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The microRNA (miRNA) can regulate the transcripts that are involved in eukaryotic cell

proliferation, differentiation, and metabolism. Especially for plants, our understanding

of miRNA targets, is still limited. Early attempts of prediction on sequence alignments

have been plagued by enormous false positives. It is helpful to improve target

prediction specificity by incorporating the other data sources such as the dependency

between miRNA and transcript expression or even cleaved transcripts by miRNA

regulations, which are referred to as trans-omics data. In this paper, we developed

MiRTrans (Prediction of MiRNA targets by Trans-omics data) to explore miRNA

targets by incorporating miRNA sequencing, transcriptome sequencing, and degradome

sequencing. MiRTrans consisted of three major steps. First, the target transcripts of

miRNAs were predicted by scrutinizing their sequence characteristics and collected

as an initial potential targets pool. Second, false positive targets were eliminated if

the expression of miRNA and its targets were weakly correlated by lasso regression.

Third, degradome sequencing was utilized to capture the miRNA targets by examining

the cleaved transcripts that regulated by miRNAs. Finally, the predicted targets from

the second and third step were combined by Fisher’s combination test. MiRTrans was

applied to identify the miRNA targets for Capsicum spp. (i.e., pepper). It can generate

more functional miRNA targets than sequence-based predictions by evaluating functional

enrichment. MiRTrans identified 58 miRNA-transcript pairs with high confidence from 18

miRNA families conserved in eudicots. Most of these targets were transcription factors;

this lent support to the role of miRNA as key regulator in pepper. To our best knowledge,

this work is the first attempt to investigate the miRNA targets of pepper, as well as

their regulatory networks. Surprisingly, only a small proportion of miRNA-transcript pairs

were shared between degradome sequencing and expression dependency predictions,

suggesting that miRNA targets predicted by a single technology alone may be prone to

report false negatives.

Keywords: pepper (Capsicum spp.), miRNA targets, miRNA sequencing, transcriptome sequencing, degradome

sequencing, lasso regression
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INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs (∼22-nt)
that arise from short stem-loop precursors through the double-
stranded ribonuclease (Bernstein et al., 2001). They are found
widely exist in plants, animals, and bacteria. By directly binding
to the transcripts, their regulations result in transcript cleavage
or translational protein repression. The miRNAs serve as key
regulators in cell proliferation, differentiation, metabolism, and
apoptosis (Calin and Croce, 2006; Ameres and Zamore, 2013).

Although novel miRNAs remains to be discovered, exploring
their targets is more crucial to understand the mechanisms of
miRNA. Comparing with transcripts, miRNAs are of shorter
lengths and they are supposed to bind their targets anywhere
in the sequence. Many studies have been proposed to identify
miRNA targets by sequence-based prediction tools (Zhang, 2005;
Zhang et al., 2009; Dai and Zhao, 2011; Milev et al., 2011; Iossifov
et al., 2014).

Sequence complementarity forms the basis of many miRNA
target discovery tools. In plants, sequence complementarity is
strongly observed, especially for the positions from the 2nd to
the 13th of mature miRNA sequences (5′ end) with their targets
(Dai and Zhao, 2011; Dai et al., 2011). Other characteristics of
miRNA base-pairing were also exploited, e.g., target accessibility
and the presence of multiple miRNA binding sites on the same
transcript (Axtell et al., 2006; Brodersen and Voinnet, 2009).
The free energy of sequence hybridization was also considered
as an attribute of miRNA target prediction. The lower free energy
required for binding, the more likely the binding site exists (Yue
et al., 2009). RNAhybrid (Muckstein et al., 2006) was developed
to utilize the free energy of hybridization, which successfully
identified several novel targets of bantam in Drosophila, such as
the hid, Nerfin-1, and Dll (Muckstein et al., 2006; Kertesz et al.,
2007).

