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Plant’s secondary metabolites such as flavonoids, terpenoids, and alkaloids etc. are
known for their role in the defense against various insects-pests of plants and for
medicinal benefits in human. Due to the immense biological importance of these
phytochemicals, understanding the regulation of their biosynthetic pathway is crucial. In
the recent past, advancement in the molecular technologies has enabled us to better
understand the proteins, enzymes, genes, etc. involved in the biosynthetic pathway
of the secondary metabolites. miRNAs are magical, tiny, non-coding ribonucleotides
that function as critical regulators of gene expression in eukaryotes. Despite the
accumulated knowledge of the miRNA-mediated regulation of several processes, the
involvement of miRNAs in regulating secondary plant product biosynthesis is still poorly
understood. Here, we summarize the recent progress made in the area of identification
and characterizations of miRNAs involved in regulating the biosynthesis of secondary
metabolites in plants and discuss the future perspectives for designing the viable
strategies for their targeted manipulation.
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INTRODUCTION

Since the age of human civilization, plants are used as a source of nutrition and medicine,
which is evidenced by the numerous texts from China and India (Kirtikar and Basu, 1918; Tang
and Eisenbrand, 1992). The nutritional and medicinal properties of the plants are due to the
presence of numerous metabolites. These metabolites are of two types: primary and secondary.
Unlike primary metabolites, secondary metabolites are a huge group of phytochemicals, which
are not directly involved in plant’s vital processes such as growth, development, and reproduction
(Fraenkel, 1959) but they are major components in defense mechanism of plants in order to protect
them from any possible harm in the ecological environment (Stamp, 2003) and other interspecies
protection (Samuni-Blank et al., 2012). Humans have exploited secondary metabolites in the form
of flavoring agents, fragrances, insecticides, dyes, drugs, etc., More than 100,000 phytochemicals
have been isolated from different plant sources so far (Mahajan et al.,, 2011). These secondary
metabolites are broadly categorized as terpenoids, alkaloids, phenolics, glycosides, tannins, and
saponins (Verpoorte, 1998). These phytochemicals are synthesized in the plants for a specialized
need in a specific set of ecological conditions as their biosynthesis are highly energy consuming.
This kind of biosynthesis and accumulation behavior of secondary metabolites in plants is the
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result of tight regulation of their biosynthetic machinery.
Metabolic engineering may further pave a way for enhancing
biosynthesis of economically important phytochemicals or for
producing desired combinations of such chemicals. One of the
ways to tinker with biosynthetic pathways is through modulating
miRNA levels as miRNAs are the ultimate regulators in plants.

miRNAs are small (21-24 nucleotides), non-coding,
riboregulators that regulate gene expression in eukaryotes
(Jones-Rhoades et al., 2006). miRNA is transcribed by RNA
polymerase II as a precursor RNA known as the primary miRNA
(pri-miRNA), which is subsequently processed by DICER-LIKE
1 (DCL1) to release the mature miRNAs. These mature miRNAs
are then loaded into the RISC complex to bind mRNAs for
cleavage (Jones-Rhoades et al., 2006). miRNAs are well-known
molecules for their role in regulating various plants processes
under biotic and abiotic stresses (Gupta et al., 2014a,b; Shriram
et al, 2016). Recently, various reports suggested their roles
in regulating the biosynthesis and accumulation of secondary
metabolites in plants (see review Bulgakov and Avramenko,
2015). In the present review, we have updated the knowledge
about present understanding on miRNAs based regulation of
biosynthesis and accumulation of secondary metabolites in
plants.

