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Genomics-assisted breeding methods have been rapidly developed with novel
technologies such as next-generation sequencing, genomic selection and genome-
wide association study. However, phenotyping is still time consuming and is a serious
bottleneck in genomics-assisted breeding. In this study, we established a high-
throughput phenotyping system for sorghum plant height and its response to nitrogen
availability; this system relies on the use of unmanned aerial vehicle (UAV) remote sensing
with either an RGB or near-infrared, green and blue (NIR-GB) camera. We evaluated the
potential of remote sensing to provide phenotype training data in a genomic prediction
model. UAV remote sensing with the NIR-GB camera and the 50th percentile of
digital surface model, which is an indicator of height, performed well. The correlation
coefficient between plant height measured by UAV remote sensing (PHUAV) and plant
height measured with a ruler (PHR) was 0.523. Because PHUAV was overestimated
(probably because of the presence of taller plants on adjacent plots), the correlation
coefficient between PHUAV and PHR was increased to 0.678 by using one of the two
replications (that with the lower PHUAV value). Genomic prediction modeling performed
well under the low-fertilization condition, probably because PHUAV overestimation was
smaller under this condition due to a lower plant height. The predicted values of PHUAV

and PHR were highly correlated with each other (r = 0.842). This result suggests that
the genomic prediction models generated with PHUAV were almost identical and that
the performance of UAV remote sensing was similar to that of traditional measurements
in genomic prediction modeling. UAV remote sensing has a high potential to increase
the throughput of phenotyping and decrease its cost. UAV remote sensing will be an
important and indispensable tool for high-throughput genomics-assisted plant breeding.

Keywords: genomic prediction, high-throughput phenotyping, near-infrared (NIR), sorghum plant height, UAV
remote sensing
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INTRODUCTION

Improving the throughput of phenotyping in the field is
a big challenge in plant genetics, physiology, and breeding.
The emergence of the next-generation sequencing technologies
enables us to obtain genome-wide DNA polymorphism data for a
large number of samples easily and rapidly (Mardis, 2007; Davey
et al., 2011). Statistical methods, such as genome-wide association
study (GWAS; Brachi et al., 2011; Korte and Farlow, 2013;
Huang and Han, 2014) and genomic selection (GS; Meuwissen
et al., 2001; Jannink et al., 2010) allow us to associate DNA
polymorphism data, which is extremely high-dimensional, to
phenotypic variations in agronomic traits. Boosted by these
technological developments, the efficiency of plant breeding is
expected to improve rapidly (Huang and Han, 2014). However,
phenotyping is still time consuming and labor intensive, and may
be more costly than genotyping. Thus, phenotyping has become a
serious bottleneck in the acceleration of plant breeding (Furbank
and Tester, 2011). Field experiments at multiple plant breeding
stations over a large geographic area are indispensable to evaluate
the adaptability of new candidate genotypes and to examine the
pattern of genotype-environment interaction (Chapman et al.,
2014). At each breeding station, a large number of genotypes
are tested in the field. Most of the measurements conducted in
the field are destructive and labor- and time-intensive, and thus
cannot be repeated frequently in the course of plant growth.
Because phenotypic data is necessary for genomics-assisted
breeding, it is the first priority to develop a high-throughput
phenotyping method.

Remote sensing using a low-altitude unmanned aerial
vehicle (UAV), such as radio-controlled multicopter, can solve
the problem described above. Besides low-altitude UAVs,
measurements using satellites (Inoue, 1997) and ground-based
vehicles (Lee and Searcy, 1999) have been applied for remote
sensing of growth conditions of crop plants (Sugiura et al.,
2005). However, satellites have low resolution, poor sensitivity
under cloudy conditions, and slow data transmission (Sugiura
et al., 2005; Zhang and Kovacs, 2012), and ground-based vehicles
cannot enter fields with tall crops or muddy soil (Sugiura
et al., 2005; Chapman et al., 2014). Low-altitude UAVs have
no such disadvantages and can be used without expert skills
(Merz and Chapman, 2011). Most low-altitude UAVs have an
autopilot function to fly automatically along a route designed
by mission planning software (Berni et al., 2009; Chapman
et al., 2014; Zarco-Tejada et al., 2014; Díaz-Varela et al., 2015).
Another widespread remote sensing technology is light detection
and ranging (LiDAR). However, this technology has some
shortcomings, e.g., high cost of data acquisition and processing
(Díaz-Varela et al., 2015). The emergence of computer-vision
technologies, such as the structure-from-motion and multi-view-
stereo algorithms, enables reconstruction of accurate 3D-models
from a series of images with a considerable overlap between
adjacent images. These technologies are attractive alternatives to
LiDAR, due to their high performance, flexibility, and relatively
low cost (Díaz-Varela et al., 2015). For remote sensing of plants,
near-infrared (NIR) cameras have been used in many studies
(Lee and Searcy, 1999; Sugiura et al., 2005; Berger et al., 2010;

