-acylated (Roth et al., 2006). For example, the yeast type
I casein kinases, Yck1, Yck2, and Yck3, which play important
roles in cellular morphology, bud emergence and endocytosis
of mating pheromone receptor, are membrane localized via S-
acylation for function (Roth et al., 2006, 2011). ENV7 (late
endosome and vacuole interface) encodes a protein kinase that
plays important roles in vacuole morphology, and its proper
membrane localization and function relies on S-acylation of
the N-terminal triple cysteines motif (C13C14C15) (Manandhar
et al., 2013, 2014; Cocca, 2014). S-acylation of telomere-binding
protein Rif1 anchored it to the inner nuclear membrane, which
influences its role in heterochromatin dynamics (Park et al.,
2011). Mutagenesis of cysteine in different positions of Arsenite
permease Acr3p can cause its completely or partially dysfunction
as a low affinity As(III)/H+ and Sb(III)/H+ antiporter, and Cys90
which localizes in the cytosolic loop but in close proximity to
transmembrane regions has the high possibility to be S-acylated
(Maciaszczyk-Dziubinska et al., 2014). It was also reported that S-
acylation is necessary for the export of chitin synthase Chs3 from
ER (Lam et al., 2006). The information described in this section
is summarized in Table 1.

S-acylation in Mammals
Following study of S-acylation in yeast research that has extended
to mammalian systems considerable knowledge has been gained
in recent years, revealing the involvement of protein S-acylation
in the regulation of growth, development, and cancer and disease
status. For example, a global rat neural palmitoyl-proteome
characterized almost 300 S-acylated proteins, again with the
ABE method adapted from the yeast study (Kang et al., 2008).
Similarly 331 S-acylated proteins were identified from human

prostate cancer cells (Yang et al., 2010), 57 from human B
lymphoid cells (Ivaldi et al., 2012) and 150 from endothelial cells
(Marin et al., 2012). By bio-orthogonal labeling of S-acylated
proteins with 17-octadecynoic acid (ODYA) about 125 and over
400 S-acylated proteins were identified from human Jurkat T-
cells and mouse T-cell hybridoma cells, respectively (Martin and
Cravatt, 2009; Martin et al., 2012).

It is worth noting that proteins that have been proved to be
S-acylated in yeast, their homologous proteins in mammals tend
to be also S-acylated. For instance, many human SNAREs were
proved to be also S-acylated (Greaves et al., 2010), S-acylation
of α subunits of G proteins is necessary for their membrane
localization and function (Wedegaertner et al., 1993; Grassie
et al., 1994; Ponimaskin et al., 1998, 2000). However, G-protein
γ subunits have not been reported to be S-acylated in mammals.
Many G-protein-coupled receptors (GPCRs) (Blaskovic et al.,
2013) and Ras GTPase (Rocks et al., 2005) are also S-acylated.
Mitochondrial targeting of a microphage protein phospholipid
scramblase 3 (Plscr3) is dependent on its S-acylation (Merrick
et al., 2011).

Some S-acylated proteins in mammals can also make
themselves avoid degradation by attaching a palmitate molecule.
For instance, LRP6 (lipoprotein-receptor-related protein 6) is S-
acylated and the removal of acyl group leads to destabilization or
ubiquitination (Abrami et al., 2008). Similarly, the palmitoylation
of TEM8 (Abrami et al., 2006), CCR5 (chemokine and HIV
receptor) (Percherancier et al., 2001) and Rhodopsins (Maeda
et al., 2010) prevents the degradation of these proteins. It was also
reported that for some other proteins, their degradation depends
on the S-acylation. For example, a cancer-promoting protein
CDCP1 (CUB domain-containing protein 1) is degraded upon
S-acylation, leading to a decrease of ovarian cancer cell migration
(Adams et al., 2015). Therefore, it seems that S-acylation can play
opposite roles in protein degradation.

Many signaling proteins involved in keeping T-cell
homeostasis are S-acylated, such as T-cell co-receptors CD4
and CD8, tyrosine kinases Lck and Fyn, and adaptor proteins
LAT (linker for activation of T cells) and Cbp/PAG (Bijlmakers,
2009; Hundt et al., 2009; Akimzhanov and Boehning, 2015). S-
acylation of Lck at both Cys3 and Cys5, which are redundant for
the function of Lck, is essential for propagating T-cell receptor
signaling and releasing apoptotic calcium (Akimzhanov and
Boehning, 2015). Similarly, LAT is also a dual (Cys26 and Cys29)
S-acylated protein which is required for T cell development and
activation. However, S-acylation of Cys26 alone is enough for its
PM localization and proper function (Hundt et al., 2009).

S-acylation of synaptic proteins is important for synaptic
plasticity, and the key S-acylated synaptic proteins include
postsynaptic density protein PSD-95, δ-catenin, gephyrin, A-
kinase anchoring protein AKAP79 and 150, the small GTPase
Cdc42. Lack of S-acylation of these proteins lead to impaired
performance on learning and memory tasks (Brigidi et al., 2015).
Huntington’s disease is a neurodegenerative disorder caused by
mutation in the gene encoding the S-acylated Huntingtin (HTT)
(Butland et al., 2014). Defects in S-acylation can also cause
mental problems such as schizophrenia and X-linked mental
retardation (XLMR), however, the specific S-acylated target
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TABLE 1 | Individually confirmed S-acylated proteins in yeast.

Groups Specific proteins References

SNAREs Snc1/2, Ykt6,Tlg1/2, Sso1/2,Vam3, Syn8 Couve et al., 1995; Fukasawa et al., 2004; Valdez-Taubas and Pelham, 2005; Roth et al., 2006

G proteins Gpa1/2, Ste18, Rho1/2/3, Ras1/2 Deschenes et al., 1990; Mitchell et al., 1994; Song and Dohlman, 1996; Song et al., 1996; Bartels

et al., 1999; Hirschman and Jenness, 1999; Harashima and Heitman, 2005; Roth et al., 2006;

Zhang et al., 2013; Nichols et al., 2015

AAPs Tat1/2, Gnp1, Sam3, Hip1, Bap2, Agp1, Gap1 Roth et al., 2006

Protein kinases Yck1/2/3, Env7 Roth et al., 2006, 2011; Cocca, 2014

Other proteins Rif1, Acr3p, Chs3 Lam et al., 2006; Park et al., 2011; Maciaszczyk-Dziubinska et al., 2014

proteins involved in this process have not been isolated (Mukai
et al., 2004; Raymond et al., 2007). Alzheimer’s disease (AD) is a
neurodegenerative dementia which accounts for 60–70% of cases
of dementia. Many studies have demonstrated that S-acylation
plays very important roles in the pathogenesis of AD, and the
related S-acylated proteins include β- and γ-secretase enzymes,
and the major APP (amyloid precursor protein) cleaving enzyme
BACE1, which are S-acylated at four sites (Benjannet et al., 2001;
Hornemann, 2015).

Autophagic protein microtubule-associated protein 1 light
chain-3B (LC3B) is a positive regulator of chronic obstructive
pulmonary diseases such as emphysema. LC3B is associated
with the extrinsic apoptotic factor Fas, and their interaction is
mediated by caveolin-1 (Cav-1). Interestingly, both Fas and Cav-
1 are S-acylated proteins (Chen et al., 2010). S-acylation of the
bone developmental regulator membrane type1-metalloprotease
(MT1-MMP) is a keymodulator of bone homeostasis (Song et al.,
2014). Goltz syndrome, caused by loss of function of the S-
acylated protein Porcupine (Galli et al., 2007; Hornemann, 2015),
is an X-linked dominant form of ectodermal dysplasia, which
is primarily characterized by skin manifestations as atrophic
and hypoplastic areas and results in osseous defects and dental
anomalies later (Wang et al., 2007).