ROLE OF miRNAs IN FLAVONOID
BIOSYNTHESIS

Flavonoids such as flavonols, flavones, isoflavones, anthocyanins,
proanthocyanidins, and phlobaphene pigments are low
molecular weight phenylpropanoid compounds which are
widely distributed throughout the plant kingdom (Taylor and
Grotewold, 2005; Lepiniec et al., 2006; Buer et al., 2010). These
polyphenolic metabolites play a variety of significant biological
roles such as protection against UV radiation, as signaling
molecules, as phytoalexins in plant-microbe interaction, and
as regulators of phytohormones such as auxin transport in
plants (Santelia et al., 2008; Buer et al., 2010). The flavonoid
backbone is synthesized by the central phenylpropanoid
pathway and different flavonoid metabolites share common
enzymes and substrates. Phenylpropanoid pathway is one of
the most extensively studied pathways of secondary metabolites
for transcriptional regulation in plants (Quattrocchio et al,
2006; Stracke et al., 2007; Li, 2014). In the past few years,
scientific endeavors are directed toward understanding the post-
transcriptional regulation of this pathway involving miRNAs.
The schematic representation of the general phenylpropanoid
pathway leading to major branches of flavonoid biosynthesis
and their possible interaction with miRNAs has been depicted in
Figure 1A.

About 17 SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE (SPL) proteins are encoded by the Arabidopsis genome
(Riese et al., 2007). These SPL transcription factors are reported
to affect numerous processes of plant growth and development,
such as vegetative phase transition by enhancing the expression
of miRNA172, flowering induction by LEAFY and MADS box
genes, embryonic development, cell size, trichome formation,

and fertility (Wu et al,, 2009; Yamaguchi et al,, 2009; Xing
et al, 2010; Yu et al,, 2010). In addition, miR156 targeted SPL9
protein has been shown to regulate the metabolic flux during
flavonoid biosynthetic pathway. Anthocyanins accumulate in an
acropetal manner in Arabidopsis stems, with the highest level
at the junction between the stem and the rosette leaves. This
array of anthocyanin accumulation is regulated by the miR156
targeted SPL9 gene in Arabidopsis (Gou et al., 2011). The tissues
having high anthocyanin concentration accumulate higher levels
of miRNA156 leading to reduced SPL activity which in turn
enhance the expression of F3'H, DFR, and other anthocyanin
biosynthetic genes. As a result, dihydroflavonols are directed
into the anthocyanin branch. On the other hand, expression of
SPLs gradually increases along the growing stem because miR156
levels decline as the plant progresses during development
(Gou et al., 2011). Therefore, increased accumulation of SPL
leads to decreased expression of anthocyanin biosynthetic
genes resulting in the increased production of flavonols
by FLS. It has been demonstrated that MYB-bHLH-WD40
transcriptional activation complex is destabilized by SPL9, a
target of miRNA156, by competing with bHLHs for their binding
to PAP1 which in turn inhibits expression of anthocyanin
biosynthetic genes (anthocyanidin synthase, flavanone 3-
hydroxylase, dihydroflavonol reductase, and UDP-glucosyl
transferase 75C1 etc.) influencing anthocyanin accumulation
in Arabidopsis (Gou et al, 2011). Similarly, miRNA156-
SPLY pair influences anthocyanin production by targeting
dihydroflavonol 4-reductase (Cui et al, 2014). Therefore,
an antagonistic relationship exists between anthocyanin and
flavonol biosynthesis in Arabidopsis. Recently, Biswas et al.
(2016) have computationally identified several miRNAs such as
miR172i, miR829.1, miR1438, miR1873, and miR5532 targeting
mRNAs coding for enzymes of phenylpropanoid pathway,
such as 4-coumarate-CoA ligase, Chalcone synthase, Caffeoyl-
CoA O-methyl transferase, Dihydroflavonol 4-reductase C,
2-hydroxyisoflavanone dehydratase respectively in Podophyllum
hexandrum (Table 1). Overexpression of miR8154 and miR5298b
in sub-cultured Taxus cell lines revealed their crucial role in the
regulation of taxol, phenylpropanoid, and flavonoid biosynthesis
pathways (Zhang et al., 2015). Similarly, several other miRNAs
of phenylpropanoid pathway, such as miR395p-3p/ targeting
bHLH mRNA in D. kaki (Luo et al, 2015), miR396b and
miR828a targeting mRNAs coding for Kaempferol 3-O-beta-
D-galactosyltransferase and anthocyanin regulatory C1 protein
respectively in R. serpentina (Prakash et al, 2016), miR858a
targeting R2ZR3-MYB mRNA in A. thaliana (Sharma et al., 2016),
miR6194 targeting Flavanone 3b-hydroxylase mRNA (F3H) in
H. caspica (Yang et al., 2015), miR1061-3p and miR1318 in pear
fruit (Wu et al., 2014) etc., (Table 1) have been reported.
Further, the wuse of advanced computational tools
complementing the experimental methods has accelerated
the accumulation of reports on new as well as existing miRNAs
implying their regulatory role during flavonoid pathway in
plants. Therefore, further work on functional characterization
of these tiny miRNAs-target networks using reverse genetic
approach would certainly pave a way for understanding post-
transcriptional regulatory mechanism of the flavonoid pathway.
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FIGURE 1 | (A) Schematic representation of the general phenylpropanoid pathway leading to major branches of flavonoid biosynthesis and their possible interaction
with miRNAs. Phe ammonia-lyase (PAL); cinnamate-4-hydroxylase (C4H); 4-coumaroyl:CoA-ligase (4CL); chalcone reductase (CHR), chalcone synthase (CHS);
(Continued)
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FIGURE 1 | Continued

