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Recent achievements in plant microRNA (miRNA), a large class of small and non-coding
RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular
cloning, bioinformatic analysis, and the latest technology, deep sequencing have
greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target
single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs)
which have paramount importance in regulating the plant growth and development.
Various families of TFs, which have regulated a range of regulatory networks, may
assist plants to grow under normal and stress environmental conditions. This present
review focuses on the regulatory relationships between miRNAs and different families of
TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play
important role during drought tolerance and flower development, MYB are involved in
signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral
development and nodule formation, TCP direct leaf development and growth hormones
signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral
root formation, GRF are involved in root growth, flower, and seed development, and
SPL regulate plant transition from juvenile to adult. We also studied the relation between
miRNAs and TFs by consolidating the research findings from different plant species
which will help plant scientists in understanding the mechanism of action and interaction
between these regulators in the plant growth and development under normal and stress
environmental conditions.

Keywords: miRNAs, transcription factors, plant development, stress response, plant regulators

INTRODUCTION

The recent discovery of complex regulatory network in higher organisms like; plants and animals
have been recognized in plants (Morris and Mattick, 2014). These complex networks which consist
of chromatin modification (at epigenetic level), mRNA splicing, cell signaling, polyadenylation,
and mechanisms of protein activation and degradation demanded substantial attention in order
to achieve complete understanding on how plant system are being regulated (Boucas et al.,
2012; Holoch and Moazed, 2015). This review has been intended to focus on gene regulation
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at transcriptional and post-transcriptional levels which involving
microRNAs (miRNAs) and transcription factors (TFs) as key
regulatory players.

At the transcriptional level, the interaction of TFs interact
with enhancers to coordinate gene expression has been
well established in the past decade (Yu and Gerstein, 2006;
Osorio, 2016). This can be obviously seen in the discovery
of many types of TFs families which play a diverse role in
plant system (Duval et al., 2014). At the post-transcriptional
level, another attractive mechanism of gene regulation has
been discovered a couple of decades ago, involving a large
class of small non-coding RNAs, known as miRNAs. These
miRNAs act as gene regulators in plants and animals by
negatively regulate mRNAs (Bartel, 2004; Thomson and
Dinger, 2016). With the increasing number of regulators
involved in gene networks, it is interesting to observe and
understand a dynamic relationship between miRNAs, TFs, and
mRNAs.

To date, about 28,645 miRNAs from plants, animals,
and viruses have been registered in public miRNA database
(Kozomara and Griffiths-Jones, 2014; Wang Y. et al., 2016). These
miRNAs are able to modulate and fine-tune majority of biological
processes by regulating a large number of target genes (Krol
et al., 2010; Nazarov et al., 2013). Thus, screening of the potential
target genes can provide an efficient and critical approach to
explore the miRNA-mediated regulatory functions in depth at
post-transcriptional level. Early exploration of some empirical
parameters and algorithms deduced for known miRNA-target
interactions using computational prediction in Arabidopsis had
been applied to determine miRNA targets in other plants (Ahmed
et al., 2013; Cammaerts et al., 2015). The prediction approaches
have further been validated through wet lab techniques and
methods like PAGE, Northern Blot, Rapid Amplification of
cDNA Ends at 5′ (5′-RACE), and Degradome Sequencing analysis
(Lv et al., 2010; Akhtar et al., 2015).

Currently there are 58 families of TFs which consist of 320,370
members from 165 plant species (Jin et al., 2017). miRNAs
only downregulate their targets while TFs activate or repress the
transcription of their targets, eventually determining the fate of
particular gene, either to be switched “on” or switched “off”
(Istrail et al., 2007; Chow et al., 2016). Interestingly, majority
of miRNA targets are TFs (Rhoades et al., 2002; Mitsuda and
Ohme-Takagi, 2009; Kamthan et al., 2015). Since both regulators
demonstrate great impact toward plant genetic system, the
circuiting of miRNAs-TFs will allow orchestration of numerous
biological processes with high reliability.

Recent trends in miRNA research were focused on plant
responses to abiotic rather than biotic stresses (Mittler, 2006;
Zhang, 2015). The prevailing environmental stresses like;
drought, salinity, and cold, which significantly affect plant
growth and development, are the prominent factors of plant
research shift toward abiotic stress. The present review will
provide a better understanding of miRNAs regulation and their
interaction with the TFs, which can assist the researchers to
explore more about plant survival mechanism under unfavorable
environmental conditions. The newly developed relationship
among the above mentioned gene regulators will assist the

plant scientists to gain insight into the relationship among these
regulators in different plant species.