MiRNA targets predicted solely on sequence characteristics
are glutted by false positives (Yue et al., 2009) since the
sequences of miRNA-target pairs may be complementary by
random chance. This may result in unproductive experimental
validation. Alternative methods have been devised to eliminate
false positives by investigating the expression correlations
between miRNAs and their putative targets. The putative targets
are removed if their expressions are weakly correlated with
the miRNAs. These correlations are commonly computed by
linear correlation (Xiao et al., 2009) or mutual information
(Hsu et al., 2011). However, these two methods are unable to
distinguish those false targets which co-express with the true
ones. This issue can be alleviated by the predictive models such
as multivariate linear regression (Jayaswal et al., 2009; Beck et al.,
2011), regularized least square, and Bayesian network (Mootha
et al., 2003; Carmona-Saez et al., 2007; Ragan et al., 2011).
We applied transcriptome sequencing to quantify transcript
expression, which was proved to be better thanmicroarray (Iancu
et al., 2012). On the other hand, degradome sequencing can help
in identifying cleaved transcripts directly by sequencing the 5’
ends of uncapped RNAs, which is considered as the miRNA
regulation productions. Through this technology, Addo-Quaye

et al. detected 100 potential miRNA targets inArabidopsis (Addo-
Quaye et al., 2008), which has been identified previously (Jones-
Rhoades et al., 2006). Degradome sequencing also led to the
identification of 160 targets of 53 miRNA families in rice (Li
et al., 2010), including the CCS1, a novel and conserved target
of miR398.

Most of the targets of a given miRNA are expected to
be involved in the similar functions, especially for plant
miRNAs. For instance, the targets of a human miRNA
i.e., let-7b, are enriched in the genes (including PRDM2,
DUSO9, OSMR, NDST2) from the same Gene Ontology
annotation (Huang et al., 2007). This assumption allows one
to refine miRNA targets by leveraging gene co-expression
rank, as demonstrated in CoMeTa (Gennarino et al., 2012).
Furthermore, for plants such asArabidopsis, miRNAdemonstrate
a tendency to regulate genes from the same protein family.
For example, miR156 and miR157 bind to the genes in
Squamosa-promoter Binding Protein(SBP)-like proteins; the
targets of miR170 and miR171 are enriched in GRAS domain
proteins (SCARECROW-like) (Rhoades et al., 2002; Jones-
Rhoades et al., 2006; Chen, 2009; Borges et al., 2011; Song et al.,
2011).

In this study, we developed MiRTrans, a program to predict
MiRNA targets by Trans-omics data. The trans-omics data
includes miRNA sequencing, transcriptome sequencing and
degradome sequencing (Figure 1). MiRTrans consists of three
steps. First, the potential miRNA targets were collected by
combining the non-redundant targets predicted by sequence-
based tools psRNATarget (Dai and Zhao, 2011) and Tapir
(Bonnet et al., 2010). Second, the targets were eliminated if the
expressions of miRNAs and their targets are weakly correlated
by lasso regression. The significance of regression coefficients
was evaluated by Wald test and they were usually zero for
irrelevant targets through L1-norm constrain. Third, degradome
sequencing was utilized to capture the miRNA targets by
examining the cleaved transcripts regulated by miRNAs. The
second and third steps were parallel and were based on the
independent data sources. Finally, the predicted targets from
these two steps were combined by Fisher’s combination test. The
p-values were further rectified by Bonferroni correction to deal
with multiple testing issue. We reported MiRTrans predictions
on Capsicum spp. the only plant with trans-omics data which we
have full access to.

Our results showed MiRTrans produced more functional
miRNA targets comparing with sequence-based predictions,
where the targets from the same miRNA were prone to be
enriched in Gene Ontology, KEGG pathway, gene co-expression
modules, or predicted gene families. MiRTrans identified 58
miRNA-target pairs with high confidence for 18miRNAs families
conserved in eudicots. Most of these targets were transcription
factors; this lent support to the role of miRNA as a key regulator
in pepper. Our results also showed that only a small proportion of
miRNA targets were shared between the predictions of miRNA-
transcript expression dependency and degradome sequencing,
which indicated that the miRNA targets may be lost if they were
predicted by single data source (Section Results).
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FIGURE 1 | The workflow of MiRTrans.