Cabrera-Bosquet et al., 2011; van Maarschalkerweerd et al., 2013;
Colomina and Molina, 2014; Díaz-Varela et al., 2015; Torres-
Sánchez et al., 2015), because plant leaves (or chlorophylls)
strongly reflect NIR light (Knipling, 1970; Tucker, 1979; Fahlgren
et al., 2015) and some indices based on NIR reflectance rate,
such as normalized difference vegetation index (NDVI; Rouse
et al., 1974), are useful for identifying plants and assessing
their growing conditions via remote sensing. Some studies have
indicated that NIR sensors have advantages over standard RGB
sensors in plant monitoring (Nijland et al., 2014; Zhang et al.,
2016). Nevertheless, NIR cameras are less common, and often
more expensive than RGB cameras (or extra cost is needed to
modify RGB cameras into NIR cameras). Because remote sensing
is a promising tool for phenotyping, we compared the advantages
of RGB and NIR cameras in phenotyping and genomic prediction
modeling.

Genomic selection is a novel breeding method that allows
selection of complex traits with genome-wide markers. Because
the selection is performed on the basis of the genetic potential
predicted from these markers, GS requires building an accurate
prediction model based on a dataset of individuals or lines
that have been genotyped and phenotyped (Meuwissen et al.,
2001; Jannink et al., 2010). A large dataset is needed to build
an accurate prediction model. As mentioned above, however,
phenotyping is time consuming and labor intensive, and is a
serious bottleneck in building an accurate model. If UAV remote
sensing can streamline the collection of phenotypic data, it will
greatly enhance the potential of GS.

Using image-processing software for photogrammetry, we can
obtain ortho-mosaic and a digital surface model (DSM) from
UAV images (Gini et al., 2013). Ortho-mosaic is a distortion-
corrected image. DSM provides information on the altitude. In
plant science, DSM information has been applied to estimate
biomass and plant height of barley (Bendig et al., 2014), and
plant height, volume, and canopy size of olive trees (Zarco-Tejada
et al., 2014; Díaz-Varela et al., 2015; Torres-Sánchez et al., 2015).
Currently, we are using genomics-assisted breeding to develop a
sorghum [Sorghum bicolor (L.) Moench] variety that can be used
for high bioethanol production for biofuel. Plant height is one
of the most important traits affecting bioethanol yield. Because
some sorghum accessions may be taller than 4 m, they are usually
cut for measurements, which are labor intensive, whereas GS
requires phenotypic data and marker genotype data for a large
number of accessions.

The objectives of this study are the validation of the usefulness
of UAV remote sensing for measurement of sorghum plant height
and for genomic prediction modeling. First, we confirmed the
accuracy of plant height estimates from UAV images under the
conditions of small plot size. Next, we examined the accuracy
of genomic prediction of plant height trained by UAV remote
sensing data and data manually measured with a ruler. To
evaluate the robustness of this method to plant height variation
related to environmental differences such as nutrition level,
sorghum plants were grown at two levels of nitrogen availability.
We also compared the measurement and prediction accuracy of
different cameras and different procedures of remote sensing data
analysis.
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MATERIALS AND METHODS