An increasing number of reports indicate that S-acylation is
involved in cancer. For instance, Ras is a negative regulator of
cell proliferation, and S-acylation of Ras maintains its steady state
plasmamembrane localization which is essential for transduction
of extracellular proliferative signals (Rocks et al., 2005; Schmick
et al., 2015). S-acylation of the neurotensin receptor 1 (NTSR-
1), a key mediator in breast, pancreas, prostate, colon and lung
cancers, is essential for its localization and efficient signaling
(Heakal et al., 2011). The induction of apoptosis is an efficient
way to stop tumor development, many proteins involved in
apoptosis are S-acylated including FasL (Fas Ligand; Guardiola-
Serrano et al., 2010), FasR (Fas receptor; Chakrabandhu et al.,
2007), DR4 (a receptor of the tumor necrosis factor-related
apoptosis-inducing ligand; Rossin et al., 2009), DCC (deleted
in colorectal cancer; Furne et al., 2006), UNC5H (Maisse et al.,
2008) and BAX (BCL-2-associated X) (Fröhlich et al., 2014). The
spread of cancer cells from their original site to other parts of the
body is through metastasis. It was reported that S-acylation of
metastasis-associated proteins KAT1/CD82, CD9, and CD151 is
essential for their function of suppressingmetastasis or inhibiting
tumor cell adhesion and migration (Zhou et al., 2004; Hemler,
2014; Termini et al., 2014). Integrin β4 (ITGβ4) can interact

with growth factor receptors and enhance invasive potential of
cancer cells (Soung and Chung, 2011). This is helped by the S-
acylation of ITGβ4 which is required for its lipid raft localization
in the membrane and signaling activity. The level of ITGβ4 S-
acylation is correlated with the invasive potential of breast cancer
cells (Coleman et al., 2015). Another S-acylated protein related to
breast cancer is CD44 which negatively regulates cell migration
(Xie et al., 2009). Endothelial nitric oxide synthase (eNOS),
which localizes through S-acylation to the Golgi complex and
PM cholesterol-rich microdomains, promotes angiogenesis and
tumorigenesis (Fernández-Hernando et al., 2006; Wei et al.,
2011). Table 2 lists the identified S-acylated proteins in mammals
described in this section.

The above studies clearly demonstrate that S-acylation
is involved in a wide range of human diseases including
mal-development, infectious diseases, autoimmune diseases,
neuropsychiatric disorders, dermatosis, osteoporosis, and cancer
(Ivaldi et al., 2012; Chavda et al., 2014; Hornemann, 2015; Yeste-
Velasco et al., 2015). Understanding S-acylation will provide
invaluable information to the insight of disease processes which
in turn will aid the development of drugs to control and
target these various diseases. Therefore, the relationship between
protein S-acylation and disease in human becomes a hot research
topic in the medical field in recent years.

S-acylation in Plants
Our understanding of plant S-acylation is rudimentary and the
limited knowledge comes mainly from targeted studies on the
functional characterization of individual proteins that happen
to be S-acylated, including, mainly heterotrimeric G protein
and some small monomeric G-proteins. For instance, the α

subunit GPA1 and γ subunit AGG2 of plant heterotrimeric G
protein are S-acylated. GPA1 has dual lipid modification with
a myristoylation site at the G2 position and an adjacent S-
acylation site at the C5 position, ensuring its localization to
the PM (Adjobo-Hermans et al., 2006). Apart from promoting
PM localization, S-acylation of GPA1 may also stabilize the
newly formed heterotrimer. AGG2 is S-acylated at Golgi before
delivered to the PM, and its membrane localization is dependent
on its prenylation and S-acylation (Zeng et al., 2007). Therefore,
S-acylation may act as a membrane targeting signal and restricts
AGG2 shuttle in and out of PM (Zeng et al., 2007; Hemsley,
2009). Some small GTPases are also known to be S-acylated.
For instance, S-acylation of AtROP6 is responsible for its
activation and inactivation cycles (Sorek et al., 2007). AtROP9
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TABLE 2 | S-acylated proteins individually verified in mammalian cells.

Groups Examples References

SNAREs SNAP23, SNAP25, SNAP25b Greaves and Chamberlain, 2010; Greaves et al., 2010

G Proteins Go1α, Gα12, Gα13, GPCRs, GTPase Wedegaertner et al., 1993; Grassie et al., 1994; Ponimaskin et al., 1998,

2000; Rocks et al., 2005

T-cell specific proteins CD4/8, Lck, Fyn, LAT, Cbp/PAG Bijlmakers, 2009; Hundt et al., 2009; Akimzhanov and Boehning, 2015

B-cell specific proteins CD20/23 Ivaldi et al., 2012

Synaptic proteins PSD-95, δ-catenin, gephyrin, AKAP79/150, Cdc42, HTT, β- and

γ- secretases, BACE1

Benjannet et al., 2001; Butland et al., 2014; Brigidi et al., 2015;

Hornemann, 2015

Cancer related proteins CDCP1, Ras, NTSR-1, FasL, FasR, DR4, DCC, UNC5H, BAX,

CD82/9/151/44, ITGβ4, Enos

Zhou et al., 2004; Fernández-Hernando et al., 2006; Furne et al., 2006;

Chakrabandhu et al., 2007; Maisse et al., 2008; Rossin et al., 2009; Xie

et al., 2009; Guardiola-Serrano et al., 2010; Heakal et al., 2011; Soung and

Chung, 2011; Wei et al., 2011; Fröhlich et al., 2014; Hemler, 2014; Termini

et al., 2014; Adams et al., 2015; Coleman et al., 2015; Schmick et al., 2015

Other Proteins Plscr3, LRP6, Fas, Cav-1, MT1-MMP; Porcupine, TEM8, CCR5 Abrami et al., 2006, 2008; Chen et al., 2010; Galli et al., 2007; Merrick

et al., 2011; Percherancier et al., 2001; Song et al., 2014

and AtROP10, which are involved in ABA signaling, contain 3
and 2 S-acylation sites respectively (Lavy et al., 2002; Zheng et al.,
2002; Hemsley, 2009). For AtRABF1 (ARA6), both S-acylation
and myristoylation are essential for its prevacuolar compartment
localization (Ueda et al., 2001).

Proteins involved in Ca2+ signaling such as calcineurin B-Like
proteins AtCBL1, AtCBL2, AtCBL3, and AtCBL6 in Arabidopsis
(Batistic et al., 2008, 2012); calcium dependent protein kinases
OsCPK2 in rice (Martin and Busconi, 2000); LeCPK1 in
tomato (Leclercq et al., 2005); MtCPK3 in Medicago truncatula

(Gargantini et al., 2006) and StCDPK1 in Solanum tuberosum
(Raíces et al., 2003) were reported to be S-acylated. AtCBL1 is
a dually lipid modified protein, in which myristoylation targets
it to the endoplasmic reticulum (ER), but the trafficking from
ER to PM and subsequent PM anchoring depends on S-acylation
(Batistic et al., 2008).

Other S-acylated proteins are the pathogenesis related
proteins such as RPM1 interacting protein 4 (RIN4) and leucine-
rich repeat receptor like kinase (FLS2) (Kim et al., 2005; Hemsley
et al., 2013; Running, 2014; Boyle et al., 2016); NDR1/HIN1-
like (NHL) stress response proteins (Hemsley et al., 2013; Hurst
and Hemsley, 2015); POLTERGEIST (POL) and POLTERGEIST
LIKE 1 (PLL1) (their PM localization is dependent on both
myristoylation and S-acylation at their N-termini) (Gagne and
Clark, 2010); the Lost In Pollen tube guidance 1 (LIP1) and
2 (LIP2), mutations of their S-acylation sites abolished PM
localization. Although, individual knockout mutant of LIP1 and
LIP2 did not have any defects the double mutant can cause
sterility due to loss of pollen tube guidance (Liu et al., 2013).
S-acylation of remorin proteins, a group of well-known plasma
membrane marker proteins, contribute to their subcellular
localization (Konrad et al., 2014). Very recently, Kumar and his
coworkers confirmed that a number of the catalytic subunits of
cellulose synthase complex (CSC) in Arabidopsis are S-acylated.
These include the cellulose synthase A 1 (CESA1), CESA4,
CESA6, CESA7, and CESA8 where up to 6 S-acylation sites
were in each of these proteins (Kumar et al., 2016). SGN1, a
receptor-like cytoplasmic kinase (RLCK), localizes in a strictly
polar fashion to the endodermal outer plasma membrane, and

this is dependent on the S-acylation of N-termini (Alassimone
et al., 2016; See summary in Table 3).

On a proteomic level Hemsley and coworkers identified
about 600 putative S-acylated proteins from Arabidopsis using
a biotin switch isobaric tagging for relative and absolute
quantification (Hemsley et al., 2013). These proteins are involved
in many processes across plant growth, development and
stress responses, including the mitogen-activated protein kinases
(MAPKs), leucine-rich repeat receptor-like kinases (LRR-RLKs)
and RLK superfamily members, integral membrane transporters,
ATPases, SNAREs and others. Similarly, about 450 S-acylated
proteins were identified from Poplar cell suspension very
recently. Except for the commonly known intracellular trafficking
related proteins such as protein kinases, SNAREs, band 7 family
proteins and tetraspanins, some cell wall related proteins were
also found to be S-acylated (Srivastava et al., 2016). These
results greatly expand the range of functions of protein S-
acylation involves in plants, demonstrating the important roles
of protein S-acylation in plant growth, development and stress
signaling.