METHODS

The MiRTrans Algorithm
The workflow of MiRTrans is described in Figure 1. To
predict miRNA target more efficiently, MiRTrans incorporated
the information from a variety of data sources including
miRNA sequencing, transcriptome sequencing, and degradome
sequencing. MiRTrans started from examining the characteristics
of miRNA-transcript sequences by integrating the predictions
from psRNATarget (Dai and Zhao, 2011) and Tapir (Bonnet
et al., 2010). Next, lasso regression was applied to evaluate
the expression dependency between miRNA-transcript pairs
from sequence-based prediction. Weakly correlated pairs were
considered to be less reliable and removed from initial
pool (Section Methods). Parallelely, miRNA targets were also
predicted by the cleaved transcripts which were thought as the
productions of miRNA regulation (Section Methods). The two
sets of miRNA targets were integrated and the p-values were
calculated by Fisher’s combination test followed by Bonferroni
correction. Figure 2 illustrates an example on how MiRTrans
works.

Data Preparation
MiRNA Sequencing
The 17 samples for miRNA sequencing are derived from different
development stages and tissues of Capsicum spp. The paired-end
reads of five samples were available on Sequence Read Archive
(SRP019257), and the other 12 sequenced samples were prepared
for sequencing by Illumina HiSeq 2000.

Putative pre-miRNAswere inferred by aligning trimmed reads
to the plant pre-miRNAs sequences in inmiRBase (Kozomara
and Griffiths-Jones, 2014) by SOAP2 (Li et al., 2009). We
removed the pre-miRNAs that failed in predicting miRNA
secondary structure or positional overlaps and orientation of
mature miRNA sequences within the respective stem-loop
structure. The miRNA families were also limited if they were
inconsistent with the confident miRNA annotation guidelines
or current literature (Rhoades et al., 2002; Meyers et al.,
2008; Hwang et al., 2013). We annotated 176 miRNAs with
high confidence and their corresponding pre-miRNAs from 64
families (Table S1). The transcripts per million (TPM) was
calculated for each miRNA followed by quantile normalization
(Table S2).

Transcriptome Sequencing
The matched 17 samples were prepared for transcriptome
sequencing. Raw reads of 14 samples were available on Sequence
Read Archive (SRP019256) and the other three samples were
newly sequenced. The sequences of pepper transcripts were
downloaded from The Pepper Genome Database (http://
peppersequence.genomics.cn/page/species/download.jsp). The
transcripts were predicted by de novo gene prediction, homology
searching and transcriptome inference (Qin et al., 2014). These
reads were mapped to pepper reference genome by TopHat
(Trapnell et al., 2009) allowing at most five mismatches; the
RPKM was calculated for each transcript followed by quantile
normalization (Table S3).
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FIGURE 2 | An example for the miRNA targets prediction by MiRTrans. Seven genes (Gene1 to Gene7) are assumed to be putative target genes of four

miRNAs: A–D (demonstrated as black, dark blue, light blue and orange arrows), according to the non-redundant combination of psRNATarget and Tapir predictions.

False positive miRNA-transcript pairs: A to Gene2, C to Gene2, D to Gene5, D to Gene6 are included the in sequence-based predictions. D to Gene8 and C to Gene9

are incorrectly missing in sequence-based predictions. By identifying the dependency between the expression of miRNAs and transcripts, MiRTrans refines the

predictions by removing the false miRNA-transcript pairs from sequence-based predictions. Degradome sequencing data are incorporated to recoup those targets

falsely removed by the previous steps (A to Gene1, B to Gene3, D to Gene8, C to Gene9).

Degradome Sequencing
For degradome sequencing, we mixed equal amounts of five
different tissues (flower, fruit, leaf, root, and stem) to capture
the 5’ ends of uncapped RNAs by using Illumina HiSeq
2000. CleaveLand classified miRNA hitting positions into four
categories (Addo-Quaye et al., 2009). Category 0 and Category
1 were accorded on maximum depth and maximum value. If
both maximum depth and maximum value were unique, these
positions were labeled as Category 0. If multiple maximum
depths and maximum values existed, these positions were labeled
as Category 1. The positions with hit number larger than the
median value and smaller than the maximum are labeled as
Category 2. Other positions with more than one read coverage
were labeled as Category 3. The positions covered by only one
read were marked as Category 4. Targetfinder (Allen et al., 2005)
aligned miRNAs to the cleaved transcripts of Category 0 or 1,
followed by removing the alignments of distance more than 4.5
(Table S4).