stilbene synthase (STS); chalcone isomerase (CHI); flavanone 3-hydroxylase (F3H); isoflavone synthase (IFS); dihydroflavonol 4-reductase (DFR); isoflavone
O-methyltransferase (IOMT); isoflavone 2’-hydroxylase (12’H); isoflavone reductase (IFR); vestitone reductase (VR); 2’-dinydroxy, 49-methoxyisoflavanol dehydratase
(DMID); leucoanthocyanidin dioxygenase (LDOX); O-methyltransferase (OMT); UDPG-flavonoid glucosyl transferase (UFGT); rhamnosyl transferase (RT); flavonol
synthase (FLS); leucoanthocyanidin reductase (LAR); anthocyanidin reductase (ANR); anthocyanidin synthase (ANS). (B) Schematic representation of biosynthetic
pathway of volatile terpenoid and their possible interaction with miRNAs. acetoacetyl-CoA thiolase (AACT); HMG-CoA synthase (HMGS); HMG-CoA reductase
(HMGR); mevalonate kinase (MVK); phosphomevalonate kinase (PMK); mevalonate diphosphate decarboxylase (MVD); isopenteny! diphosphate isomerase (IDI);

synthase (GGDS).

geranyl diphosphate synthase (GDS); farnesyl diphosphate synthase (FDS); terpene synthase (TPS); DOXP synthase (DXS); DOXP reductoisomerase (DXR);
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (MCT); CDP-ME kinase (CMK); 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MDS);
(E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS); (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR); geranyl geranyl diphosphate

This information could further be used for metabolic engineering
of the entire pathway for human benefits.

ROLE OF miRNAs IN TERPENOID
BIOSYNTHESIS

Owing to their numerous biological roles, isoprene (C5),
monoterpenes (C10), and sesquiterpenes (C15) establish the
biggest class of plant volatile compounds. In plants, these
volatile compounds act as defense molecules against biotic
stresses, attracts pollinators and seed disseminators, and help
improve thermo-tolerance (Dudareva et al., 2006). In addition,
they are used as aroma compounds and natural flavor
enhancers which have the beneficial impact on human health
(Wagner and Elmadfa, 2003). Considering the importance
of these compounds, understanding the regulatory schema
of their biosynthetic pathway and accumulation stands on
priority. These volatile compounds are synthesized from
isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP), which are derived from two alternate biosynthetic
pathways localized in different subcellular compartments.
During the past several years, there has been a significant
progress in identification and characterization of genes and
enzymes involved in the biosynthesis of volatile terpenoids
(Figure 1B), determination of their spatiotemporal expression
and compartmentalization, and metabolic engineering. However,
the regulatory role of miRNAs in their biosynthesis and
accumulation is poorly understood, which opens a new window
for further investigations.