S-acylation in Other Organisms
S-acylated proteins were also identified from other organisms.
For example, more than 400 putative S-acylated proteins were
isolated from the most severe human malaria causing parasite
Plasmodium falciparum, involved in almost all the stages of its
life cycle (Hodson et al., 2015). A number of S-acylated proteins
are localized in the inner membrane complex (IMC). IMC is
a membranous two layered structure located underneath the
plasma membrane, which IMC plays central roles in host cell
invasion and cytokinesis in P. falciparum (Cavalier-Smith, 1993;
Wetzel et al., 2015). In another parasite Toxoplasma gondii,
S-acylated proteins were also proved to be involved in many
physiological processes including motility, invasion and division
(Beck et al., 2010; Frénal et al., 2010, 2014). In Aspergillus
fumigatus, one of the most common species that cause the
invasive aspergillosis in individuals with an immunodeficiency,
Ras pathway signaling is its critical virulence determinant and
the properly localized and activated Ras is dependent on a series

Frontiers in Plant Science | www.frontiersin.org 5 March 2017 | Volume 8 | Article 346

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Li and Qi Importance of Protein S-acylation in Plants

TABLE 3 | S-acylated proteins individually identified in plants.

Groups Examples References

SNAREs AtSYP71, AtSYP122, AtNPSN11 Hemsley et al., 2013

G-proteins AtGPA1, AtAGG2, AtROP6/9/10, AtRABF1 Ueda et al., 2001; Lavy et al., 2002; Zheng et al., 2002; Adjobo-Hermans

et al., 2006; Sorek et al., 2007; Zeng et al., 2007

Proteins in Ca2+ signaling AtCBL1/2/3/6, OsCPK2, LeCPK1, MtCPK3, StCDPK1 Martin and Busconi, 2000; Raíces et al., 2003; Leclercq et al., 2005;

Gargantini et al., 2006; Batistic et al., 2008, 2012

Cellulose Synthase complex AtCESA1, AtCESA4, AtCESA6, AtCESA7, AtCESA8 Kumar et al., 2016

Others RIN4, FLS2, POL, PLL1, LIP1, LIP2, remorins, SGN1 Kim et al., 2005; Gagne and Clark, 2010; Hemsley et al., 2013; Running,

2014; Liu et al., 2013; Konrad et al., 2014; Alassimone et al., 2016

of posttranslational lipid modification including S-acylation (Al
Abdallah and Fortwendel, 2015). Study also showed that S-
acylation is essential for spermatogenesis of Caenorhabditis
elegans (Gleason et al., 2006).

S-acylation not only occurs on proteins synthesized in
eukaryotic cells but also for proteins secreted by prokaryotic
bacteria and viruses and subsequently S-acylated by their
eukaryotic hosts. For example, Legionella and other bacterial
pathogens can secrete effectors that mimic the substrates of
host lipid transferases, which can help them target the proper
host membranes after S-acylation and other lipid modifications
(Ivanov and Roy, 2013). A group of cysteine protease type
III effectors secreted by the plant pathogen Pseudomonas
syringae, rely on their S-acylation by the host cells to be
targeted to plasma membrane and activated (Dowen et al.,
2009). S-acylation can also take place on viral proteins and
in fact the first reported S-acylated protein was a glycoprotein
from Vesicular stomatitis virus (Schmidt and Schlesinger, 1979;
Hurst and Hemsley, 2015). Another viral S-acylated protein
is the hemagglutinin of Influenza virus. S-acylation of its all
three cysteine residues by the host cell S-acylation machinery
is essential for the replication and infection of the virus
(Zurcher et al., 1994; Wagner et al., 2005; Brett et al.,
2014).

PROTEIN S-ACYL TRANSFERASES (PATS)

While spontaneous palmitoylation does occur on some proteins
in the cells (i.e., Bizzozero et al., 2001; Kümmel et al.,
2006; Kostiuk et al., 2008) it is generally accepted that S-
acylation is an enzymatic process catalyzed by a family of
proteins, the Protein S-Acyl Transferases (PATs for short). This
is because research on PATs was much delayed compared
to that on the S-acylated proteins. The first PAT, Akr1
was identified from S. cerevisiae in 2002 which is 20 years
later than S-acylation of protein first reported (Schmidt and
Schlesinger, 1979; Bartels et al., 1999; Roth et al., 2002).
Since then, the significance of this enzyme family has been
gradually recognized by studies carried out by an increasing
number of researchers in this field, leading to the great
enrichment of our knowledge of PATs, particularly in yeast and
mammals.

The Structure and Functional Domains of
PATs
Compared to the numbers of enzymes that catalyze the N-
myristoylation or prenylation, there are much more DHHC-
containing PATs existing in eukaryotes. In contrast to the
cytoplasmic catalyzing enzymes for S-prenylation and N-
myristoylation, PATs are transmembrane proteins with 4-6
TMDs and cytosolic N- and C- terminii (Hemsley et al., 2013).
Most importantly, PATs also have a highly conserved catalytic
Asp-His-His-Cys Cysteine Rich Domain (DHHC-CRD) of ∼50
amino acids (Roth et al., 2002). This domain was proposed
as Cx2Cx9HCx2Cx4DHHCx5Cx4Nx3F (Mitchell et al., 2006),
usually residing on the cytoplasmic face of membranes between
transmembrane domains (TMD) 2 and 3 of PATs (Gottlieb et al.,
2015). It was reported that mutation of cysteine in DHHC
domain inhibits both acyl intermediate formation and acyl chain
transfer activity of PATs (Mitchell et al., 2006; Gottlieb et al.,
2015). Indeed, when cysteine residue in the DHHC motif of
AtPAT24, AtPAT10 and AtPAT14 of Arabidopsis was mutated
to alanine or serine, all 3 AtPATs lost their PAT activities
(Hemsley et al., 2005; Qi et al., 2013; Li et al., 2016). The
DHHC-CRD domain in Swf1 cannot be replaced by those from
Pfa3, Pfa4 or Erf2, and similar results were also found for
Pfa3, the DHHC-CRD of which cannot be replaced by that of
Swf1 or Erf2. The irreplaceability of DHHC-CRD demonstrates
interaction between this domain and other regions is required
for proper PAT function (Montoro et al., 2011). Although,
the acyl intermediate happened on the cysteine residue in the
DHHC motif study on human DHHC3 showed that mutation of
other conserved cysteines in the CRD also decreased its activity
(Gottlieb et al., 2015). In addition, cysteine residues within
a novel CCX7−−13C(S/T) motif downstream of the conserved
DHHC-CRD of human PATs DHHC5, DHHC6 and DHHC8
were also proved to be S-acylated (Yang et al., 2010). Therefore,
it seems that cysteine residues in the DHHC-CRD as well as
other motifs play joint roles in of PATs auto-acylation and
subsequent transfer of the fatty acid to their substrate proteins.
It is also interesting to note that many residues in the DHHC-
CRD domain are reported to determine substrate specificity of a
PAT, such as A145 and K148 in Swf1 (Montoro et al., 2011).

Some PATs also have an N-terminal ankyin repeat (AR)
domain. Usually two AR containing DHHC PATs are found in
per genome, such as inmammals (Fukata et al., 2004), yeast (Roth
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et al., 2006), fly (Bannan et al., 2008), apicomplexan parasite
(Frénal et al., 2013), nematode (Edmonds and Morgan, 2014),
and plants (Yuan et al., 2013). It is thought that AR can help these
PAT to recognize its specific targets for S-acylation (Lemonidis
et al., 2015). However, other functions of AR that are independent
from S-acylation were also found in some such PATs (Harada
et al., 2003; Hemsley and Grierson, 2011; Yang and Cynader,
2011). For example, AR is essential for Akr1 to interact with Gβγ

dimer and to suppress cell cycle arrest induced by β subunit,
and this process does not require Akr1 being a functional PAT
(Hemsley and Grierson, 2011).

Both the N- and C-termini of all PATs characterized so far are
highly variable and cytosolic. The highly variability of N- and
C- terminal domains are believed to be essential for substrate
specificity of PATs, even though there have no experimental
evidence to support this at present (Huang et al., 2009; Greaves
et al., 2010; Montoro et al., 2011). Many PATs also have a
conserved aspartate-proline-glycine (DPG) motif close to the
second TMD, and a threonine-threonine-asparagine-glutamate
(TTxE) motif adjacent to the last TMD. Both of them are
cytosolic but their roles in the function of PATs are still waiting to
be explored. Another important region that contains 16-amino
acids and is conserved in 70% eukaryotic PATs is the PaCCT
motif (Palmitoyltransferase Conserved C-Terminus). Absence of
the PaCCT motif abolished the function of Pfa3 in yeast; the
tyrosine residue within this motif of Swf1 is essential for its PAT
activity toward Tlg1 (González et al., 2009).

The general structure and the functional/conserved domains
of PATs is illustrated in Figure 2.