MiRNA Target Predictions
Sequence-Based Predictions
For each miRNA, the putative miRNA targets were generated
by combining two sequence-based prediction tools designed for

plants, psRNATarget and Tapir. Because of a high degree of
complementarity was required for miRNA binding in plants, we
expected these two programs to arrive at similar targets. However,
that turned out not to be the case (Figure 3). To avoid missing
any putative targets, we merged the non-redundant predictions
from the two programs.

Lasso Regression to Determine Expression

Dependency
Previous studies have shown sequence-based predictions are full
of false positives. MiRTrans were eliminated these false positives
by examining of the expression dependency between miRNAs
and their targets. We assumed the expression of a particular
transcript can be predicted by all the miRNAs that regulated it
(Le et al., 2013). Lasso regression (Lu et al., 2011) was applied
to alleviate over-fitting and remove irrelevant miRNAs. In lasso
regression, the association between miRNAs and transcript was
defined as “direct connection” by controlling the other miRNAs
predicted to regulate the same transcript in sequence-based
predictions.

For a transcript i(i = 1 . . . L), its expression yi was modeled
by a simple linear regression model, including those potential
miRNA xi

k
(k = 1 . . . Pi) inferred to regulate transcript i in
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sequence-based predictions.

yi = β i
0 +

Pi
∑

k = 1

β i
kx

i
k

To address the over-fitting issue caused by incorporating too
many predictors, lasso regression was applied by introducing L1-
norm penalty to make the regression coefficient β i

k
to be zero if

the regulation did not exist.

yi = β i
0 +

Pi
∑

k = 1

β i
kx

i
k + λ

Pi
∑

k = 1

∣

∣β i
k

∣

∣ (i = 1 . . . L)

β̂ i
lasso = argmin

β







N
∑

a = 1

(

yia − β i
0 −

Pi
∑

b = 1

β i
bx

i
a,b

)2






subject to :

j
∑

b = 1

∣

∣β i
b

∣

∣ ≤ s

S > 0

where N is the number of sequenced samples (17 in this study).

lasso regression was adopted to restrict
Pi
∑

b = 1

β i
b
by introducing

the shrinkage parameter λ to control the sparsity of the
regression model, which was determined by the minimum mean
squared error from cross validation. There were no appropriate
approximation approaches to evaluate the standard error of
non-zero regression coefficients (SE(β̂)) from lasso regression.
Therefore, we performed 10,000 bootstraps to estimate SE(β̂)
by fitting lasso regression with the same number of randomly
selected miRNAs. The p-values to evaluate the expression
dependency between miRNAs and the transcript were calculated
by Wald test:

β̂ − βnull

SE(β̂)

We assumed βnull = 0 for irrelevant miRNA and transcripts.

MiRNA Target Prediction by Degradome Sequencing
The potential transcript cleavage positions were determined
by CleaveLand in conjunction with Targetfinder with
default parameters. We chose the targets with alignment
distance smaller than 4.5 and calculated the p-value as
the likelihood of observing a degradome “peak” at the
tenth nucleotide of the binding site. We adopted Fisher’s
combination test to incorporate the p-values from lasso
regression and degradome sequencing followed by Bonferroni
correction.

Validation Approaches
Because of lacking gold standard to evaluate the performance
of MiRTrans, it was validated by calculating the functional
enrichment of predicted targets. We assumed the real targets
of a miRNA should be engaged in similar biological processes,
and hence should be enriched in the particular functional
modules. We collected the functional modules from four
functional sources: Gene Ontology, KEGG pathway, gene co-
expression modules, and predicted gene families. The Gene
Ontology annotations for genes were determined by their
InterPro (Mitchell et al., 2015) entries. All transcripts were
aligned against KEGG (Kanehisa et al., 2014) (Release 58)
proteins to determine the pathways they were involved in. We
applied OrthoMCL (Li et al., 2003) to define the gene family
as a group of genes that were descended from the identical
gene in the most recent common ancestor of the considered
species.