Field Experiment
In this study, we used 172 accessions from sorghum germplasm
collections (Supplementary Table 1). Of these, 78 accessions
were from the world core collection of NIAS (National Institute
of Agrobiological Science, Ibaraki, Japan; integrated into the
National Agriculture and Food Research Organization from
April 1, 2016), 91 were from the sorghum mini core collection
of ICRISAT (International Crops Research Institute for the
Semi-Arid Tropics, Patancheru, India) and 3 were original
cultivars developed by EARTHNOTE Co., Ltd. (Okinawa, Japan).
Seeds were sown on 200-cell plug trays on May 8, 2014.
Seedlings were transplanted to a field of the Institute for
Sustainable Agro-ecosystem Services, the University of Tokyo
(Tokyo, Japan; 35◦44′09.1′′N, 139◦32′23.7′′E, 60 m above the
sea level) on June 9, 2014. An outline of the field design is
shown in Figure 1. To investigate the effect of fertilization on
plant growth, we used normal (N-P-K: 1.2-1.8-1.6 kg/a) and
low (N-P-K: 0.6-1.8-1.6 kg/a) fertilization in two replications
per treatment per accession (172 × 4 = 688 plots in total).
Five plants were grown in each plot (inter-plant spacing,
0.3 m; inter-row spacing, 0.72 m). On October 2 and 3,
two plants per plot were harvested and their height was
measured with a ruler. In total, 688 × 2 = 1,376 plants were
measured.

Remote Sensing Experiment
The radio-controlled quadcopter USM-S1 (Air4D Co., Ltd.,
Tokyo, Japan; Figure 2A), was used as a UAV for remote sensing.
Two digital cameras, Canon PowerShot ELPH 110HS (Canon
Inc., Tokyo, Japan), were installed on the UAV (resolution, ca.
16.1 million pixels; sensor size, 6.2 mm × 4.7 mm; focal length,
4.3–21.5 mm). One was a normal RGB camera, and the other one
was modified to capture NIR, green and blue (NIR-GB). The NIR-
GB camera was purchased at MaxMax Inc. (Carlstadt, NJ, USA).
The focal length was set at 4.3 mm. The focus was adjusted by

the camera auto-focus function. On the ground at each corner
of the field, we installed a white acrylic disk (27 cm in diameter)
as a ground control point (GCP) (Figure 2C). The positions of
GCPs in the World Geodetic System were measured by using GPS
(Geo7X, Trimble Inc., Sunnyvale, CA, USA) and used in image
processing.

To compare plant height measured with the UAV (PHUAV)
and plant height measured with rulers (PHR), we performed
a remote-sensing experiment on the first day of harvest
(October 2). The weather on that day was cloudy. ISO sensitivity,
which is an indicator of light sensitivity provided by the
International Organization for Standardization (Vernier, Geneva,
Switzerland), was set at 320 and shutter speed at 1/1,250 s for
the RGB camera; ISO sensitivity was 800 and shutter speed
was 1/800 s for the NIR-GB camera. The UAV was controlled
by an autopilot system with GPS to fly along a pre-defined
course designed by the PC Ground Station software (DJI Co.,
Ltd., Shenzheng, China). The outline of the flight course is
shown in Figure 2B. The course was designed so that the
vertical overlap of images was 70% and horizontal overlap was
30%. Photographs were taken at an altitude of 40 m, total
flight time was about 10 min, and 30 photographs were taken.
From an altitude of 40 m, the resolution was ca. 13 mm per
pixel. A preliminary remote sensing experiment was performed
on July 23 with the RGB camera NEX-7 (Sony Corporation,
Tokyo, Japan; resolution, ca. 24 million pixels; sensor size,
23.5 mm × 15.6 mm) with a lens of focal length 20 mm. The
following parameters were used in the preliminary experiment:
ISO sensitivity, 100; shutter speed, 1/800 s; altitude, 50 m; 78
photographs were taken. From an altitude of 50 m, the resolution
was ca. 10 mm per pixel. Because plants were still small on
June 23, we used the data collected on July 23 to obtain DSM
data on the ground surface of the field. Although NEX-7 has
higher resolution than PowerShot ELPH 110HS, it is heavier
and thus we could not mount two types of cameras (RGB and
NIR) simultaneously on the UAV. At an altitude of 40 m, the
resolution of PowerShot ELPH 110HS was similar to that of

FIGURE 1 | Field design in this study.
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FIGURE 2 | Unmanned aerial vehicle used. (A) Images of UAV used in the study, (B) An image taken in this study, (C) Outline of the flight course and (D) The size
of one plot and one divided block. Positions of GCPs in the World Geodetic System were measured by using GPS.

