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Editorial on the Research Topic

Studying Tree Responses to Extreme Events

CLIMATE CHANGE AND TREE RESPONSE TO EXTREME EVENTS

There is a common understanding that climate change is a global challenge in the twenty-first
century for the future of humankind (Stott et al., 2016). It is meanwhile clear that human activities
have influenced the earth climate system, with substantial modifications in the frequency and
magnitude of climate extreme events that occurred since the 1950s (IPCC, 2013, AR5).

Among climate extreme events, hydric as well as thermal anomalies such as droughts, flooding,
heat waves, fires, and frost events play an important role for productivity and survival of trees and
may cause severe disturbances in forest ecosystems (Allen et al., 2010; Teskey et al., 2015). Trees
are long-living organisms with a life-span of between several hundred to thousands of years, with
the oldest living tree ramets on earth having reached ages of up to 5,000 years (Stahle, 1996/1997).
Thus, mature forest ecosystems may persist for many decades or centuries without considerable
variation in tree species composition, also due to cyclic regeneration processes (Zukrigl et al., 1963;
Fischer, 1997; Körner, 2013). Disturbances, however, may induce abrupt changes of ecosystem
structure and species composition, leading to multiple and less predictable successional pathways
(Swanson et al., 2011). The long-term structural persistence of forests strongly depends on the
adaptive capacity/plasticity of the species, resulting from both tolerance and resilience potential
of tree individuals to environmental impacts, e.g., due to climate extreme events.

These arguments inspired the present research topic, which mostly involves papers on a tree-
centered approach that explicitly addresses the adaptive capacity of trees at individual, sub-species,
and species levels. With this, a reliable basis shall be provided for shaping and managing adaptive,
climate-resilient future forests, or to restore landscapes with tree species more suitable or adapted
to future environmental conditions (Millar et al., 2007; Bolte et al., 2009; Jacobs et al., 2015).

The papers presented in this research topic derived from the activities conducted during 2012
to 2016 in the EU COST Action FP1106 STReESS (Studying Tree Responses to extreme Events:
a SynthesiS). The STReESS community consisted of more than 150 scientists from 34, mostly
European, countries, active in the fields of wood anatomy, dendrochronology, ecophysiology, tree
modeling, forest ecology, forest management, and forest genetics. This COST Action addressed
and answered questions on the impact of extreme climate events on forests and trees, with a special
focus on drought.
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Tree-Centered Perspective
The STReESS research methodology was based on a bottom-
up tree-centered perspective. A tree-centered approach has
demonstrated to be suitable to assess impacts of extreme climatic
events on trees and forest stands at different spatio-temporal
resolutions, and to predict how tree species at scales ranging
between the individual to the population might adapt or respond
to different future climate conditions (Sass-Klaassen et al.).
This framework (i) provides a basic understanding of how
climate extremes affect forests in terms of individual mortality,
regeneration, and physiological adaptation; (ii) forms an ideal
scale to study impacts of climate on morphological, wood-
anatomical, and physiological responses of trees to their changing
environment; and (iii) increases the perception of the legacy
of climatic extremes that are imprinted in wood-anatomical
structures that may affect the tree’s ability to respond to future
climate conditions, leading to possible aggravations of effects in
case of repeated events of similar magnitude.

The COST Action was divided into specific topics dedicated
to relevant aspects of tree response to climate extremes.
Accordingly, the 40 papers included in this research topic can
be grouped into the topical groups briefly summarized in the
following sections.

Physiological Adaptive Traits
Extreme events, such as drought, heatwaves, flooding, or frost,
affect trees via impacting vital physiological processes, such
as water transport (Oberhuber et al.), carbon assimilation,
carbon mobilization (Beikircher et al.), or carbon concentration
(Lintunen et al.).

Physiological traits associated with water transport
and drought susceptibility include specific hydraulic
conductivity (Rita et al.), vulnerability to cavitation (P50
value) (David–Schwartz et al.; López et al.; Rosner et al.),
stomatal conductance (Seidel et al.), and sapflow (Steppe
et al., 2015). All these physiological traits closely interact with
wood-anatomical characteristics which vary between and within
species, but also within individuals across time (Rathgeber et al.).

These changes in functional xylem (and phloem; Gričar et al.)
anatomical traits in time clearly reflect phenotypic plasticity
and define the long-term adaptive potential of physiological and
wood-anatomical traits (Sass-Klaassen et al.). This is important as
the plasticity of certain traits can increase the resilience of trees to
climate warming (Sterck et al.).