WGCNA (Weighted Gene Co-expression Network Analysis)
(Langfelder and Horvath, 2008) was applied to identify the
co-expression network of 16,357 expressed transcripts from 17
development stages (transcripts with RPKM>1 for all stages).
The correlation between two transcripts xi and xj was calculated
by the absolute value of the Pearson coefficient (

∣

∣corr(xi, xj)
∣

∣).
WGCNA constructed the similarity matrix for all transcript
pairs, which is further transformed to a weighted adjacency

matrix by introducing power function ai,j =
∣

∣corr(xi, xj)
∣

∣

β
,

β = 12 was chosen to guarantee that the modules follow a
scale-free topology. The total node connectivity of transcript i
was defined as ki =

∑

j
aij. WGCNA proposed a “topology

overlap” (TO) to define the correlation between two transcripts
by averaging the adjacency information over all their network
“neighbors.” The TO between transcripts i and j was calculated

as ωij =
lij+aij

min{ki ,kj}
, where lij =

L
∑

u = 1
aiuaju and it represented

the degree of transcripts connection between i and j. The
topological overlap matrix was composed by TO values and
clustered by “dynamic tree cut” algorithm (Langfelder et al.,
2008). The transcripts were clustered to co-expression modules
according their topology overlap with the co-members in the
same module.

RESULTS

Sequence-Based Prediction
For sequence-based prediction, MiRTrans combined the non-
redundant predictions from psRNATarget and Tapir (Figure 3),
and assumed all the true miRNA-target pairs were included
in the combined results. psRNATarget reported 6,715 pairs,
162 of which are found to have more than one potential
binding sites in the same transcript. 76.5% of the targets were
predicted as the cleavage effect of miRNA binding. Tapir created
2,858 miRNA-target pairs, of which merely 1,716 (60.0%) are
shared with psRNATarget. Finally, 7,857 miRNA-target pairs are
collected by combining the predictions of psRNATarget and
Tapir.
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FIGURE 3 | MiRNA targets prediction by psRNATarget and Tapir. Only

60.0% (Tapir) and 25.6% (psRNATarget) of the miRNA-transcript pairs are

shared between Tapir and psRNATarget.

The Expression Dependency between
miRNAs and Transcripts
MiRTrans eliminated the miRNA-transcript pairs with
insignificant p-values (Section Methods, p-value > 6.36e–6
= 0.05/7,857 from Bonferroni correction), which were calculated
from their regression coefficients by Wald test. After removing
the irrelevant targets removal, MiRTrans kept 363 pairs (4.62%
in sequence-based predictions) by considering their expression
dependency.

Degradome Sequencing Prediction
CleaveLand (Section Methods) was used to analyze the paired-
end reads from degradome sequencing, which generated 586
miRNA-transcript pairs. The remaining 405 (69.1%) pairs, with
p-values ≤ 0.05 and alignment distance < 4.5, were selected for
further analysis.

Comparing MiRTrans with
Sequence-Based Predictions
MiRTrans produced 774 miRNA-transcript pairs by integrating
the targets predicted by their expression dependencies
and cleaved transcripts. To compare with sequence-based
predictions, for each miRNA we generated 10,000 random
networks, each including a miRNA ℜ and k targets ofℜ chosen
from sequence-based predictions, where k was the number of
targets of ℜ by MiRTrans. The functional enrichment from a
variety of resources (KEGG pathway, Gene Ontology, Gene
co-expression, and Predicted gene families) were applied to
evaluate the performance of target prediction. We chose the
functional modules with ≥ five genes from the four resources to
avoid misleading significance. This resulted in 2,762 functional
modules, including 275 KEGG pathways, 689 Gene Ontology
terms, 112 gene co-expression modules and 1,686 predicted gene
families. For the targets of each miRNA, the enrichment scores of

the targets from MiRTrans were compared to the average value
of 10,000 random networks. The significant functional modules
(with p-value < 0.05

the number of modules
, red circle in Figure 4) were

illustrated to compare the predicted targets between MiRTrans
and sequence-based predictions.