miRNA BIOGENESIS AND MODE OF
ACTION IN PLANT

In plants, miRNA genes are transcribed by RNA polymerase II
to produce primary miRNA (Pri-miRNA) and their length is
highly variable between themselves (Voinnet, 2009; Axtell et al.,
2011; Chang et al., 2012; Ma et al., 2015). Unlike animal, plant
miRNA processing is accomplished inside the nucleus because
they lack protein processor like Drosha and DGCR8. In plant,
DICER-LIKE 1 (DCL1) process most of pri-miRNAs by cleavage.
Pri-miRNAs are stabilized with a type of RNA binding protein,
DAWDLE (DDL), which interacts with DCL1 in nuclear foci,
named dicing bodies (D-bodies). The combined action of couple
of proteins like; SERRATE (SE) and HYPONASTIC LEAVES 1
(HYL1), followed by DCL1 and the nuclear cap-binding complex,
led to form a short duplex miRNA which consist of mature
miRNA guide cleavage and passenger miRNA strand (miRNA∗)
(Rogers and Chen, 2013; Ha and Kim, 2014; Baranauskė et al.,
2015). Further processing of this duplex leds to the 2′-O-
methylation at 3′ by the methyltransferase HEN1 (Rogers and
Chen, 2013; Baranauskė et al., 2015). A family of enzymes,
called SMALL RNA DEGRADING NUCLEASE (SDN) genes, is
responsible for the accumulation of miRNAs. SDN1 have shown
3′-5′ exoribonuclease activity against short and single-stranded
RNA substrates (Ramachandran and Chen, 2008; Baranauskė
et al., 2015; Meyer et al., 2015). In plants, HASTY (HST), which is
homolog to EXPORTIN5 (EXP5), plays a crucial role in exporting
pre-miRNAs or mature miRNAs to cytoplasm (Rogers and Chen,
2013; Shriram et al., 2016). Another export pathway of miRNAs
seems to be involved but the exact mechanism is still not clear
(Rogers and Chen, 2013; Ha and Kim, 2014).

In the cytoplasm, ARGONAUTE (AGO) proteins form
an assembly with miRNA, known as RNA-induced silencing
complex (RISC) (Arribas-Hernández et al., 2016; Eckardt, 2016).
AGO1 in the RISC is the major player for the miRNA pathway
(Ha and Kim, 2014; Shao et al., 2014). AGO protein consist of
PAZ and PIWI domain (Miyoshi et al., 2016). Particularly, PIWI
domain form RNaseH-like fold which catalyze endonuclease
activity. This endonuclease activity is capable of chopping RNA
targets that are complementary to the miRNA strand loaded
inside the AGO (Arribas-Hernández et al., 2016; Miyoshi et al.,
2016). AGO proteins in Arabidopsis thaliana such as AGO1,
AGO2, and AGO10 has been reported to have the endonuclease
activity, which leds to splicing the mRNA targets (Ji et al., 2011;
Maunoury and Vaucheret, 2011; Zhu et al., 2011). Identification
of the sliced mRNA targets by miRNA can be discovered through
sequencing of mRNA degradome (Yang et al., 2013; Mutum et al.,
2016). Previous study reveals that plant miRNAs bind to their
targets with high complementary which results in the cleavage
of target mRNA (Fahlgren and Carrington, 2010; Arribas-
Hernández et al., 2016). Beside of cleavage, there are several cases
where the miRNA target is regulated at protein level without
significant changes in mRNA level. These findings suggest that
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plant miRNAs are capable in interfering the translation process
of mRNA (Beauclair et al., 2010; Li et al., 2013).

TFs FOR GENE REGULATION IN PLANT

Transcription factors are essential for the regulation of gene
expression, and usually belong to members of multigene families
(Salih et al., 2016). Generally TFs exist as modular proteins
containing of DNA-binding domain that interacts with cis-
elements of their target genes (Boeva, 2016; Orenstein and
Shamir, 2016). Besides, it also consists of protein–protein
interaction domain that assists oligomerization between TFs
or with other regulators (Padi and Quackenbush, 2015; Boeva,
2016). Many TFs have been recognized by X-ray crystallography
and Nuclear Magnetic Resonance spectroscopy (Dantas Machado
et al., 2014; Pecenova and Farkas, 2016). TFs families can
be evolved in many ways such as exon capture, duplication,
translocation and mutation (Edger and Pires, 2009; Sharma
et al., 2013). In plants, the regulation of TFs genes occurs at
transcriptional and post-transcriptional levels (Liu et al., 1999;
Lelli et al., 2012; Payne and Wagner, 2015). They participate in
genetic system via many ways such as developmental control,
elicitation of defense, and stress responses by expressing the gene
at right time and right place (Levine and Davidson, 2005; Shiu
et al., 2005; Wang H. et al., 2016; Wong et al., 2016; Zhang et al.,
2016).