NEX-7. Therefore, we used PowerShot ELPH 110HS for remote
sensing.

Image Processing
Both RGB and NIR-GB images were analyzed in the same way.
By using the in-house structure-from-motion software Nadir-
metry (Air4D Co., Ltd., Tokyo, Japan), ortho-mosaic images and
DSM data were constructed from images taken by the UAV with
the geographic coordinates of GCPs. Although the structure-
from-motion algorithm of Nadir-metry is similar to that in
other software, it has some advantages in feature point matching
and generating point clouds. In the algorithm of Nadir-metry,
feature point matching is performed by taking into account
the correspondence between overlapping images estimated from
their geographic coordinates. As a result, spatial skew hardly
occurs. In the generation of point clouds, all pixels were analyzed
to detect matching points. This decreased the number of missing
matches and prevented point clouds from being sparse. Because
DSM values were calculated based on the World Geodetic System
1984 and they did not directly reflect the ground height of objects,
we estimated the height of sorghum plants by subtracting the
DSM values of the ground surface of the field on July 23 from
the DSM values on October 2, as in Bendig et al. (2013). From

the location of each plot determined on the ortho-mosaic image,
we obtained PHUAV for each plot from the DSM data. Because
adjacent plots were close to each other, DSMs of plot boundaries
were contaminated with data originated from adjacent plots, and
might have higher error than those inside a plot. To exclude
marginal areas, we divided each plot into 9 blocks (3 × 3)
and analyzed only the central block. That is, the plot size was
0.72 m × 1.8 m and corresponded to ca. 55 × 138 pixels
(Figure 2D) at a resolution of 13 mm per pixel in DSM. The size
of the central block was 0.24 m × 0.6 m, corresponding to ca.
18 × 46 pixels of DSM (Figure 2D). Each pixel had a DSM value
that was construed as the altitude of the location. We calculated
the 50th (median), 75th, 90th, and 99th percentiles of DSM values
of the central block as the representative values of PHUAV for the
plot. We evaluated the accuracy of PHUAV from its correlation
coefficients with PHR and also from root mean square difference
(RMSD):

RMSD =

√√√√ 1
688

688∑
i=1

(PHUAV,i − PHR,i)2,

where PHUAV, i and PHR, i are the PHUAV value and the PHR
value of the ith plot, respectively.
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Treatment of Unexpected Values
We assumed that if a plot of a tall accession and that of a
small accession were adjacent in the field, the plants of the small
accession might be overlapped by those of the tall accession on
images, and DSMs of the small accession might be overestimated
because they were strongly contaminated by data originated from
the tall accession. To confirm this, we compared the correlation
between PHUAV and PHR under three conditions: (1) using data
of the replication with higher PHUAV value for each accession;
(2) using data of the replication with lower PHUAV value for
each accession; (3) using average PHUAV value of two replications
for each accession. As described later, the result using the lower
PHUAV was better than others, and the replication with lower
PHUAV value for each accession was used in the following
analysis.

Genomic Prediction Modeling
We built genomic prediction models for both PHUAV and
PHR, and compared the predicted values. To obtain DNA
polymorphism data, we used restriction site-associated DNA
sequencing (RAD-Seq; Baird et al., 2008); which is cheaper
than whole genome sequencing especially for analysis of DNA
polymorphism of large number of accessions. We obtained
the data for 66,132 SNPs in 151 accessions (Supplementary
Table 1). Genomic best linear unbiased prediction (G-BLUP)
using rrBLUP (Endelman, 2011) was used for the modeling. To
calculate predicted values for the 151 accessions and compare
them for PHUAV and PHR, we performed leave-one-out cross-
validation. In cross-validation, a model built with the PHUAV or
PHR data of 150 of the 151 accessions was used to predict the
PHUAV or PHR values of the remaining accession from its DNA
polymorphism data. By comparing the observed and predicted
values of both PHUAV and PHR, we evaluated whether manual
measurements (PHR) can be replaced with the measurements
using UAV remote sensing (PHUAV) in the collection of data for
building a model.