Comparing with sequence-based predictions, MiRTrans
produced more functional miRNA targets (p-value = 8.2252e-
33 for predicted gene families, p-value = 7.8417e–32 for
gene co-expression modules, and p-value = 3.7142e–15 for
KEGG pathway). Furthermore, no significant difference was
observed for Gene Ontology (p-value = 0.8173), because more
sequence-based random networks were with marginal p-values.
Nevertheless, more modules with significant p-values were prone
to be included in MiRTrans predictions (Figure 4).

The predicted targets were also evaluated by the capability to
infer the miRNA functions. We performed two experiments to
compare the capability for predicting miRNA functions between
MiRTrans and sequence-based predictions. In Figures 5, 6,
we investigated the absolute number and the cumulative
frequency of miRNAs, whose targets were significantly enriched
in functional modules by an increment of p-value thresholds.
Compared to sequence-based predications, more miRNAs were
annotated by the functions of their targets involved in. The
targets of a miRNA were more likely to be from the same gene
family, not only because of their similar sequence characteristics,
but also they participated in the same synthesis or growth
procedure (Song et al., 2011). Using a p-value threshold of 1e–
4, MiRTrans predicted the functions of 22% of total miRNAs,
whereas sequence-based predictions achieved a rate of mere 3%.
We cannot readily identify miRNA functions by co-expression
modules or signaling pathways because they were usually
regulated by multiple miRNAs.

It is interesting to distinguish that how many contributions of
the targets predicted by expression dependency and degradome
sequencing. We calculated the functional enrichment for the
targets predicted by expression dependency and degradome
sequencing, respectively. In Table 1, the p-values were calculated
by Wilcoxon-Mann-Whitney test against sequence-based
predictions. The targets predicted by expression dependency
and degradome sequencing demonstrated consistent trend of
functional enrichment even they only shared two miRNA-target
pairs. This phenomenon suggested single data source was not
enough to capture all the miRNA targets.

Identification and Classification of the
Targets for Pepper miRNAs
In our previous study, we reported 176 annotated miRNAs
for Capsicum spp (Table S5) (Qin et al., 2014). In this study,
after removing the transcripts shorter than 150 bp, MiRTrans
revealed 186 targets of 18 conserved miRNA families and 68
targets of 15 pepper-specific miRNA families (Tables S6, S7).
Additionally, there were 103 genes targeted by 26 pepper novel
miRNA families (Tables S6, S7).Most of the targets of a conserved
miRNA have similar sequence characteristics and belonging to
the same gene family; this has been observed in the previous
findings (Jones-Rhoades et al., 2006; Chen, 2009). We observed
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FIGURE 4 | Functional enrichment comparison between MiRTrans and sequence-based predictions. MiRTrans achieved more functional miRNA targets

than the sequence-based predictions.

FIGURE 5 | The absolute number of miRNAs, whose targets are enriched in at least one significant function module for MiRTrans and

sequence-based predictions.
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FIGURE 6 | The cumulative frequency of miRNAs, whose targets are enriched in at least one significant function module for MiRTrans and

sequence-based predictions.

TABLE 1 | Comparison of functional enrichment p-values of miRNA targets predicted by expression dependency and degradome sequencing.