DHHC Proteins are Commonly Found in
Eukaryotes
Since the first DHHC containing protein, Akr1 was found and
proved to be a PAT from yeast in 2002, significant advances
have been made in understanding of DHHC protein family in
yeast, mammals, worm and plants. So far, 6 of the 7 yeast DHHC
proteins have been confirmed to be PATs, and they are Akr1
(Lobo et al., 2002; Roth et al., 2002), Erf2 (Valdez-Taubas and
Pelham, 2005), Swf1 (Smotrys et al., 2005), Pfa3 (Hou et al., 2009),
Pfa4 (Smotrys et al., 2005), and Pfa5 (Roth et al., 2006). Akr2
is highly homologous to Akr1 with a typical DHHC-CRD and

FIGURE 2 | Topology structure and conserved domains of PATs. Most

PATs have 4 transmembrane domains (TMDs, blue columns) and their N- and

C-termini are in the cytoplasm. A highly conserved catalytic DHHC-CRD

(aspartate-histidine-histidine-cysteine cysteine rich domain) resides between

the 2nd- and 3rd-TMDs. The majority of PATs also have the DPG

(aspartate-proline-glycine), TTxE (threonine-threonine-any amino acid-glutamic

acid) and PaCCT (Palmitoyltransferase Conserved C-Terminus) domains, and

all of them are cytosolic.

two ARs, however, akr2 mutant did not show any remarkable
phenotype and there is no direct evidence to show whether it
has PAT catalytic activity or not (Kihara et al., 2005; Linder and
Deschenes, 2007).

Among the 22 human DHHC proteins (DHHC1-22), 17
were proved to have PAT activities excluding DHHC4, 11, 13,
19, and 22 (Ohno et al., 2012). One more DHHC protein
(DHHC23) was found in mice but its homolog cannot be found
in human (Ohno et al., 2006; Greaves and Chamberlain, 2010).
Caenorhabditis elegans has 15 DHHC-PATs, but so far only 1,
SPE10 (spermatogenesis 10), was characterized in some detail
and showed that it is essential for membranous organelles to
deliver fibrous bodies to the spermatid (Gleason et al., 2006).

Plant genomes also possess various numbers of DHHC
containing protein sequences. A recent survey from 31 plant
species with complete genomes including Arabidopsis, identified
804 DHHC proteins. The numbers of DHHC proteins were
variable in different species from 6 in Volvox carteri to 52 in
Panicum virgatum. Expression pattern of DHHC proteins in Zea
mays and their response to phytohormones and abiotic stress
showed that these DHHC proteins may play important roles in
plant growth and development as well as stress responses (Yuan
et al., 2013). Arabidopsis has 24 DHHC-containing proteins,
named as ATPAT1-24 (Hemsley et al., 2005; Batistič, 2012).
According to their phylogenetic relationship they are divided into
3 main groups, where group A has the most members including
AtPATs 1–9, group B consists AtPATs 11–16, group C is made of
AtPATs 18–22, whilst AtPAT10, 17, 23, and 24 do not belong to
any groups (Batistič, 2012). All these putative PATs have 4 TMDs
except for AtPAT15 and AtPAT17 where 3 and 6 TMDs are found
respectively.

Similar to what was found in yeast and mammals, Arabidopsis
genome also has 2 ankyrin repeats containing PATs, AtPAT23
and AtPAT24 that are highly homologous. Being the first PAT
identified in higher plant, AtPAT24 was confirmed to be an S-
acyl transferase because it not only auto-acylated but also rescued
the yeast PAT Akr1 knockout mutant akr1 for its morphological
and temperature sensitive defects. AtPAT24 can also restore
the correct localization of one of the Akr1 palmitoylating
proteins, the yeast casein kinase 2 (Yck2). The AtPAT24 loss-of-
function mutant tip1 exhibites defects in cell size control, pollen
tube and root hair growth, as well as cell polarity (Hemsley
et al., 2005). Following this, the biological functions of 3 other
AtPATs have also been characterized in some detail recently. For
example, three T-DNA insertion mutant alleles were identified
for AtPAT10 and all showed pleiotropic defects, including cell
expansion, cell division, vascular patterning, fertility and salt
stress in Arabidopsis (Qi et al., 2013; Zhou et al., 2013).
Single mutants of atpat13 and atpat14 are semi-dwarf and
show precocious leaf senescence, and the double mutant atpat13
atpat14 has even stronger phenotype than each of their parent
single mutant plants (Lai et al., 2015; Li et al., 2016).

DHHC containing proteins were also identified from other
organisms. For example, 22 such proteins were found in
Drosophila (Bannan et al., 2008), 18 in T. gondii, 17 in Neospora
caninum, 12 in Trypanosome brucei, 12 in P. falciparum, 11 in
Plasmodium bergbei, 10 inCryptosporidium species, 9 in Theileria
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parva, 8 in Babesia bovis and 6 in Eimeria tenella (Frénal et al.,
2013). It was reported that TgDHHC7 from T. gondii is essential
for rhoptry organelles localization and parasite invasion (Frénal
et al., 2013).

Expression Pattern and Subcellular
Localization of PATs
The spatial and temporal expression patterns of genes are very
important for their cellular functions. However, only very limited
information available for the expression patterns of PAT family
proteins so far. It was shown that the humans DHHC1, 3–10,
12–14, 16–18, and 20–22, are ubiquitously expressed in different
tissues. DHHC19 had very high expression level in testis with
weak expression in thymus and small intestine while DHHC11
was only expressed in testis. In addition, only very low level
of DHHC2 transcript was present in kidney and testis, and
similar low levels of DHHC15 transcript were found in heart,
brain, lung, kidney, thymus, and small intestine (Ohno et al.,
2006).

The expression patterns of DHHC proteins in Drosophila
were also analyzed. Among them, CG1407, CG5620, CG6017,
CG6627, and CG17257 exhibited maternal expression and were
enriched in neural tissues, with transcripts of all of them
except for CG1407 also detected in larval brains. Some DHHC
proteins were only expressed in testis, such as CG4483, CG4956,
CG13029, CG17075, CG17195-17198, CG17287, and CG18810,
and others expressed only in ovary, such as CG5880, CG6017,
and CG34449 (Bannan et al., 2008).

Study of the expression patterns of PATs in parasite also
showed that most of them have ubiquitous expression with a few
being more tissue or developmental stage specific. For instance,
TgDHHC18 is specially expressed in bradyzoites, TgDHHC10
at oocyst stage, PfDHHC6 and PfDHHC10 at gametocyte stage
(López-Barragán et al., 2011; Frénal et al., 2013).

In Arabidopsis, 19 of the 24 AtPATs expressed in a broad
and constant pattern with transcripts detected in most tissues
at all different developmental stages in Arabidopsis. However,
AtPAT1, 2, 3, 11, and 21 had relatively low expression levels
than other AtPATs, and AtPAT2 and 3 also exhibited stronger
expression in pollen (Batistič, 2012; Yuan et al., 2013). In Oryza
sative, 26 of the 30 OsPATs can express in more than one type
of tissue, among which OsPAT29 was only expressed during
germination stage, OsPAT21 and OsPAT26 were only expressed
in the internode and stamen respectively. The transcripts of
OsPAT13 and OsPAT28 were barely detectable in the tissues
examined (Yuan et al., 2013). In Zea mays 28 of 38 ZmPATs
have extensive expression in different developmental stages and
tissues with ZmPAT13 and ZmPAT22 having higher expression
in anther (Yuan et al., 2013). However, in Glycine max, specific,
rather than broad expression patterns were found where 7
GmPATs were specifically expressed in the flowering stage and
the transcripts of the remaining 11 GmPATs were detected in
all developmental stages except for flowering stage (Yuan et al.,
2013).

Therefore, it is clear that most PATs exhibit a broad expression
pattern in different developmental stages and tissues with a

few stage or tissue specific PATs in all organisms reported.
This suggests that most PATs are involved in a broad range of
functions in a given organism, such as Arabidopsis.

PATs distributed in the entire endomembrane system in the
cell and this locality nature of PATs may determine the specific
set of proteins they modify. For example, the plasma membrane-
localized Pfa5 in yeast and DHHC5, 20 and 21 in human are
the PATs involved in S-acylation mediated signal transduction
of PM localized heterotrimeric G protein alpha subunit Gsα,
the β2-adrenergic receptor and endothelial nitric oxide synthase
(Mumby et al., 1994; Robinson et al., 1995; Loisel et al., 1996;
Ohno et al., 2006). The ER- and Golgi-localized DHHC proteins
may be responsible for palmitoylation of de novo synthesized
proteins during the processes of membrane localization and
delivery to other organelles (Ohno et al., 2006). The tonoplast-
localized Pfa3 in yeast palmitoylates Vac8p for its vacuolar
membrane targeting (Hou et al., 2005; Smotrys et al., 2005).
Therefore, to determine the subcellular localization of individual
PAT is very important in order to understand its function by
identifying the substrate protein(s) it modifies and signaling
pathways it is involved.