Assessing Frequency and Impact of Extreme Events
An indispensable requirement for assessing the frequency of
extreme climate events but also the long-term impact of climate
factors on trees is the availability of long-term records. The
cascading effect of extreme events on physiological and growth
responses leads to distinct traces in the wood that hence can
serve as biological proxies. The tree-centered approach uses
long continuous tree-ring width records as well as discrete
records of specific wood-anatomical features in the tree ring
to precisely reconstruct past climate conditions and to exactly
date extreme climate events (Carrer et al.; Kurz-Besson et al.).
Specific tree-ring features such as intra-annual density variations

(Zalloni et al.; Klisz et al.), flood rings (Copini et al.), or
the absence of tree rings in specific years (Novak et al.) are
reliable proxies (“markers”) of drought, floods, or other extreme
events. Advances in knowledge on the intra-annual dynamics
of wood formation provide information on the species-specific
timing of growth in relation to climate (Martinez Del Castillo
et al.) or under particular site conditions (Gričar et al.) and
allows to increase the temporal resolution of intra-annual density
variations (De Micco et al.) or flood rings (Copini et al.).
Moreover, intra-annual measurements allow assessing directly
the impact of the environment and its changes (Dao et al.; Maeght
et al.; Legave et al.; Lechthaler et al.) or related effects such as
defoliation (Guada et al.) on tree viability and growth dynamics.
Within STReESS, big efforts have been made to verify the
causal relationship between extreme climate events and wood-
anatomical markers, including the aspect of temporal precision
of markers. Databases and catalogs on specific wood-anatomical
markers such as intra-annual density variations (IADFs) have
been generated with the potential to study temporal and spatial
patterns in extreme events for various mostly Mediterranean
conifer species (Zalloni et al.).

New Methods and Tools to Measure and Evaluate

Stress Markers in Trees
Through collaboration between wood anatomists,
ecophysiologists and tree modelers, huge advances have
been made in developing and presenting new methods and tools
to assess the mechanisms of tree responses to extreme climate
events, but also to enable creation of long-term time series of
cell-based wood-anatomical traits with reasonable time effort.
Rathgeber et al., von Arx et al., von Arx et al., and Anfodillo et al.
shed light on basic aspects of xylem-cell formation, quantification
of wood-anatomical features, and important considerations for
their interpretation. Other authors introduce new statistical
tools for the evaluation of extreme climate events (Siegmund
et al.) and highlight gaps in the understanding of the formation
of specific wood-anatomical markers (Battipaglia et al.). The
combination of high-time resolution monitoring of physiological
processes (sapflow) and tree growth (dendrometers) forms a
powerful approach to parameterise process-based tree models
in real-time (Steppe et al.). Besides forming the bases for
increased mechanistic understanding of tree responses to
extreme events TreeWatch.net will improve the public awareness
for climate-impact research on trees.

While yet only few trees are fully equipped with sophisticated
monitoring tools, like TreeWatch.net, there is ample information
on high-resolution tree growth available from thousands of
dendrometers installed on numerous tree species in forests across
the world. Firsts steps for collection and homogenisation of these
measurements have been done and new analyses methods have
been developed (Van der Maaten et al., 2016).

Varying Adaptive Capacity of Populations to

Drought—Facilitation of Forest Adaptation
One focus of the COST action was the analysis of inter-
population adaptive capacity of trees to extreme events. Several
studies addressed the adaptation to drought of pedunculate oak
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(Mijnsbrugge et al.; Turcsán et al.), European beech (Cocozza
et al.; Bolte et al.; Hajek et al.), and Scots pine (Seidel and
Menzel; Seidel et al.). Interestingly, a considerable variation
in drought-stress tolerance or resilience among populations or
provenances was observed. The results demonstrate the local
adaptation of the studied tree species (Mijnsbrugge et al.; Seidel
and Menzel,; Bolte et al.). However, the wide intra-population
genetic variability influences the adaptive capacity of species and
has to be also considered (Hajek et al.; Gershberg et al.). The
outcomes strongly support the idea of the selection of drought-
tolerant ecotypes or even individuals for increasing the adaptive
capacity of forest stands with major European tree species within
or even beyond their current native range (“assistant migration”
sensu Millar et al., 2007). This includes the translocation of pre-
adapted individuals and ecotypes, so called assisted gene flow
(AGF), in order to facilitate the adaptation of planted stands or
mixed stands with planted and natural regeneration (Aitken and
Bemmels, 2016).