KEGG pathway Gene Ontology Co-expression Predicted gene families

Expression dependency 6.3750e-11 0.1736 4.9417e-21 8.9634e-45

Degradome sequencing 5.2916e-10 0.5368 1.5037e-18 5.2197e-20

MiRTrans 3.7142e-15 0.8173 7.4817e-32 8.2252e-33

P-values were calculated by Wilcoxon-Mann-Whitney test. The miRNA targets predicted by either expression dependency or degradome sequencing were effective, but they were

complementary with each other.

six conserved miRNAs, namely can-miR156, can-miR162, can-
miR164, can-miR169, can-miR171, and can-miR172 with at least
10 targets, while other pepper-specific miRNAs appeared to
have fewer targets except can-miR482, can-miR2873, and can-
miR6149 (Tables S6, S7). We identified 18 out of 59 miRNA
families binding to transcription factors; most of themwere auxin
response factors, TCP family transcription factors and NAC
transcription factors (Table S7). These findings indicated the
roles of these miRNA families in post-transcriptional regulation
and transcriptional networks. Besides transcription factors, other
identified targets were involved in macromolecule metabolic
process, regulation of metabolic process, and nucleic acid binding
etc. (Table S8).

The Comparison of miRNA Targets
between Pepper and Other Plants
Several miRNA-transcript pairs predicted by MiRTrans were
conserved across many plants, such as Arabidopsis, rice, soybean,
and maize. Many predicted miRNA targets encoded regulatory

proteins (Tables S7, S9), suggesting that miRNA served as a
kind of master regulator in plant (Jones-Rhoades et al., 2006).
MiRTrans predicted 58 conserved targets in pepper for 18 highly
conserved miRNA families in eudicots (Arabidopsis, rice, maize,
soybean, and pepper) with high confidence (Tables S9, S10).
There were 46 targets of them that encoded transcription factors,
which may play an important role in gene regulatory networks
(Jones-Rhoades et al., 2006).

In addition, we retrieved putative orthologs of pepper miRNA
targets based on the information from the EnsemblCompara
gene trees (Vilella et al., 2009) on peppersequence.genomics.cn
and gramene.org (Liang et al., 2008). We revealed 33 orthologs
in Arabidopsis, 22 orthologs in soybean, 25 orthologs in rice,
and 19 orthologs in maize (Table S7). Most of these orthologs
were transcription factors and were known to regulate plant
development (Table S9) (Jones-Rhoades et al., 2006). ThemiR156
family targeted SBP proteins and played a critical role in
regulating phase change and floral induction (Kasschau et al.,
2003; Chen et al., 2004; Vazquez et al., 2004; Allen et al., 2005;
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Wu and Poethig, 2006; Addo-Quaye et al., 2008; Wu et al., 2009).
Previous studies reported that miR172 bound to a set of AP2
transcription factors (Addo-Quaye et al., 2008; Li et al., 2010;
Song et al., 2011; Lee et al., 2014; Liu et al., 2014; Wang et al.,
2014) (Table S9), but presented a variety of functions in different
plants: Controlled genes related to flowering time and floral
organ in Arabidopsis (Aukerman and Sakai, 2003; Kasschau et al.,
2003; Jung et al., 2007; Mathieu et al., 2009; Wang et al., 2009;
Wu et al., 2009); regulated inflorescence development in maize
(Chuck et al., 2007a,b); involved in the regulation of vegetative
and reproductive branching in rice (Zhu et al., 2009; Lee et al.,
2014; Wang et al., 2015). The shared miRNA targets among
Arabidopsis, maize, rice, and pepper suggested the existence of
a similar mechanism of phase change and flowering time control.
Similarly, miR159 regulatedMYB genes and had various roles in
flower development of Arabidopsis (Palatnik et al., 2003; Achard
et al., 2004; Millar and Gubler, 2005; Alonso-Peral et al., 2010)
and rice (Li et al., 2010), while miR319 controlled floral organ size
and shape in Arabidopsis (Palatnik et al., 2003; Nag et al., 2009).
Our predictions were consistent with previous studies of miR164,
which regulated NAC genes that function in organ boundary
formation (Laufs et al., 2004; Guo et al., 2005; Peaucelle et al.,
2007; Sieber et al., 2007) (Table S9). In those non-transcription
factor targets (Table S10),DCL1 andAGO1, which were predicted
as miR162 and miR168 targets, played a key role in tuning plant
biogenesis and function (Xie et al., 2003; Vaucheret et al., 2004;
Vazquez et al., 2004).