Although, PATs are found in all endomembrane systems in the
eukaryotic cell they have different preference in different species
as to which endomembrane compartment they are localized. For
instance, in yeast, 3 PATs, Swf1, Pfa4, and Erf2 are localized at
ER; Akr1 and Akr2 are localized at Golgi; while Pfa3 and Pfa5 are
localized at vacuole and plasma membrane respectively (Valdez-
Taubas and Pelham, 2005; Ohno et al., 2006). In human, 8 PATs
are localized at ER (DHHC1, 6, 10, 11, 13, 14, 16, and 19), 7 at
Golgi (DHHC3, 4, 7, 8, 15, 17, and 18), 2 at PM (DHHC5 and
20), 4 at both ER and Golgi (DHHC2, 9, 12, and 22), and 1 at
both Golgi and PM (DHHC21) (Ohno et al., 2006).

Similar to the mammalian PATs, DHHC-PATs in Drosophila
are also mainly localized at ER (14: CG4483, CG4676, CG4956,
CG5196, CG5620, CG6627, CG10344, CG13029, CG17075,
CG17195, CG17196, CG17197, CG17198, and CG17287) and
Golgi (6: CG5880, CG6017, CG6618, CG8314, CG17257, and
CG18810). The only exception is CG1407 which is localized at
PM (Bannan et al., 2008). In Apicomplexan, such as T. gondii,
TgDHHCs are not only localized on the common organelles
such as Golgi (TgDHHC1, 5, 6, 9, 11, 12, 15, and 17), ER
(TgDHHC3, 8, and 16), PM (TgDHHC4 and 13), but also the
Apicomplexan-specific organelles such as IMC (TgDHHC2 and
14) and rhoptries (TgDHHC7) (Frénal et al., 2013).

In some contrast to the subcellular localization described
above, studies carried out on transiently expressed in tobacco
leaves of the 24 Arabidopsis PATs show that 9 of them
are localized on PM, including AtPAT04-09, 12, 19, and 21.
Therefore, it was proposed that PM is the main site for S-
acylation in Arabidopsis plant (Batistič, 2012). This is different
from mammalian PATs where most of them are localized in
Golgi and therefore Golgi is thought to be the major S-acylation
machinery (Ohno et al., 2006; Batistič, 2012). It is also interesting
to note that many AtPATs that are localized on ER and PM are
also associated with vesicles around them. For example, AtPAT3,
15, 17, and 18 are localized at ER as well as on the vesicles
associated with them; AtPAT13, 20, and 22 at PM and also vesicles
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(Batistič, 2012). AtPAT10, 14, 16, 23, and 24 are mainly localized
at Golgi, and the Golgi-localization of AtPAT10 and AtPAT14
were further confirmed in stably transformed Arabidopsis plants
(Qi et al., 2013; Li et al., 2016). While the main residence
of AtPAT01 and AtPAT02 are the endosomal compartments
AtPAT10 and AtPAT11 were found on the tonoplast (Batistič,
2012; Qi et al., 2013; Zhou et al., 2013). It is noteworthy that a
few Arabidopsis PATs have dual subcellular localizations, such
as AtPAT10 (Golgi and tonoplast) and AtPAT13/20/22 (PM and
vesicles) (Batistič, 2012; Qi et al., 2013). Similar observations
were also made with some mammalian PATs (Valdez-Taubas and
Pelham, 2005; Ohno et al., 2006). However, the significance of
this dual-localization nature of PATs is currently unknown.

Little is known about how the PAT proteins achieve their
respective localization in the cell. A recent study show that the
lysine-based sorting signals KXX and KKXX are present in the
mammalian DHHC4 and DHHC6, respectively, and it is these
motifs that restrict their localization to the ER (Gorleku et al.,
2011). It is also revealed that the C-terminal 68 amino acids of
the mammalian DHHC2 play an important role to define its
subcellular localization to the ER and Golgi (Fukata et al., 2013).
However, there is currently no information available on how
plant PAT are targeted to individual membranes in the cell.

The Identified PAT/Substrate Pairs
As an enzyme PAT carries out its function mainly through
substrate protein(s) it S-acylates. Therefore, to understand how
PATs operate it is important to identify the target proteins they
modify. However, to match an individual PAT and its S-acylated
substrate proteins has proved to be a very difficult task so far.
This is because: (1) the number of potential S-acylated proteins
far exceed the number of their modifying PATs. For example,
there are 7 PATs in yeast, however, ∼50 S-acylated proteins were
identified by a proteomic approach (Roth et al., 2006). Similarly,
much more S-acylated proteins were isolated than the number of
PATs present in mammals and Arabidopsis (Martin and Cravatt,
2009; Hemsley et al., 2013). Therefore, it seems most likely that
at least some if not all PATs can S-acylate multiple substrate
proteins, i.e., PATs do not have strict substrate specificity; (2)
Many substrate proteins can be modified by more than one PATs.
For instance, in yeast, the S-acylation of Vac8 is only partially
reduced in the yeast PAT knock-out strain pfa3, thus it is most
likely that Vac8 is S-acylated by Pfa3 as well as one another or
other PATs (Smotrys et al., 2005). Similarly, Ras2 S-acylation is
only partially suppressed in the absence of Erf2 hence other PATs
are also capable to S-acylate Ras2 (Roth et al., 2006; Montoro
et al., 2011). Therefore, these PATs have specific yet overlapping
substrate specificity. For some peripheral membrane proteins
in mammalian cells, their S-acylation is devoid of specificity
altogether (Rocks et al., 2010). However, reports show that
some PATs do have their preferentially modified proteins. For
example, Swf1 in yeast prefers to function on transmembrane
proteins that have cysteines close to TMDs (Roth et al., 2006).
In human, integrin α4β6 is strictly modified by DHHC3 (Sharma
et al., 2012); (3) No consensus sequences in S-acylated proteins
have been found. Although many S-acylated proteins have been
identified and some of them are S-acylated by the same PAT,

there are no consensus sequences characterized in these proteins
(Montoro et al., 2011).

In yeast, each of the five PATs have been mapped to one
or more substrate proteins. However, the total number of these
individual substrate proteins are still far less than∼50 S-acylated
proteins identified (Roth et al., 2006). For example, Akr1 S-
acylates casein kinases Yck1, Yck2, and Yck3 (Roth et al., 2002).
It also S-acylates sphingosine kinase Lcb4 because 60-80% of
reduction in S-acylation of Lcb4 was found in akr1 mutant yeast
(Kihara et al., 2005). Other proteins that are also S-acylated
by Akr1 are Meh1, Sna4 and the unknown function proteins
such as Ypl199c, Ykl047w, and Ypl236c (Roth et al., 2006).
Therefore, Akr1 alone can S-acylate at least 9 substrate proteins
in yeast. It was noted that Akr1 prefers hydrophilic proteins that
tether to membranes solely through N- or C-terminal palmitoyl
modifications (Roth et al., 2006). Erf2 is responsible for the
S-acylation of Ras and other signaling proteins such as Rho2,
Rho3, Gpa1, Gpa2, and Ste18, all of which are heterolipidated
(Bartels et al., 1999; Lobo et al., 2002; Roth et al., 2006; Zhang
et al., 2013). Swf1 tends to S-acylate proteins that have juxta-
TMD mapping cysteines, such as SNAREs (Valdez-Taubas and
Pelham, 2005), mannosyltransferases including Mnn1, Mnn10
and Mnn11 and prion induction protein Pin2 (Roth et al., 2006).
Pfa4 is devoted to the palmitoylation of a group of Amino
Acid Permeases (AAPs). AAPs is a family of plasma membrane
transporters with 12 TMDs and a conserved C-terminal Phe-
Trp-Cys palmitoylation site. Experiments in C. neoformans
showed that Pfa4 is also responsible for PM localization of Ras1
via palmitoylation (Merino et al., 2014). On the other hand,
one substrate protein can be palmitoylated by multiple PATs.
For example, S-acylation of Gpa2 is mediated by both Pfa5
and Erf2 (Roth et al., 2006; Greaves and Chamberlain, 2011;
Zhang et al., 2013); Meh1 was S-acylated by Pfa3 and Akr1
(Greaves and Chamberlain, 2011); and an unknown protein
Yg1108 was S-acylated equally by Erf2 and Pfa4 (Greaves and
Chamberlain, 2011). However, so far the substrates of Akr2
has not been identified. Therefore, it is clear that both PATs
and their substrate proteins are highly redundant in yeast. A
summary of PATs and their substrate proteins in yeast is shown
in Table 4.