RESULTS

Image Processing and Measurement of
Plant Height via UAV Remote Sensing
For both RGB and NIR-GB cameras, ortho-mosaic images
and DSM heat maps of the experimental field before harvest
were constructed by using 30 remote-sensing images taken on
October 2 (Figure 3).

To assess the accuracy of plant height measurements, we
compared the correlation between PHUAV and PHR obtained
with the two cameras at the 50th, 75th, 90th, and 99th percentiles
of DSM values (Figure 4). Although there was no significance
between two correlation coefficients (RGB vs. NIR-GB) at any
combinations, correlation coefficients were higher for the NIR-
GB than for RGB camera: 0.523 vs. 0.518 (50th percentile), 0.507
vs. 0.504 (75th), and 0.496 vs. 0.491 (90th). However, correlation
coefficients were higher for RGB (0.475) than for NIR-GB (0.473)
at the 99th percentile. RMSD between PHUAV and PHR was

lower for the NIR-GB than RGB camera: (0.649 vs. 0.883 (50th
percentile), 0.626 vs. 0.827 (75th), 0.628 vs. 0.792 (90th), and
0.665 vs. 0.759 (99th). PHUAV obtained from the RGB camera
underestimated PHR because the points were distributed below
the y = x line in Figure 4. PHUAV obtained from the NIR-GB
camera estimated PHR more accurately, especially at the 90th and
99th percentiles, as evidenced by smaller RMSD in RGB than in
NIR-GB.

The relationship between PHUAV and PHR suggested that
PHUAV was overestimated at PHR values of <2.0 m (Figure 4).
To assess whether the presence of taller plants on adjacent plots
resulted in overestimation, we calculated two types of ratio for
each plot as follows:

r1 =
max{PHR,i,k|k = 1, 2, ...,N}

PHR,i
, r2 =

PHUAV,i

PHR,i

where PHR, i and PHUAV, i are the PHR and PHUAV values of
the ith plot, respectively, and N = 8 in this case. PHR, i, k is the
PHR value of the kth (1–8) plot adjacent to the ith plot. The ratio
r1 represents the degree of height difference among the plants
on adjacent plots. The ratio r2 represents the degree of over-
or under- estimation of PHUAV against PHR. A scatter plot of
these ratios for one combination (NIR-GB camera and the 50th
percentile of DSM values) is shown in Supplementary Figure 1A;
the results for other combinations were similar. Theoretically,
the PHUAV/PHR ratio is expected to be approximately constant
if UAV measurements are accurate, because both PHUAV and
PHR are expected to be the true values of plant height (with
measurement errors). If we regarded PHR as the true plant
height, the PHUAV/PHR ratio became large, i.e., the PHUAV was
overestimated against PHR (Supplementary Figure 1A) when
PHR on adjacent plots was 1.5 times that on the central plot. This
result suggests that the presence of taller plants on an adjacent
plot prevents accurate construction of the DSM of the target plot
because of the overlapping effect.

We analyzed the relationships between PHUAV and PHR for all
the combinations of the two cameras and four percentile values
separately for each of two replications (one with the lower PHUAV
value, the other one with the higher PHUAV value) and the average
(Figure 5). For all combinations, the correlation coefficients were
highest (around 0.65) for the replications with lower PHUAV
values and lowest (around 0.40) for the replications with higher
PHUAV values. Correlation coefficients with lower PHUAV were
significantly higher than those with mean PHUAV at significant
level of 10% at all combinations. This result suggested that the
lower PHUAV values were more reliable.

Genomic Prediction Modeling
To evaluate the accuracy of genomic prediction for PHUAV
and PHR and the agreement between their predicted values,
we obtained these values via leave-one-out cross- validation
for all sorghum accessions cultivated under normal and
low fertilization conditions. The relationships between
the observed and predicted PHUAV and PHR values are
shown in Figure 6. If the combination of two cameras
and four representative values is different, the combination
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FIGURE 3 | Ortho-mosaic and DSM heat map of October 2. Upper images were originated from the standard RGB cameras and lower images were originated
from the NIR-GB (near-infrared, green, blue) camera. DSM provides information of the altitude. The resolution was ca. 13 mm per pixel. The sizes of both the
ortho-mosaic and DSM were 10,701 × 8,061 pixels in RGB and 10,749 × 8,041 in NIR-GB; the ortho-mosaic and DSM were built from 30 images (4,608 × 3,456
pixels each).