Terpene synthases (TPSs) Catalyses the conversion of farnesyl
diphosphate (FPP) into sesquiterpenes (C15). Transcription
factor SPL9, the target of miRNA156, directly binds to and
activates promoter of terpene synthases 21 (TPS21) gene and
positively regulates its transcription thereby regulating the
synthesis of sesquiterpenoid (Yu et al., 2015). Similarly, miR-
4995 was predicted to target mRNA of an enzyme 3-deoxy-7-
phosphoheptulonate synthase, which is involved in the picroside
biosynthetic pathway in a medicinal herb P. kurroa (Vashisht
et al,, 2015). In addition, Saifi et al. (2015), have mined and
validated 11 miRNAs which are involved in steviol glycoside
biosynthetic pathway (Table 1) in Stevia and established the
relationship pattern with the expression levels of their target
mRNAs as well as steviol glycoside contents. Using NGS
technology, several miRNAs involved in the sesquiterpene
biosynthesis pathway have been mapped and validated in X.
strumarium. For example, mRNAs of the upstream enzymes

in the pathways of terpenoid biosynthesis, including 1-
deoxy-D-xylulose 5-phosphate synthase (DXS), 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGR), isopentenyl
diphosphate (IPP)/dimethylallyl diphosphate (DM APP) synthase
(IDS), and isopenteyl diphosphate isomerase (IDI) were
predicted to be targeted by miR7539, miR5021, and miR1134
(Fan et al., 2015). The complete list of miRNAs and their
target genes have been provided in Table 1. Most recently,
bioinformatics approaches have been utilized to mine miRNAs
involved in terpenoid metabolism in Mentha spp. (Singh et al.,
2016a), Ginger (Singh et al, 2016b), C. roseus (Pani and
Mahapatra, 2013), and P. hexandrum (Biswas et al., 2016;
Table 1).

THE ROLE OF miRNAs IN THE
REGULATING BIOSYNTHESIS OF
ALKALOID AND OTHER N-CONTAINING
METABOLITES

Alkaloids are nitrogen containing low molecular-weight
compounds which are mostly derived from amino acids. They
are known to play significant roles in defense against herbivores
and pathogens and are being widely used as pharmaceuticals,
stimulants, narcotics, and poisons. Unlike other secondary
metabolites, this class is highly diverse and heterogenous in
nature and around ~12,000 alkaloids have been characterized
till date (Ziegler and Facchini, 2008). These compounds are
synthesized through diverse metabolic pathways. Recent genome
based technological advancement have led us to add to on
our current understanding of their biosynthetic pathways and
regulation. However, knowledge on the role of miRNAs during
alkaloid biosynthesis and accumulation in plant kingdom has
just started to proliferate.

Boke and his coworkers in 2014 have extensively worked
on regulation of the alkaloid biosynthesis by miRNA in
opium poppy. They identified pso-miR13, pso-miR2161, and
pso-miR408 as potential miRNAs involved in the alkaloid
biosynthetic pathway. Pso-miRNA2161 targets the mRNA
of gene encoding S-adenosyl-L-methionine: 30-hydroxy-
N-methylcoclaurine  40-O-methyltransferase 2 (40 MT)
enzyme which converts S-norcoclaurine into S-reticuline, an
intermediate molecule in benzylisoquinoline alkaloids (BIA)
biosynthesis. Similarly, pso-miR13 targets mRNA of 7-O-
methyltransferase (70 MT) gene, which converts S-reticuline to
morphinan alkaloids. pso-miR408 targets mRNA of reticuline
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oxidase-like protein which converts S-reticuline to (S)-scoulerine
in the BIA pathway. Endogenous target mimicry (eTM) of
miRNAs disturbs the function of corresponding miRNAs by
inhibiting binding of miRNAs with their authentic target genes
(Franco-Zorrilla et al., 2007). Therefore, Li and his co-workers
in 2015 have demonstrated that nta-eTMX27 inhibits the
expression and function of nta-miRX27 which targets mRNA
of quinolinate phosphoribosyl transferase 2 (QPT2) genes
leading to enhanced nicotine biosynthesis in the topping treated
tobacco. The most recent report by Mao et al. (2017) shows the
regulatory role of miR156 targeting SPL9 in the biosynthesis of
glucosinolates, which are secondary metabolites functioning as
defense metabolites against insect herbivores and pathogens. The
SPL9 interacts with JA ZIM-domain (JAZ) proteins, including
JAZ3 to control jasmonate synthesis. Increased level of jasmonate
further promotes the biosynthesis of glucosinolates. In addition,
several other workers have reported numerous miRNAs along
with their target genes involved in the alkaloid biosynthetic
pathway in P. hexandrum (Biswas et al., 2016), R. serpentina
(Prakash et al., 2016), and C. roseus (Pani and Mahapatra, 2013)
using computational approaches.