Many substrate proteins of mammalian PATs have also been
identified in recent years. These include GTP-binding proteins,
cytoskeletal proteins, enzymes, neurotransmitter receptors and
synaptic scaffolding proteins (Table 5). Similar to what is found
in yeast, some proteins can be modified by more than one PAT
and most PATs can modify multiple proteins such as DHHC2,
3, 5, 7, 8, 13, 15, 17, and 21 (Table 5). For instance, PSD-95,
a protein that scaffolds receptors and signaling enzymes at the
postsynapse (Topinka and Bredt, 1998) can be S-acylated by
DHHC2, 3, 7, 8, 15, and 17 (Fukata et al., 2004, 2006; Greaves and
Chamberlain, 2011; Butland et al., 2014). SNAP-25, a t-SNARE
protein that regulates neurotransmitter release, is the substrate
of DHHC2, 3, 7, 8, 15, and 17 (Greaves et al., 2009). S-acylation
of a tyrosine kinase Fyn is mediated by DHHC2, 3, 7, 15, 20,
and 21 (Mill et al., 2009). All these mentioned PAT/substrates
and other pairs are listed in Table 5. On the other hand, one
PAT can palmitoylate multiple substrate proteins. For example,

Frontiers in Plant Science | www.frontiersin.org 9 March 2017 | Volume 8 | Article 346

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Li and Qi Importance of Protein S-acylation in Plants

TABLE 4 | Substrates of yeast PATs.

PATs Substrates References

Akr1 Lcb4, Yck1, Yck2, Yck3, Meh1, Sna4, Ypl199c, Ykl047w, Ypl236c, Vac8 Roth et al., 2002; Babu et al., 2004; Kihara et al., 2005; Roth et al., 2006,

2011

Erf2 (shr5) Ras1, Ras2, Rho2, Rho3, Gpa1, Gpa2, Ste18, Ycp4, Psr1, Yg1108 Bartels et al., 1999; Lobo et al., 2002; Ohno et al., 2006; Roth et al., 2006;

Greaves and Chamberlain, 2011; Zhang et al., 2013

Swf1 Many SNAREs, Mnn1, Mnn10 , Mnn11, Pin2 (Valdez-Taubas and Pelham, 2005; Roth et al., 2006)

Pfa3 Vac8, Meh1 Hou et al., 2005; Smotrys et al., 2005; Roth et al., 2006

Pfa4 APPs, Lcb4, Ras1,Yg1108 Ohno et al., 2006; Roth et al., 2006; Greaves and Chamberlain, 2011;

Nichols et al., 2015

Pfa5 Gpa2 Greaves and Chamberlain, 2011

TABLE 5 | Mammalian PATs and their (regulated) target proteins.

PAT Targets References

DHHC2 PSD-95, CKAP4, SNAP23/25, eNOS, Fyn, NDE1, NDEL1, CD9/151,

ABCA1, AKAP79/150

Fukata et al., 2004; Huang et al., 2004; Fernández-Hernando et al., 2006;

Sharma et al., 2008; Zhang et al., 2008; Shmueli et al., 2010; Singaraja

et al., 2009; Greaves et al., 2010; Chavda et al., 2014

DHHC3 (GODZ) PSD-95, SNAP23/25/25b, Gα, CSP, Integrin α6β4, GABAAγ2, eNOS,

GluR1/2, GAD65, STREX, Fyn, BACE1, NDE1, NDEL1, NCAM140,

CaMKIγ, NR2A/B, DR4, PI4KII

Fukata et al., 2004; Keller et al., 2004; Hayashi et al., 2005; Fang et al.,

2006; Fernández-Hernando et al., 2006; Takemoto-Kimura et al., 2007;

Greaves et al., 2008; Huang et al., 2009; Mill et al., 2009; Tsutsumi et al.,

2009; Vetrivel et al., 2009; Greaves et al., 2010; Tian et al., 2010; Shmueli

et al., 2010; Yeste-Velasco et al., 2015

DHHC4 BACE1 Vetrivel et al., 2009

DHHC5 Grip1b, δ-catenin, Flotillin-2, somatostatin receptor 5, Ankyrin-G,

STREX

Tian et al., 2010; Kokkola et al., 2011; Li et al., 2012; Thomas et al., 2012;

Brigidi et al., 2014, 2015

DHHC6 Chaperone calnexin Lakkaraju et al., 2012

DHHC7 PSD-95, Gα, CSP, Fyn, eNOS, SNAP25/23/25b, GABAAγ2, STREX,

BACE1, NDE1, NDEL1, NCAM140, sortillin, PDE10A2, CD9, ER, PR,

AR, PI4KII

Fukata et al., 2004; Fang et al., 2006; Fernández-Hernando et al., 2006;

Fukata et al., 2006; Greaves et al., 2008; Mccormick et al., 2008;

Ponimaskin et al., 2008; Greaves et al., 2009; Tsutsumi et al., 2009;

Vetrivel et al., 2009; Shmueli et al., 2010; Charych et al., 2010; Greaves

et al., 2010; Tian et al., 2010; Ohno et al., 2012

DHHC8 eNOS, SNAP25, paralemmin-1, GAD65, PSD95, PSD93 Fernández-Hernando et al., 2006; Mukai et al., 2008; Huang et al., 2009

DHHC9 H- and N-Ras, STREX Swarthout et al., 2005; Tian et al., 2010

DHHC12 ABCA1 Singaraja et al., 2009; Chavda et al., 2014

DHHC13 (HIP14L) MT1-MMP, HTT, GAD65 Huang et al., 2009; Saleem et al., 2010; Song et al., 2014

DHHC15 PSD95, GAP43, SNAP25b, CSP, GABAAγ2, Fyn, BACE1, CD151,

CI-MPR, sortillin

Fukata et al., 2004; Fang et al., 2006; Greaves et al., 2008; Mccormick

et al., 2008; Sharma et al., 2008; Mill et al., 2009; Vetrivel et al., 2009;

Greaves et al., 2010

DHHC17 (HIP14) PSD95, CLIP3, CSP, GAD65, GAP43, GLUR1/2, GPM6A, HTT, JNK3,

Lck, SNAP25/23/25b, STREX, SYT1, SPRED1/3, Ras

Fukata et al., 2004; Ohyama et al., 2007; Greaves et al., 2008; Huang

et al., 2009; Mill et al., 2009; Greaves et al., 2010; Tian et al., 2010; Ohno

et al., 2012; Butland et al., 2014

DHHC18 H- and N-Ras, Lck Fukata et al., 2004

DHHC19 R-Ras, PDE10A2 Baumgart et al., 2010; Charych et al., 2010

DHHC20 Fyn, BACE1, ABCA1 Mill et al., 2009; Singaraja et al., 2009; Vetrivel et al., 2009

DHHC21 PECAM1, SOD1, Lck, eNOS, Fyn, ABCA1, ER, PR, AR Fernández-Hernando et al., 2006; Takemoto-Kimura et al., 2007; Mill et al.,

2009; Vetrivel et al., 2009; Antinone et al., 2013; Akimzhanov and

Boehning, 2015; Yeste-Velasco et al., 2015

DHHC2 palmitoylats cytoskeleton-associated protein 4 (CKAP4)
and AKAP79/150 (Keith et al., 2012; Chavda et al., 2014);
DHHC3 does integrin α6β4, Calmodulin-dependent protein
kinase isoform 1γ (CaMKIγ), NMDA receptor subunits 2A and
2B (NR2A/B) and DR4 Takemoto-Kimura et al., 2007; Hayashi
et al., 2009; Sharma et al., 2012; Yeste-Velasco et al., 2015; the S-
acylation of Grip1b, δ-catenin, Flotillin-2, somatostatin receptor

5 and Ankyrin-G is carried out by DHHC5 (Brigidi et al., 2015).
In the same fashion many other proteins are also palmitoylated
by specific PATs (Table 5). Importantly, some DHHC proteins
have been indicated to be involved in certain diseases, such as
DHHC8 in schizophrenia, DHHC9 and 15 in X-linked mental
retardation, DHHC17 in Huntington’s disease and many PATs
are involved in different types of cancer including DHHC2, 3,
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7, 9, 11, 14, 17, 20, and 21 (Chavda et al., 2014; Yeste-Velasco
et al., 2015). However, for some of them, their specific substrate
proteins have not been identified.

Very little information is available for PAT/substrate pairs in
other organisms. The only PAT/substrate pair characterized was
in P. falciparum where PfDHHC1, an apicomplexan-specific and
inner membrane complex-localized PAT, has identical expression
pattern to two S-acylated proteins PfISP1 and PfISP3 (Wetzel
et al., 2015).

In plant, the only putative PAT/substrates pairing identified
is ATPAT10/AtCBL2, 3, 6. This was achieved by transient
expression of AtCBL2, AtCBL3 and AtCBL6 in Arabidopsis
protoplast, showing that the tonoplast localization of AtCBLs
is lost in protoplast prepared from AtPAT10 loss-of-function
mutant (Zhou et al., 2013).