FIGURE 4 | Accuracy under different cameras and different percentiles of DSM. The diagonal line indicates y = x; r, correlation coefficient; RMSD, root mean
square difference. PHUAV is the plant height measured with the UAV and PHR is that with rulers. PHUAV values were calculated as 50th, 75th, 90th, and 99th
percentile of DSM values in each plot.

of selected replications for each fertilization condition is
also different. For example, we consider two combinations:
(i) (PHUAV of replication 1) < (PHUAV of replication 2)
for accession A and (PHUAV of replication 1) < (PHUAV

of replication 2) for accession B in a combination of two
cameras and four percentiles of DSM values (combination 1),
and (ii) (PHUAV of replication 1) < (PHUAV of replication 2)
for accession A and (PHUAV of replication 1) > (PHUAV
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FIGURE 5 | Comparison of lower, high and average PHUAV from two replications. (A) RGB camera and (B) NIR-GB camera. The diagonal line indicates
y = x; r, correlation coefficient; RMSD, root mean square difference.

of replication 2) for accession B in another combination
(combination 2). Then, for accession A, replication 1 is selected
as the plot with the lower PHUAV value in both combinations,
whereas for accession B replication 1 is selected in combination
1 and replication 2 is selected in combination 2 as the plot with
lower PHUAV value. The same combinations of replications were

also used for PHR. However, the combinations of replications
were almost the same between different combinations of two
cameras and four percentiles. Because of this, the results of
PHR prediction with different cameras and different percentiles
were similar to each other. The combinations with the highest
and the lowest correlation coefficients are shown in Figure 6
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FIGURE 6 | Relationships between observed and predicted PHUAV and PHR values in genomic prediction under normal and low fertilization
conditions. (A) Normal fertilization and (B) Low fertilization. r, correlation coefficient. For PHR, only the combinations the highest and lowest correlation coefficients
are shown.

for PHR prediction. Under normal fertilization, correlation
coefficients between observed and predicted PHUAV were
less than 0.5 (range, 0.448–0.492) for all combinations of the
type of cameras and the percentiles of DSM, whereas those
for PHR ranged from 0.629 to 0.675. Correlation coefficients
for PHUAV were higher under low fertilization than under
normal fertilization in all combinations. Although almost all
combinations had lower correlation coefficients for PHUAV
than for PHR, the correlation coefficient for PHUAV in the
combination of NIR-GB and 50th percentile was as high as
that for PHR (Figure 6). Predicted PHUAV and predicted
PHR highly correlated with each other in all combination,
(correlation coefficients ≥ 0.66 under low fertilization and
≥0.78 under normal fertilization except for one combination;
Figure 7).

DISCUSSION

We introduced UAV remote sensing for high-throughput
measurement of sorghum plant height, and applied it to
genomic prediction modeling. The results of this study

suggest the potential of UAV remote sensing for the high-
throughput phenotyping of plant height in sorghum. Some
sorghum genotypes are too tall to measure the height of
the plants without harvesting them. Our approach would not
only decrease labor cost but would also allow observation
of plant growth over time. Traditionally, all accessions are
measured only once, although their growth stages at the
measurement time may differ. Our remote sensing approach
would allow comparison of accessions at the same growth
stage.

Using UAV remote sensing, we could not measure sorghum
plant height as accurately as that of barley (which is smaller than
sorghum) measured by Bendig et al. (2014). One reason may
be that tall sorghum plants overlap (Supplementary Figure 1).
Another reason may be low plant density: 3.9 plants/m2 vs. 300
plants/m2 in Bendig et al. (2014); we can see the sparseness
of plants in a plot in Figure 1. If plant density is high
enough to form a continuous canopy, most of the matched
points are captured from the canopy and DSM reflects plant
height precisely. However, because of the sparseness, matched
points included not only the top of canopy but also the
ground or lower parts of plants. This could cause errors on
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FIGURE 7 | Relationships between predicted PHR and predicted PHUAV under normal fertilization and low fertilization condition. (A) Normal fertilization
and (B) Low fertilization. r, correlation coefficient.