Practical Relevance—Consequences for Forest

Management
The aim of COST STReESS was to test the potential of
the multi-disciplinary tree-centered approach to assess short-
and long-term effects of changing climate conditions and
specifically extreme events on growth responses and thresholds
for mortality (e.g., Cailleret et al., 2017). The advantage of such
a bottom-up approach is that through enhanced mechanistic
understanding, the plasticity of functional traits and hence the
adaptive potential of populations and tree species under changing
climate conditions can be estimated. This forms the bases for
assessing the implications of changing climate conditions for
the stability and productivity of different tree species. The
actual challenge is linking the theory to the application, i.e.,
translating the progress that is made in ecophysiological and
forest ecological research to recommendations for practitioners
of forest management. Concrete examples are related to species
and provenance selection. Based on the tree-centered approach,
it is possible to develop and point out specific ecophysiological
and wood-anatomical indicators for selecting drought-tolerant
provenances or tree species (David-Schwartz et al.; Hajek et al.;
Bolte et al.; Kurz-Besson et al.).

The Long Term Perspective
Achievements and Future Perspectives
The tree-centered approach has led to new insights on the impact
of climate and extreme climate events on tree-growth processes,
the structural components of wood, and the consequences
for physiological performance of trees at individual to species
level. The collection of articles in this research topic, together
with more than 100 articles published elsewhere by the COST
STReESS community on concepts (e.g., Steppe et al., 2015), meta-
analysis of phenological wood traits (e.g., Rossi et al., 2013, 2016;
Cuny et al., 2015), and important mechanisms behind mortality
(e.g., Cailleret et al., 2017), illustrates the potential of this
bottom-up approach. Major achievements include (1) enhanced
understanding of relation between structure and function both
on whole-tree level but specifically in woody tissues, (2)

improvement of mechanistic models by parameterisation with
high-time resolution measurements, (3) developing the basis for
linking short-and long-term tree-growth and wood-anatomical
records to assess long-term effects of extreme climate events
on tree growth. Many aspects, processes, species, and traits
have still to be studied in depth. Comprehensive mechanistic
models linking structure, physiology, and function of tree
species remain challenging, and require further multidisciplinary
development of integrative conceptual and statistical approaches.
The interdisciplinary network created through STReESS together
with the effort that has been made on creating large databases
and catalogs and advancing and harmonizing methods for data
acquisition, data analyses, and modeling forms the bases for the
necessary next steps.

Integration with Other Approaches
The findings of the COST Action STREeSS show evidence that
the tree-based level provides opportunities to study cellular,
genetic, physiological, anatomical, and ecological responses to
climate as a whole. For example, several recent studies reported
that seedlings of European beech from different climate origins
over Europe performs differently in terms of drought tolerance
(cf. Eilmann et al., 2014; Thiel et al., 2014; Pšidová et al.,
2015; Dounavi et al., 2016). However, research activities within
STREeSS showed that drought resistance is more related to
local precipitation conditions at the place of origin than with
geographically marginal origin (Bolte et al.). Hence, the role
of local genetic variation in beech populations determining
phenotypic plasticity in functional and structural traits of beech
individuals that control drought adaptability need to be further
evaluated (Cocozza et al.) to provide the most suitable plant
material for forests adapted to future climates.

Another challenge remains the upscaling from tree-individual
based drought responses to forest stands, since vegetation
models are known to under-represent drought induced mortality
(Steinkamp et al., 2015). Applying the tree-individual approach
(Sass-Klaassen et al.) in systematically designed ways over species
distribution ranges or ecological gradients in regional forested
landscapes may have great potential to contribute to the debate of
forest resilience to climate change (e.g., Reyer et al., 2015; Babst
et al., 2017).

A third integrative pathways addresses the inclusion of high-
resolution data on tree diameter growth and sapflow within
the TreeWatchNet (Steppe et al.) in existing large-scale forest
ecosystemmonitoring networks like the UN-ECE ICP Forests on
air pollutant and climatic impacts (Michel and Seidling, 2016)
and the ICOS network on carbon flux monitoring (Laurent,
2016). High-resolution growth and physiology monitoring
provides needed data to assess dynamic response of trees and
forests to stressors and functioning in carbon and nutrient
cycling.
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