Hence, understanding the activity of TFs expression is crucial
for building regulatory networks. Mode of action of TFs is
considered to occur mainly through the binding of TFs to
cis-regulatory element within the promoter regions of their
targets genes (Biłas et al., 2016). However, with various post-
transcriptional regulatory mechanisms that recently have been
discovered, including; miRNA regulation (Meng et al., 2011;
Naeem et al., 2011; Gulyaeva and Kushlinskiy, 2016; Lai et al.,
2016), nonsense-mediated mRNA decay (Chang et al., 2007;
Brogna and Wen, 2009; Hug et al., 2016), and nuclear export
control (Erkmann and Kutay, 2004; Wickramasinghe et al., 2014;
Wickramasinghe and Laskey, 2015), it evidences that mRNAs
are regulated at many layers of gene regulation. Undoubtedly,
there is a potential for altering expression patterns mediated by
cis-elements through post-transcriptional regulation. Beside, a
single TF has the ability to regulate multiple genes in certain
metabolic pathways (Hao et al., 2011; Pireyre and Burow, 2015).
Further, it is also quite clear through recent investigations that
changes in gene transcription are closely related to changes in
the expression of TFs (Yan X. et al., 2013). Therefore, alteration
in the expression of TF genes normally results in remarkable
changes during plant growth and development (Li et al., 2015). As
a future consequence, engineering of transcription factor genes
may provide a valuable means for manipulation of desired traits
in plants (Pandey et al., 2014; Weng et al., 2016). Here we have
reviewed briefly TF families that involve in plant growth and
development under normal and stress environmental condition.

NF-Y or also known as Nuclear factor Y, are TFs that consist
of three subunits, NF-YA (CBF-B or HAP2), NF-YB (CBF-A or
HAP3), and NF-YC (CBF-C or HAP5). All of these subunits

are essential for DNA binding (Ren et al., 2016). NF-Y, in the
promoter region, recognize CCAAT box with high specificity
and affinity due to the presence of its highly conserved trimeric
activator (Ly et al., 2013; Ren et al., 2016; Siriwardana et al., 2016).
These transcription factors have different functions according
to their subunits. For instances, NF-YA and NF-YB involve in
drought tolerance and NF-YC, appears to be important regulator
in flowering and photomorphogenesis (Petroni et al., 2012;
Myers et al., 2016). Nf-y mutant plant exhibited dark grown
phenotype, although in the present of light, thus indicate NF-
Y TF were positive regulators of photomorphogenesis (Myers
et al., 2016). NY-FA participated in flowering process when in
complex with NF-YB/NF-YC by activating FLOWERING LOCUS
T gene (Siriwardana et al., 2016). Transgenic Arabidopsis plants
overexpressing NFYA5 resulted to high drought tolerance (Li
et al., 2008; Petroni et al., 2012).

MYB (myeloblastosis) is a large family of proteins, playing
diverse role in gene network in eukaryotes. Most MYB proteins
act as TFs with different numbers of MYB domain repeats; MYB-
related, R2R3-MYB, R1R2R3-MYB, and atypical MYB family
which exhibited their ability to bind DNA (Ambawat et al., 2013;
Wu et al., 2016). They are widely distributed in plants and also
interact with other TFs (Liu et al., 2008; Ambawat et al., 2013;
Nguyen and Lee, 2016). MYB have been involved in growth
and development of different plant species, e.g., in Glycine max,
they are involved in flower color development (Takahashi et al.,
2013), and in signal transduction pathways in A. thaliana, Oryza
sativa, and cassava (Raffaele et al., 2006; Bakhshi et al., 2016; Liao
et al., 2016). In A. thaliana and Medicago truncatula they regulate
the biosynthesis of secondary metabolites (Gonzalez et al., 2008;
Verdier et al., 2012; Liu et al., 2015; Nguyen and Lee, 2016).

APETALA2 (AP2) family of TFs plays a pivotal role
in regulating the complex developmental process of floral
development (Liu et al., 2012). AP2 family, also called class “A”
of TFs, interacts with other two classes (B and C) of TFs and
determines the final development of the floral organs, and this
interaction was summarized as ABC model (Bemis et al., 2013;
Krizek and Anderson, 2013; Xie et al., 2015). Complexity of floral
formation shown by co-regulation of three classes of TFs, class A,
B, and C genes, which determine the four floral organ types (Pelaz
et al., 2000; Xie et al., 2015). Family of class A TFs (AP2) itself
alone regulate the identity of sepal in whorl 1. It’s co-action with B
class genes, PISTILLATA (PI), determines petal identity in whorl
2. Further the interaction of class B TFs with class C, AGAMOUS
(AG), determines stamen identity in whorl 3. Carpel identity in
whorl 4 specified by AG itself. AP2 which belong to Class A
gene, interacts with class C gene and AG by suppressing each
other’s roles in order to determine the identities and properties
of the reproductive organs and perianth (Zhao et al., 2007; Krizek
and Anderson, 2013). Loss-of-function of AP2 turns sepals and
petals into carpels since there are in excess of AG activity into the
outer two whorls of the flower (Wollmann et al., 2010; Zhu and
Helliwell, 2011; Huang et al., 2016).