DSM in plant height measurement. Increasing plot size and
plant density may improve the measurement accuracy. We can
easily measure plant height multiple times with UAV remote
sensing, which would probably also reduce measurement error.
An important point is that the predicted PHUAV values were
highly correlated with the predicted values of PHR, even though
the correlation between the observed values of PHUAV and
PHR was not high. This is because the observed values of
PHUAV and PHR had different types of errors (e.g., errors
from manual measurements and UAV measurements). Higher
correlation between the predicted values suggests that they were
less affected by errors than observed values. If we can reduce
the measurement errors of UAV remote sensing by improving
technologies or by repeating measurements, UAV remote sensing
will perform better than manual measurements for genomics-
assisted breeding.

We also found that using the lower value of PHUAV of
the two replications for each association seemed to reduce the
overlapping effect (Figure 5). For the replications with the lower
value PHUAV values, the correlation coefficients of PHUAV and
PHR were not largely different for the RGB and NIR-GB cameras.
The RGB camera underestimated PHUAV and the RMSD value
of this camera was higher than that of the NIR-GB camera.
For genomic prediction modeling, the correlation coefficients
between observed and predicted values were higher for NIR-GB
than RGB (Figures 6, 7), indicating that NIR-GB was slightly
superior for this purpose. Only the combination of NIR-GB and
50th percentile under low fertilization resulted in a correlation
coefficient between observed and predicted values for PHUAV
close to that for PHR (Figure 6). Prediction of plant height was
less accurate under normal than under low fertilization. This
may suggest that the overlapping effect was stronger when plants
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were larger. NIR-GB was better than RGB under both fertilization
conditions. Like in crop identification (Zhang et al., 2016) and in
monitoring of plant condition (Nijland et al., 2014), a NIR sensor
may perform better than a standard RGB sensor for remote
sensing in plant breeding.

In the case of the NIR-GB camera, the correlation coefficient
was the highest at the 50th percentile of DSM values, whereas
the RMSD value was the lowest at the 99th percentile. At the
99th percentile, PHUAV was almost the same as PHR. RMSD
became higher, but the number of outliers also increased, which
reduced the correlation coefficient. At the 50th percentile, the
number of outliers was low in PHUAV measurements and the
correlation coefficient became higher, but the difference between
the PHUAV and PHR values increased and RMSD became
lower. There is probably a trade-off between the correlation
coefficient and RMSD. If accurate plant height measurements
are required, PHUAV at the 99th percentile of DSM will perform
well. In this study, PHUAV at the 50th percentile of DSM was
better than at other percentile values regarding the accuracy
of both plant height measurements and genomic prediction
modelings.

The collection of PHUAV data required 3 people × 10 min,
while collection of PHR data required over 10 people × 2 days.
Because GS and GWAS require phenotyping of a large number of
accessions or plants, UAV remote sensing will be an important
and indispensable tool for high-throughput genomic-assisted
plant breeding.

Using digital cameras, we can measure canopy cover from
images taken right above the plants (Purcell, 2000) and relate it
to plant density, early vigor, leaf size, and radiation interception
(Liebisch et al., 2015). Using NIR sensors, we can measure NDVI
of the canopy and relate it to canopy biomass and nitrogen status
(Hansen and Schjoerring, 2003). Using thermal sensors, we can
measure canopy temperature (Berni et al., 2009) and relate it to
water stress (Jackson et al., 1981).

Not all of the studies used UAV remote sensing. However, by
attaching appropriate sensors to an UAV, we can obtain various
types of information from plants grown in the field and measure
important target trait-related characteristics. Combination of

machine learning and image analysis enables the evaluation of
complex traits, such as flowering date (Guo et al., 2015). In the
future, various kinds of plant phenotyping data will be measured
in parallel and in a high-throughput manner by UAV remote
sensing.
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