Therefore, although many hundreds of S-acylated proteins,
including putative ones isolated by large proteomic approaches
were identified from different species at present, there are many
more to come in the future due to the readily available proteomics
facilities in large institutions. A framework for characterizing
PAT/substrate selectivity is urgently required to set out to
match individual PATs and their S-acylated substrate proteins in
order to understand the mechanism of S-acylation in individual
organism and in general.

DE-S-ACYLATION

Similar to phosphorylation and ubiquitiation, S-acylation process
is reversible, which makes it a very important lipid modification
of proteins (Hemsley, 2009). S-acylation turnover by de-S-
acylation, can be constitutive or stimulated (Smotrys and Linder,
2004). Ras proteins were the first proteins to be reported to
have dynamic S-acylation with different H-Ras has different
de-S-acylation rates (Baker et al., 2003). S-acylation/ de-S-
acylation of Fyn, a member of the Src kinase family, happens
with a half-life of 1.5–2 h (Wolven et al., 1997; Zeidman
et al., 2009). The de-S-acylation of Gα subunits is stimulated
by the activation of G-protein-coupled receptors (Mumby
et al., 1994; Linder and Deschenes, 2007). De-S-acylation of
PSD-95 is enhanced by neuronal activity (El-Husseini et al.,
2002).

At present only four protein thioesterases have been identified
to catalyze the de-S-acylation process, including acyl protein
thioesterases 1 (APT1) and 2 (APT2), palmitoyl thioesterases 1
(PPT1) and 2 (PPT2) (Tomatis et al., 2010; Hornemann, 2015).
These enzymes carry out the de-S-acylation step in which the
palmitate or other long chain fatty acids are removed from
the S-acylated proteins (Linder and Deschenes, 2007). APT1
was first found in rat liver as a lysophospholipase and its
substrates include Ras, Gα subunit, RGS4, SNAP-23, and eNOS
(Toyoda et al., 1999; Akimzhanov and Boehning, 2015). APT2
was reported to de-S-acylate the growth-associated protein 43
(Tomatis et al., 2010). PPT1 is a soluble lipase that is localized in
lysosomes and it is responsible for the degradation of S-acylated
proteins (Linder and Deschenes, 2007; Chavda et al., 2014). The
loss-of-function of PPT1 resulted in severe infantile neuronal

ceroid lipofuscinosis (Vesa et al., 1995). PPT2 has very limited
acyl protein thioesterase activity, which prefers de-S-acylating
short-chain lipid substrate. Interestingly, study has shown that
it is up-regulated in obesity (Bürger et al., 2012; Fox et al.,
2012).

It is surprising that only four thioesterases have been
identified so far yet many hundreds of S-acylated proteins
were isolated from different genomes. The explanations
for this could be: (1) thioesterases are broad specificity
enzymes, each of which can de-S-acylate a wide range of
substrates; (2) not all S-acylated proteins undergo de-S-
acylation; (3) of course, it could be because many more
thioesterases have not been found (Chavda et al., 2014). There
currently no protein thioesterases have been identified from
plant.

MECHANISM OF PROTEIN S-ACYLATION

It is well recognized that DHHC proteins transfer acyl group
via a two-step catalytic mechanism in which the enzyme first
modifies itself with palmitate (or other long chain fatty acids)
in a process termed autoacylation. The enzyme then transfers
the acyl group from itself onto its substrate proteins. However,
the number and location of the S-acylated cysteines of a given
PAT in the autoacylated intermediate is unknown. It is well
accepted that the cysteine in the DHHC motif is the auto-
S-acylation site because mutation in this residue results in
loss of auto-acylation of many characterized PATs from yeast
(Montoro et al., 2011), mammals (Ohno et al., 2012), and
Arabidopsis (Hemsley et al., 2005; Qi et al., 2013). However,
cysteines in other positions of PATs such as the CRD and
other domains may also be autoacylated (Gottlieb et al., 2015).
For instance, DHHC3 has 6 auto-S-acylation sites where 5 in
the CRD, including Cys-132, Cys-133, Cys-146, Cys-157, and
Cys-163, 1 in the N-terminal domain (Cys-24) (Gottlieb et al.,
2015).

Techniques Used for Prediction and
Confirmation of S-acylated Cysteines in
Proteins
There is no consensus for sequences in the S-acylated proteins
despite that many such proteins have been isolated through
proteomics approach or individually confirmed via radioactive
labeling or/and mutation studies. Nevertheless, it is noted
that: (1) in some S-acylated soluble proteins the cysteine
residues that are S-acylated are frequently surrounded by
basic or hydrophobic amino acids, such as GAP-43 (Liu
et al., 1993) at N-terminal motif, Yck2 (Roth et al., 2002)
at C-terminal motif and SNAP-25b (Lane and Liu, 1997) at
cysteine string motif (Smotrys and Linder, 2004); (2) in other
S-acylated soluble proteins the Cys residue is located near
the prenylated or myristoylated residues, resulting in the so-
called dual lipidition. These proteins include the Arabidopsis α

and γ subunits of heterotrimeric G protein (Adjobo-Hermans
et al., 2006; Zeng et al., 2007), small GTPases (Deschenes
et al., 1990; Bartels et al., 1999; Roth et al., 2006; Zhang
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et al., 2013); 3 for transmembrane proteins, the Cys residues
are often situated in the cytoplasmic regions of membrane-
spanning regions (Roth et al., 2006; Ohno et al., 2012). For
instance, the S-acylation of C261-263 triplet in death receptor
4 (DR4) (Rossin et al., 2009) and C474 in β-secretase BACE1
(Motoki et al., 2012) promotes their association with lipid
raft.

Based on the above information several software packages
have been developed to predict the S-acylated cysteines, such
as a clustering and scoring strategy known as CSS-Palm (Zhou
et al., 2006), which has been updated to the latest version
CSS-Palm 4.0 (freely available at http://csspalm.biocuckoo.org/),
incremental feature selection (IFS)-Palm (Hu et al., 2011),
weight, amino acid composition and position specific scoring
(WAP)-Palm (Shi et al., 2013) and PalmPred (Kumari et al.,
2014). All of them are on-line so that one can input the
protein sequence of interest to predict the possibility of its
S-acylation and where the Cys residues are located within
the sequence. The prediction data from these platforms
can then be confirmed experimentally. These techniques
include:

1. PAT inhibitors. The palmitate analog, 2-bromopalmitate (2-
BP) is themost commonly used inhibitor of S-acylation, which
inhibits palmitoylation in cells and PAT activity of DHHC
proteins in vitro (Webb et al., 2000; Fukata et al., 2004;
Jennings et al., 2009). However, it lacks specificity and can
also inhibit myristoylation and reduce de-acylation through
inhibiting activities of acyl-protein thioesterases (Webb et al.,
2000; Pedro et al., 2013). Tunicamycin and cerulenin are
also used to inhibit S-acylation, but similar effect was found
as 2-BP (Patterson and Skene, 1995; Lawrence et al., 1999).
Recently, a compound, 2-(2-hydroxy-5-nitro-benzylidene)-
benzo[b]thiophen-3-one, was shown to have more specificity,
but it does not have selectivity for specific PAT, i.e., it inhibits
activities of all PATs (Jennings et al., 2009), which means it
still cannot be used to study the function of individual PAT.
Therefore, it is clear that results obtained from these inhibitors
should be further validated by mutational or biochemical
analysis.

2. Mutational analysis to change the potential S-acylated
Cysteine to alanine or serine. Both alanine and serine were
frequently used to replace the cysteine to achieve similar
results (Hemsley et al., 2005; Qi et al., 2013; Li et al.,
2016). Cysteine and serine have very similar structure,
when the cysteine is mutated to serine it can maintain the
size and the properties of the putative S-acylated protein,
in this case, serine is a better substitution for cysteine.
However, compare to alanine, serine is more hydrophilic than
cysteine and might also cause unwanted side chain effects
(Nagano et al., 1999). In this specific study, both alanine
and serine as the substitutions for cysteine are accepted
so far. This is followed by comparing the effect on the
differences of functions or the subcellular localizations to
native protein. If a difference was found the proteins were
most likely S-acylated at the cysteine residues that were
mutated.

3. Biochemical assays to analyze the attachment of fatty acids
of the individual proteins. This includes: (1) traditionally
feed with tritiated fatty acids followed by exposures to
X-ray film (Lavy et al., 2002); (2) azido-alkyne CLICK-
chemistry (Martin and Cravatt, 2009); (3) Acyl-exchange,
or Biotin-switch assay (Wan et al., 2007; Hemsley et al.,
2008); and (4) direct resin immobilization (Forrester et al.,
2011).

4. Direct detection of the S-acyl group by gas chromatography–
mass spectrometry (GC-MS) analysis. The identification
of lipid groups attached to proteins can help to
understand the biophysical properties of the protein.
This method has been successfully used to demonstrate
S-acylation of CBL1 and CBL2, which are attached
by palmitate and/or stearate (Batistic et al., 2008,
2012).