Most of the miRNA targets are TFs which regulate plant
growth and developments (Li and Zhang, 2016; Shriram et al.,
2016; Shu et al., 2016). One of the important plant developmental
processes is flowering stage, which is regulated by complex gene
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networks that integrate multiple environmental and endogenous
cues to ensure flowering at the appropriate time (Yamaguchi
et al., 2009; Spanudakis and Jackson, 2014). This mechanism
is eventually regulated by the induction and activity of three
main TFs; LEAFY (LFY), FRUITFULL (FUL), and APETALA1
(AP1) (Terzi and Simpson, 2008; Zhou and Wang, 2013).
Among these three genes, LFY has been considered to play a
role as major regulator, since, the loss of LFY function causes
the most remarkable delay in flowering process (Lee and Lee,
2010; Tang et al., 2016; Yamaguchi et al., 2016). However, these
three genes are controlled by TF SQUAMOSA PROMOTER
BINDING PROTEINLIKE 3 (SPL3). In general, SQUAMOSA
PROMOTER BINDING PROTEINLIKE (SPL) genes are featured
by their SQUAMOSA PROMOTER-BINDING (SBP) domain,
which consists of a novel zinc finger with two zinc ion binding
sites (Yamasaki et al., 2004; Wang et al., 2015).

TCP TF contains a TCP domain, which codes a motif that
is predicted to form basic helix-loop-helix structure known
for distinct DNA-binding domains (Kosugi and Ohashi, 2002;
Li, 2015). TCP TF is named after the first four characterized
members, namely TEOSINTE BRANCHED1 (TB1) from maize,
CYCLOIDEA (CYC) from snapdragon, and PROLIFERATING
CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) from rice
(Danisman et al., 2013; Li, 2015). Previous finding unravel
that TCP have been involved in different ways to promote
leaf development by cell division, growth, and differentiation
(Sarvepalli and Nath, 2011). TCP TFs also involve in flower
development (Nag et al., 2009; Sarvepalli and Nath, 2011; De
Paolo et al., 2015), leaf senescence (Schommer et al., 2008; Li,
2015), auxin and jasmonic acid signaling (Schommer et al.,
2008; Koyama et al., 2010; Ma et al., 2014), development
of male and female gametophyte (Takeda et al., 2006; Li,
2015), mitochondrial biogenesis (Abe et al., 2010; Welchen
et al., 2013), and interaction with the circadian clock (Giraud
et al., 2010; Li, 2015). In Arabidopsis, there are 24 predicted
TCP proteins. These predicted TCP were classified into two
groups; class I and class II proteins. Class I made up of
13 proteins, whereas, remaining 11 proteins were placed in
class II proteins. Both of these classes act as activator and
repressor (Aguilar Martinez and Sinha, 2013; Manassero et al.,
2013).

WRKY TFs belong to huge and diverse family of TFs. Till
now, 74 members had been identified in A. thaliana and 109
in O. sativa (Eulgem and Somssich, 2007; Phukan et al., 2016).
Members of this family have at least one conserved DNA-binding
region, WRKY domain, comprising of a conserved WRKYGQK
peptide sequence and a zinc finger motif. In general, this domain
binds to the W box, a DNA element, even though alternative
binding sites also have been identified (Ciolkowski et al., 2008;
Rinerson et al., 2015). WRKY TFs involve in various networks
in genetic system to govern multiple responses at once; whether
it is biotic and abiotic stresses, or physiological (Banerjee and
Roychoudhury, 2015; Phukan et al., 2016). Besides, WRKY TFs
are also responsible to regulate production of some secondary
metabolites such as phenolic compounds along with lignin,
flavanols, and tannins (Guillaumie et al., 2010; Wang et al., 2010;
Phukan et al., 2016).

NAC [no apical meristem (NAM), Arabidopsis transcription
activation factor [ATAF1/2], and cup-shaped cotyledon (CUC2)]
are among of major families of transcriptional regulators in
plants, and present in a wide range of land plants (Olsen et al.,
2005; Jensen et al., 2010; Hu et al., 2015). In Arabidopsis, 9 of the
10, NAC domains are known to bind with conserved DNA target
sequence having a CGT[GA] core with different affinity levels
(Jensen et al., 2010; Lindemose et al., 2014). Interestingly, NAC
TFs play diverse roles in plant system which includes; regulation
of plant development and responses to biotic and abiotic stresses
(Feng et al., 2014; Hu et al., 2015).