DISCUSSION

We presented MiRTrans, a trans-omics based program, to infer
miRNA targets from three data sources: miRNA sequencing,
transcriptome sequencing, and degradome sequencing. To our
best knowledge, this is the first investigation to analyze and
compare the contributions of different available technologies
and trans-omics data sources for predicting miRNA targets.
MiRTrans extracted and utilized three types of information:
First, sequence characteristics, such as miRNA-target sequence
complementarity, the sequence hybridization energy, and target
site multiplicity; second, the expression dependency between
miRNA and transcript; third, the cleaved transcripts were
detected by sequencing the 5’ ends of uncapped RNAs. These
cleaved transcripts were assumed to be the productions of
miRNA regulation. We further evaluated the performance of
MiRTrans by comparing the targets functional enrichment
with sequence-based predictions. These results supported that
MiRTrans can generate more functional relevant miRNA targets
than sequence-based predictions. The source code ofMiRTrans is
publicly available on https://github.com/zhanglu295/MiRTrans.

Degradome sequencing, designed to capture cleaved
transcripts, has been widely applied in plants to predict miRNA
targets. Successful stories were reported in Arabidopsis (Addo-
Quaye et al., 2008), rice (Li et al., 2010), soybean (Song et al.,
2011), and apple (Xia et al., 2012), it has yet to be proved
whether all the targets were captured. There are three limitations
of degradome sequencing in miRNA target prediction. First,

RISC-mediated transcript cleavage cannot explain all the
miRNA regulation in plant. The miRNAs regulation is via
two molecular mechanisms: transcriptional degradation and
translational repression (Jones-Rhoades et al., 2006; Gandikota
et al., 2007). Degradome sequencing can only capture those
cleaved transcripts rather than those repressed proteins. For
example, miR172 regulates flowering time and floral organ by
repressing the protein of APETALA2 (AP2), rather than degrade
its transcripts (Aukerman and Sakai, 2003; Chen, 2004; Schwab
et al., 2005). Second, the sample for degradome sequencing were
collected from mixed tissues in this study, the transcripts with
low expression may be overwhelmed in the highly expressed
transcripts; third, CleaveLand is the most famous program to
analyze degradome sequencing data, but it applies Targetfinder
to determine which miRNAs bind to the cleaved transcripts.
Targetfinder is a sequence-based miRNA target prediction
program for plant, and cannot avoid sequence supplementarity
by random chance.

The expression dependency between miRNA and transcript
is an indirect evidence in target prediction and is easily
influenced by gene co-expression and miRNA temporospatial
specificity. The transcripts may be incorrectly predicted as
miRNA targets, if they are observed highly co-expressing with
the real targets. miRNA regulation is unlikely to occur anytime
and anywhere, which results in the unstable trend of expression
correlations. Degradome sequencing alleviates these issues by
directly sequencing the cleaved transcripts from mixed samples.
Comparing the targets predicted by degradome sequencing and
expression dependency, we found most of them were unique
and had the same trend in functional enrichment, suggesting
these two data sources were orthogonal. MiRTrans reduced
the number of miRNA-target pairs from 7,857 to 774 (9.85%)
and a significant reduction (from 148 to 20) of average targets
for each miRNA from sequence-based predictions. The targets
predicted byMiRTrans are more likely to be involved in the same
predefined functional modules than those from sequence-based
predictions.

The availability of next generation sequencing provides us
an unprecedented opportunity to predict miRNA targets from
trans-omics data. In this paper, we introduced MiRTrans, a
trans-omics based program, that leveraged miRNA sequencing,
transcriptome sequencing and degradome sequencing to predict
miRNA targets. MiRTrans generated an atlas of the miRNA
targets for pepper. Some of these targets have orthologs in
other plants such as Arabidopsis, rice, maize, and soybean
as validated by RLM-5’ RACE, degradome, and/or miRNA-
resistant/Agroinfiltration experiments. We discovered that data
from different sources are orthogonal to each other, which
suggested that previously reported miRNA targets that rely on a
single data source may be incomplete.
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