MODULATING SECONDARY
METABOLITES VS. PRIMARY METABOLITE
BIOSYNTHETIC PATHWAYS THROUGH
miRNAs

Unlike secondary metabolites, primary metabolites are required
by plants at every stage of their growth and development.
And also, the precursor molecules for secondary metabolite
biosynthesis are channelized from primary metabolites.
Regulation of primary metabolite biosynthetic pathways is well
explored at transcriptional, post-transcriptional and now at
DNA level, but secondary metabolic pathway are limited at the
transcriptional level and recently at post-transcriptional level
(miRNA). Therefore, till now, most of the work has focussed on
the role of miRNAs during primary metabolism of growth and
development. Recently, these miRNAs of primary metabolism
along with some other miRNAs are being reported for their
crucial role during secondary metabolism, for example, the
SPL-miRNA156 system (Gou et al., 2011). Similarly, miR-4995
targets 3-deoxy-7-phosphoheptulonate synthase gene involved
in the first step of phenylpropanoid pathway for picrosides I
biosynthesis (Vashisht et al., 2015). Being the first enzyme of the
pathway, this enzyme holds the key to the progress of pathway
as its down-regulation can affect the production of cinnamic
acid, thereby affecting picrosides I content. Taking into account
the regulatory roles of miRNAs, modification in the expression
of such miRNAs would be a promising approach to modulate
the biosynthesis of secondary metabolites in plants. SPL9 and
TCP3 transcription factors play a major role in secondary
metabolism regulation (Gou et al., 2011; Li and Zachgo, 2013)
and therefore miRNAs targeting these genes would be an
ideal candidate for such approach (Bulgakov and Avramenko,
2015). Nevertheless, identifying and understanding the spatial
and temporal expression schema of other miRNAs that might

regulate the flux movement at the branch point of primary
vs. secondary metabolic pathway and/or secondary metabolic
pathway alone would help designing better strategies to favor the
biosynthesis of economically important secondary metabolites.

CONCLUSION AND FUTURE DIRECTIONS

Owing to the diversity of the biosynthetic pathway of the
secondary metabolites and their biological significance in
both plants and human, exploring the regulatory schema of
the pathway is crucial. Despite the role of miRNAs during
different biotic and abiotic stresses and plant developmental
processes, their role in regulating the biosynthesis of secondary
metabolites had just started accumulating and it further
requires intense and focussed work. Studies on identification
of miRNAs and their targets at all possible steps of the
pathway and characterizing significant miRNAs-target pairs
using reverse genetics is one prime area to decipher the functions
of miRNAs. Deep sequencing technologies and the modern
computational approaches for miRNA predictions has resulted
in the accumulation of huge data on miRNAs. Despite the
availability of many computational algorithms, miRNA target
identification is still a major challenge. Many miRNA targets
which have miRNA binding sites with seed mismatches could
not be identified due to the inability of computational tools
(Doran and Strauss, 2007). Presently, most of the miRNA target
predictions, consider mRNA 3" UTRs and therefore the genes
that are regulated by miRNA through binding in the region other
than 3’ UTRs could not be identified (Place et al., 2008; Tay et al.,
2008). The miRNAs are part of complex regulatory networks
where a single miRNA control 1ots of genes. Thus, modulation of
single miRNA expression could result in complicated biological
consequences (Lee et al., 2014). This complexity makes functional
validation by knock-out or overexpression of these predicted
miRNAs a challenging issue.

Furthermore, understanding the DNA methylation profiles
of plant genomes and their interaction with miRNAs and self-
regulation of miRNAs would be an interesting future area of
research. In addition, Work on the potential of herbal medicine-
derived miRNAs in regulating human health or targeting genes
associated with diseases are another emerging area. Such studies
would help metabolic engineering of the entire biosynthetic
pathway for generating novel phytochemicals or for producing
desired combinations of such secondary metabolites.
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