Plant-specific TFs, growth-regulating factor (GRF) were
initially identified for their role in developing stem and leaf.
But later studies revealed that in addition to stem and leaves,
other important for other developmental processes including
root growth, flower and seed development, and plant responses
under extreme environmental conditions (Kim et al., 2003; Kim
and Kende, 2004; Omidbakhshfard et al., 2015). GRF forms
complexes by combining with GRF-interacting factors (GIFs),
a type of transcriptional co-activators (Kim and Kende, 2004;
Debernardi et al., 2014).

Homeo domain-leucine zipper (HD-Zip) proteins are among
the TFs that belong to plants kingdom. In A. thaliana, these TFs
are encoded by more than 25 genes. Two important domains HD-
Zip proteins are characterized by the presence of a homeo domain
(HD) and a leucine zipper domain (Zip) which are responsible
for DNA binding and involved in protein–protein interaction,
respectively (Wang et al., 2013; Mao et al., 2016). Based on
previous sequence similarities findings, these proteins have been
divided into four groups. Among these groups, HD-Zip I proteins
are involved in plant responses related to abiotic stress, blue
light, de-etiolation, abscisic acid (ABA), and embryogenesis.
Second group, HD-Zip II proteins take part in auxin signaling,
light response, and shade avoidance. Similarly, HD-Zip III
governs embryogenesis, lateral organ initiation, leaf polarity,
and meristem function. Whereas, HD-Zip IV proteins play
important role during trichome formation, root development,
differentiation of epidermal cells, and anthocyanin accumulation
(Turchi et al., 2015; Mao et al., 2016).

miRNAs AND TFs: PARTNERSHIP IN
PLANT GENE REGULATION

It is essential to illustrate an integrated picture for the regulatory
relationships between miRNAs, TFs, and target genes. However,
it is quite difficult to develop a clear cut regulatory relationship
between miRNAs and TFs, because, in addition to the interaction
of these regulators with their target genes, they sometimes
interact with each other; leading to some different results. Here,
we have summarized the similarities (Table 1) and differences
(Table 2) between miRNAs and TFs mediated regulatory system.
We also propose a model to relate these two regulators with
their target genes and the consequences of this model to the
plant regulatory network under normal (Figure 1) and stress
condition (Figure 2). The existence of both miRNAs and TFs
in gene regulatory networks will reveal the regulatory role
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TABLE 1 | Similarities between microRNA (miRNA) and transcription factor (TF) in plant.

Factors miRNA and TF Reference

Gene regulator Both are gene regulators Lai et al., 2016

Stimulus response Both are inducible toward external stimuli Nazarov et al., 2013

Number of targets Both can regulate from single to multiple targets at a time Lindemose et al., 2014

TABLE 2 | Differences between miRNA and TF in plant.

Factors miRNA TF Reference

Biogenesis Synthesized from a series of cleavage
mediated by DCL

Synthesized directly from gene and
undergo folding process

Rogers and Chen, 2013;
Boeva, 2016

Molecular composition Short non-coding RNA Proteins Rogers and Chen, 2013;
Boeva, 2016

Level of regulation Post-transcription Transcription Rogers and Chen, 2013;
Boeva, 2016

Functional requirement Need Argonoute protein to be fully
functioned

No need additional protein to be fully
functioned

Boeva, 2016; Miyoshi et al.,
2016

Mode of action Repress the target gene by
cleavage/translational inhibition

Bind to promoter region to activate or
repress the target gene

Brodersen et al., 2008; Rogers
and Chen, 2013; Boeva, 2016

Target region Bind to the UTR or coding region Cis region of promoter Rogers and Chen, 2013;
Boeva, 2016

Family classification Based on sequence conservation Based on DNA-binding domain Kozomara and Griffiths-Jones,
2014; Salih et al., 2016

FIGURE 1 | Interaction between different microRNAs (miRNAs) and transcription factors (TFs) in plant development under normal condition.
Interaction between miR156-SPL and miR172-AP2 leads plant transition from juvenile to adult; miR156-SPL, miR172-AP2, and miR319-TCP regulate the flowering
process; miR319-TCP and miR396-GRF control leaf morphogenesis; miR169-NY-FA and miR164-NAC1 regulate root development and nodule formation, and
miR166-HD ZIP III responsible for shoot apical meristem (SAM) development and organ polarity.
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FIGURE 2 | Interaction between different miRNAs and TFs in plant under stresses. Stresses (biotic and abiotic) induce signal transduction which led to
activation of stress responsive miRNAs (miR159, miR169, miR828, miR858, miR164, miR319, and miR396) and/or their target TFs (NF-YA, MYB, NAC, WRKY, and
TCP) that can affect the target genes. miRNA can regulate target gene directly (post-transcriptionally as shown with dotted line) or through TF by regulating TF
(Transcriptionally as shown with solid line) that involve in the regulation of target gene. TFs can directly regulate target gene or through miRNA that involve in the
regulation of target gene.