Specificities of PAT-Substrate Interaction
Although, it is generally accepted that PATs are lacking specificity
toward their substrate proteins and vice versa studies in yeast
showed that some PATs do exhibit preference to some substrate
protein(s) compared than others. For instance, Akr1 prefers to
S-acylate soluble proteins at their N- or C-terminus, such as
Ypl236c S-acylated at N-terminal cysteine and Yck1 S-acylated
at C-terminal cysteine. Erf2 and Pfa5 show preference for
pre-lipidated substrates, such as prenylated Ras1 and Ras2,
myristoylated Gpa1 and Gpa2. Swf1 and Pfa4, on the other
hand, prefer single and multiple transmembrane proteins such as
SNAREs and AAPs (Roth et al., 2006; Ohno et al., 2012). Similar
conclusions were made from studies of mammalian DHHC
proteins where it was found that DHHC3, 7, 8, and 14–17 had
high activities toward soluble proteins, while DHHC2, 20 and 21
were highly active to integral membrane proteins (Ohno et al.,
2012). However, it was also noted that most DHHC proteins in
both yeast and mammals had overlap activity to modify pre-
lipidated substrates, such as 4 yeast PATs and 16 mammalian
PATs can all S-acylate the myristoylated Gpa2 (Ohno et al.,
2012).

The question here is how PATs and their substrates
recognize each other? To address this, studies were carried out
on some PATs and their S-acylated proteins in mammalian
system. It was reported that the AR domain of the two
ankyrin repeat containing PATs DHHC13 and 17 in mammals
can act as substrate-recruiting signal and recognizes the
[VIAP][VIT]XXQP motif that is shared between some S-
acylated proteins including SNAP25/23, CSP, HTT, and CLIP3
(Lemonidis et al., 2015). Fusing the AR domain of DHHC17
to the N terminus of DHHC3 that lacks an AR domain, can
make DHHC3 a PAT for HTT which also supports the notion
that the AR domain contributes to the substrate specificity
of DHHC17 for HTT (Huang et al., 2009). DHHC3 and 7
interact with GABAAγ2 through a 14-amino acid cysteine
rich domain (Fang et al., 2006). DHHC7 has two splicing
isoforms, the longer one has additional 111 bp compared to
the shorter one, which might possess its tissue-specific function
since it expresses specifically in placenta, lung, liver, thymus
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and small intestine (Ohno et al., 2006). The recognition and
S-acylation of PSD95 by DHHC17 depend on the N-terminal
13 amino acids of PSD-95 (Huang et al., 2009). The cysteine
rich “CCPCC” motif of PI4KII is required for its S-acylation
by DHHC3 and DHHC7 (Lu et al., 2012). Subtle changes
in the S-acylation domains of proteins can alter their PAT
specificity, which were proved from SNAP23/25 (Greaves et al.,
2010). For instance, a SNAP25 mutant which lacks a proline
located 25 residues downstream of the S-acylated domain can
only be modified by DHHC3 but not DHHC17 (Greaves
et al., 2009). Therefore, specific domains in PATs and their
substrate proteins are required for recognition and S-acylation to
occur.

Subcellular localizations of PATs can have a profound effect on
the type of proteins it can S-acylate (Greaves and Chamberlain,
2011). A transmembrane protein might only have access to
be S-acylated by the PATs localized on the same membrane.
For example, the PM-localized Gpa1 is S-acylated by the PM-
localized Pfa5 in yeast (Ohno et al., 2006); tonoplast-localization
of AtCBL2 and AtCBL3 is via S-acylation carried out by AtPAT10
which is also localized on tonoplast in Arabidopsis (Zhou et al.,
2013).

For S-acylation of a protein to occur its prior membrane
attachment via TMD, another lipid modification or protein-
protein interaction is often acquired (Hemsley, 2015). For
instance, TEM8 localizes at PM with one TMD, S-acylation
of which negatively regulate its raft association (Abrami et al.,
2006). Some proteins require another lipid modification such
as myristoylation to target to certain membrane first before the
S-acylation can take place. AtCBL1 is one of these proteins
where myristoylation targets it on the ER, then the unknown
ER-localized PAT S-acylates the myristoylated AtCBL1. This
dual-lipidated AtCBL1 can subsequently be trafficked to the
PM (Batistic et al., 2008). It was reported that the N-
terminal 12-amino acid peptide of AtCBLs is sufficient to
mediate the dual lipid modification and target to PM or
tonoplast (Batistic et al., 2008). Therefore, the localization
of a specific PAT for a given S-acylated substrate protein
relies on where this protein is localized after the first lipid
modification.

Important Molecules That Are Involved in
S-acylation
Special molecules have either positive or negative effect
on S-acylation of certain proteins. These molecules could
be another protein, hormone, ions or protein inhibitors.
For instance, although most DHHC-PATs in mammals
can catalyze S-acylation independently DHHC9 needs a
Golgi-localized protein GCP16 to specially palmitoylate H-
and N-Ras (Swarthout et al., 2005). Ykt6, which possibly
works as a co-factor of Pfa3 enhanced the S-acylation and
vacuole localization of Vac8 (Dietrich et al., 2004; Hou et al.,
2005; Meiringer and Ungermann, 2006). S-acylation and
localization of Ras protein is catalyzed by the Erf2p-Erf4p
complex in yeast (Zhao et al., 2002). Zinc ion is tightly
bound to the cysteine rich domain of the DHHC3, which

is essential for its structural integrity and PAT activity
(Gottlieb et al., 2015). Selenoprotein K (SelK), an 11-
kDa endoplasmic reticulum protein of unknown function
(Shchedrina et al., 2011) is required for the S-acylation of
both IP3R (inositol-1, 4, 5-triphosphate receptor) and CD36
(Fredericks and Hoffmann, 2015). S-acylation of PI4KII is
cholesterol-dependent (Lu et al., 2012). Some compounds
might have negative effect to specific S-acylation, such as
curcumin can prevent S-acylation of integrin β4 by DHHC3
in breast cancer cells (Coleman et al., 2015). Understanding
the involvement of these molecules in S-acylation could
provide important information in designing and developing
new drugs to target the disease and cancer-related S-acylation
machinery.

CONCLUSION AND FUTURE
PERSPECTIVES

Ever since the discovery of the first S-acyltransferase, Akr1 from
yeast in 2002, which lead to the realization of protein S-acylation
being an enzymatic process rather than a simultaneous addition
of a long chain fatty acid to proteins, research on S-acylation of
proteins has accelerated in a remarkable speed in the past decade.
Yeast, as a simple unicellular model eukaryote, has been the
first choice for researchers to study S-acylation. The knowledge
learnt from the yeast system has then been applied in guiding
similar studies in other organisms. As such the important roles
of protein S-acylation in growth and development, especially in
different human diseases, such as cancers, have hence attracted
much attention and become a hot area of research in recent
years.

Although, progress has been made toward understanding
various aspects of protein palmitoylation the corresponding
research in plants is trailing behind that in yeast and mammals.
Judging from the wide arrays of S-acylated proteins identified
recently from Arabidopsis and Poplar by proteomic studies it is
clear that S-acylation plays variable and important roles in plant
growth, development and environmental adaption (Hemsley
et al., 2013; Srivastava et al., 2016). The knowledge learnt
and methodologies developed from yeast and mammals will
no doubt provide important clues and necessary tools for us
to conduct more efficient research on S-acylation in plants in
the coming years. Specifically, (1) the roles of the remaining
21 AtPATs in Arabidopsis will need to be characterized. PATs
from other plant species, such as poplar, especially with its S-
acylated proteins being isolated recently, will also need to be
characterized to see if plant PATs share functional similarity,
this will further validate the data obtained from Arabidopsis
PATs so far; (2) To match individual PATs with their S-acylated
substrate proteins in Arabidopsis and poplar. At present, the
only plant PAT with tentative mapped substrate proteins is the
Arabidopsis AtPAT10 where it was found that the tonoplast
localization of transiently expressed CBL2,3,6 were lost in the
protoplast prepared from leaf cells of AtPAT10 loss-of-function
mutant plant (Zhou et al., 2013). This indicates that AtPAT10
functions in calcium signaling and salt stress through the
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actions of these CBLs. Similar approaches could be used to
map other PAT/substrate(s) pairs in Arabidopsis and poplar.
This will provide further insights to substrate specificity of
PATs and molecular mechanisms how PATs function in plants;
(3) De-palmitoylation enzymes. S-acylation of proteins is a
reversible process where S-acylation is catalyzed by PATs and
De-palmitoylation is by acyl protein thioesterases. While 4
such enzymes have been identified and characterized from
mammals none from plant. Therefore, research in this area is
paramount.
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