involving both direct and indirect regulatory relationships. In
this review, we have tried to bring together previous findings,
related to the interaction between miRNAs and TFs, mostly in
model plants and some non-model plant (Table 3). Rigorous and
time consuming web lab/experimental work was a big hurdle in
developing interactions between miRNAs and TFs in plants (Le
et al., 2013). But now, with the advancement in the public data
bases and bioinformatics tools, to develop an interaction between
above mentioned regulators it is relatively easy.

miRNAs AND TFs DURING PLANT
GROWTH AND DEVELOPMENT

Plant growth and development are reflection of genes expression.
Appropriate timing and pattern of gene expression and
production of proteins are required to ensure proper growth and
development in plant (Maizel and Weigel, 2004; Dutt et al., 2014).
miRNAs and TFs are among the key regulators which determine

how gene expression being regulated, thus affect the physiology
and phenotype of the plant.

miRNA AND NY-FA: REGULATE ROOT
ARCHITECTURE AND FACILITATE
NODULE FORMATION

In Arabidopsis, four isoforms of miR169 were identified to
target NF-YA transcription factor. Those miR169 isoforms
(miR169defg) and the NF-YA2 TF were recognized to control
the root architecture since loss-of-function miR169defg led to
improper root initiation (Sorin et al., 2014). On the other hand,
interaction of miR169 and NF-YA transcription factor also seems
to be affect nodule formation in Arabidopsis. The overexpression
of miR169 against NFYA transcription factor family member,
HAP2-1, resulted in late nodulation and detained meristem
development, thus led to improper development of nodules
(Couzigou and Combier, 2016).
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TABLE 3 | The interaction between miRNAs and TFs under normal and stress condition.

miRNA TF family Plant Effect of the interaction Reference

miRNA under normal condition

169 NY-FA Arabidopsis thaliana Root architecture Sorin et al., 2014

Nodule formation Couzigou and Combier, 2016

399 MYB A. thaliana Phosphate homeostasis Baek et al., 2013; Baldoni et al., 2015

159 MYB Oryza sativa Senescence Wu et al., 2016

A. thaliana Seed germination Reyes and Chua, 2007; Roy, 2016

447 and 5255 MYB Gossypium hirsutum Root and fiber development Xie et al., 2014

828 and 858 MYB G. hirsutum Fiber development Guan et al., 2014

172 AP2 A. thaliana Floral development Wu et al., 2009; Zhu and Helliwell, 2011; Teotia
and Tang, 2015

172 AP2 Glycine max Nodule formation Yan Z. et al., 2013

Phaseolus vulgaris Nodule formation Nova-Franco et al., 2015

156 SPL A. thaliana Floral development Yamaguchi and Abe, 2012; Teotia and Tang,
2015

Plant transition from juvenile to adult Huijser and Schmid, 2011; Hong and Jackson,
2015

O. sativa Floral development Xie et al., 2006; Hong and Jackson, 2015

Solanum lycopersicum Floral development Zhang et al., 2011; Hong and Jackson, 2015

Zea mays Floral development Chuck et al., 2007; Hong and Jackson, 2015

319 TCP A. thaliana Floral development Efroni et al., 2008; Schommer et al., 2008

Leaf development Efroni et al., 2008; Schommer et al., 2008; Li
et al., 2016

LANCEOLATE
(Homolog TCP)

S. lycopersicum Leaf development Ori et al., 2007

164 NAC1 A. thaliana Lateral root development Guo et al., 2005

Z. mays Lateral root development Li J. et al., 2012

396 GRF A. thaliana Leaf development Baucher et al., 2013; Liu et al., 2009

Z. mays Grain development Zhang et al., 2015

166 HD-ZIP III A. thaliana Shoot apical meristem (SAM), organ polarity,
and vascular development

Jung and Park, 2007; Zhong and Ye, 2007;
Zhou et al., 2007

miRNA under stress conditions

169 NY-FA A. thaliana Drought resistance Li et al., 2008; Ding et al., 2013

Salinity stress Kong et al., 2014

Abscisic acid response Contreras-Cubas et al., 2012; Cheng et al.,
2016

159 MYB A. thaliana ABA hypersensitivity Reyes and Chua, 2007; Roy, 2016

ABA hyposensitivity Alonso-Peral et al., 2010

858 MYB A. thaliana Flavonoid biosynthesis Sharma et al., 2016

828 and 858 MYB G. hirsutum Response to high temperature Wang Q. et al., 2016

164 NAC1 Triticum aestivum Contribute resistance against Puccinia
striiformis f. sp. tritici (Pst)

Feng et al., 2014

396 WRKY O. sativa Response to arsenic treatment Liu and Zhang, 2012

Helianthus annuus L. Response to high temperature Giacomelli et al., 2012

319 TCP A. thaliana Jasmonic acid biosynthesis Schommer et al., 2008

S. lycopersicum Jasmonic acid biosynthesis Zhao et al., 2015

164 NAC A. thaliana Drought resistance Fang et al., 2014
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miRNA AND MYB: REGULATE
FLOWERING TIME, PHOSPHATE
HOMEOSTASIS, LEAF SENESCENCE and
ROOT AND FIBER DEVELOPMENT

Loss-of-function of miR858 plants led to the robust growth
and early flowering. Further expression of artificial miRNA
(amiRNA) target mimic (MIM858) cause the reduction of plant
growth and delayed flowering (Sharma et al., 2016). MYB
transcription factor was able to activate miR399, which responsed
to phosphate (Pi) starvation in Arabidopsis (Baek et al., 2013).
Overexpressing AtMYB2 showed high miR399f expression and
tissue Pi contents which may resulted via elevated expression of a
subset of Pi starvation-induced genes (Baek et al., 2013; Baldoni
et al., 2015).

In maize inbred line, ELS-1, zma-miR159d which targeted
MYB transcription factor was significantly downregulated in the
leaves during senescence, while in another inbred line, Yu87-
1, zma-miR159d was upregulated (Wu et al., 2016). In cotton,
ghr-miR447a and ghr-miR5255a/b/c/e/f/g/h targeted CPC, a type
of MYB transcription factor showing that ghr-miR447a and
ghr-miR5255a/b/c/e/f/g/h might play a significant role in root
and fiber development under drought and salinity stresses by
regulating CPC in cotton (Xie et al., 2014). Similar study was
carried out in cotton where two miRNAs; miR828 and miR858,
targeted MYB2, which is responsible for fiber development (Guan
et al., 2014).

miRNAs DETERMINE THE AGE OF THE
PLANT

Couple of decades ago, there had been numerous studies which
illustrated that different miRNA families play role in regulating
floral timing and development, by targeting transcription factors
involved in these processes (Jones-Rhoades et al., 2006; Chuck
et al., 2009; Luo et al., 2013; Spanudakis and Jackson, 2014;
Hong and Jackson, 2015). At least 11 different miRNA families
have been involved in regulating the induction of floral
development at each stage. In plant miR156, miR172, and
miR390 were involved during transition from juvenile to adult
stage. Similarly, in transition from vegetative to reproductive
stage, miR159, miR169, miR172, and miR399 were involved.
A large group of miRNAs, including; miR159, miR160, miR164,
miR166/5, miR167, miR169, miR172, and miR319 regulate flower
development stage.

miRNA and AP2: REGULATE FLORAL
AND NODULE FORMATION

In Arabidopsis, miRNA172 targeted mRNA of a floral homeotic
gene AP2 that involve in floral development (Wu et al., 2009;
Zhu and Helliwell, 2011; Teotia and Tang, 2015). Unlike most
plant miRNAs which mostly turn off their own targets by
cleavage (Chen, 2004; Ameres and Zamore, 2013; Brousse et al.,

2014; Park and Shin, 2014), miR172 regulate its target via
translational inhibition (Chen, 2004; Mlotshwa et al., 2006;
Teotia and Tang, 2015). Prominent miRNA172 accumulation
causes defect in floral organ identity, which looks similar to
those loss-of-function ap2 mutants. High levels of mutant
ap2 mRNA with disrupted base for miR172 base pairing
resulted floral pattern defects (Chen, 2004; Teotia and Tang,
2015).

In common beans and soybean miR172 and its target;
AP2, involved in nodule formation (Yan Z. et al., 2013;
Nova-Franco et al., 2015). Nodulation occurs when plant
roots establish a symbiotic relationship with nitrogen-fixing
bacteria (rhizobia) to obtain nitrogen (Sasaki et al., 2014;
Suzaki et al., 2015). Rhizobial infection on bean caused
the expression level of miR172c to increase until during
nodule development stage, while uninfected nodules show
low level of miR172c and high level of AP2. In addition,
overexpression of miR172c resulted in enhanced root growth,
improved rhizobial infection, improved expression of early
nodulation and autoregulation of nodulation genes, and
improved nodulation and nitrogen uptake (Nova-Franco et al.,
2015).

miRNA AND SPL: REGULATE PLANT
TRANSITION FROM JUVENILE TO
ADULT

In Arabidopsis, SPL gene family is a well evident target of miR156.
Out of 17 SPL genes, 11 have been reported as downregulated
by miR156 through mRNA cleavage and translational inhibition
(Yamaguchi and Abe, 2012; Teotia and Tang, 2015; Wang
et al., 2015). A reduced level of miR156 over time with
increasing plant age, resulted in increased expression level of
SPL transcription factors which induced flowering through the
activation of FT, LFY, and MADS-box gene (Yamaguchi and
Abe, 2012; Teotia and Tang, 2015). In contrast, overexpressing
miR156 in transgenic plant resulted delayed flowering and
extended juvenile phase (Huijser and Schmid, 2011; Hong
and Jackson, 2015). Interestingly, miR156 was downregulated
when temperature was increased by elevated carbon dioxide
concentration (May et al., 2013). miR156 have conserved role
in regulating flowering in rice, tomato, and maize (Xie et al.,
2006; Chuck et al., 2007; Zhang et al., 2011; Hong and Jackson,
2015).

miRNA AND TCP: REGULATE LEAF
MORPHOGENESIS

In Arabidopsis, role of TCPs and their regulation by miR319
was first identified using microarray in jaw-D mutants (Jones-
Rhoades et al., 2006; Schommer et al., 2012; Spanudakis and
Jackson, 2014). Overexpressing miR319 in Arabidopsis mutants
delayed the flowering phenotype in long day conditions (Terzi
and Simpson, 2008; Spanudakis and Jackson, 2014). Late-
flowering phenotype was observed due to loss-of-function;
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where miR319 had targeted TCP4 (Sarvepalli and Nath,
2011; Spanudakis and Jackson, 2014). Another functional
analysis revealed that loss-of-function of miR319, which was
regulating TCP genes, led to slightly increase in the leaves
size (Schommer et al., 2008). Additionally, misexpression of
tissue-specific promoters at later stages of leaf development
had significantly reduced the leaf size in Arabidopsis (Efroni
et al., 2008; Li et al., 2016). Beside, miRNA319 targeted TCPs
which involved in regulation of KNOTTED1-Like HOMEOBOX
(KNOX) genes, BREVIPEDICELLUS (BP) and KNAT2 through
ASYMMETRIC LEAVES 2 (AS2) which can affect the leaf
morphogenesis (Li Z. et al., 2012). Recent study reported
that TCP transcription factor was regulated by RABBIT
EARS (RBE) during leaf development (Li et al., 2016). In
tomato, overexpression of miR319 resulted into formation
of a giant tomato leaf (Ori et al., 2007; Parapunova et al.,
2014).

INTERACTION BETWEEN miR159-MYB
AND miR319-TCP

In model plant, Arabidopsis, miR159 and miR319 targeted the
MYB and TCP transcription factors, respectively. Interestingly,
both miRNA-target nodes had abilities to regulate miR167
and the target, ARF6/ARF8 node (Rubio-Somoza and Weigel,
2013). The direct interaction of MYB and TCP transcription
factor may contribute to the functional redundancy (Rubio-
Somoza and Weigel, 2013; Spanudakis and Jackson, 2014).
Regardless of high sequence similarity of these miRNAs, the
regulation of target TCP and MYB transcripts remain conserved
for each miRNA families. Although, miR319 was able to bind
MYB transcripts, but it exhibited an incomplete temporal
and spatial expression pattern corresponding to miR159. On
the other hand, miR159 was unable to bind TCP transcripts.
This unique interaction suggested that miR159 and miR319
were able to perform different regulatory roles in plant
development (Palatnik et al., 2007; Spanudakis and Jackson,
2014).

miRNA and NAC: REGULATE LATERAL
ROOT FORMATION

Previous evidences suggested that NAC TFs could enhance lateral
root development (Xie et al., 2000; He et al., 2005; Li J. et al.,
2012; Couzigou and Combier, 2016). In Arabidopsis, endogenous
and transgenic NAC1 transcript were cleavaged by miR164,
producing a 39 nucleotide long specific fragments. However,
the action of miR164 was blocked by NAC1 mutations that
interrupted the base pairing with miR164. Arabidopsis mir164a
and mir164b mutant plants had reduced miR164 expression,
thus upregulated NAC1 transcript level, resulting to more
lateral roots as compared to wild type plants (Guo et al.,
2005). Overexpression of ZmNAC1 in transgenic Arabidopsis had
enhanced lateral roots formation in comparison to the wild type
plant (Li J. et al., 2012).

miRNA and GRF: REGULATE LEAF
MORPHOGENESIS, STEM CELL
DEVELOPMENT, AND GRAIN FILLING

In Arabidopsis, miR396a and miR396b were involved in
regulating the leaf morphology by targeting GRF TFs family (Liu
et al., 2009; Baucher et al., 2013). Liu and his colleagues, using
northern blot hybridizations approach, found that miR396 was
predominantly expressed in leaf and seedling. Overexpression of
miR396a or miR396b in Arabidopsis resulted into a phenotype
with narrow leaves, which probably was due to decreased in
cell numbers. The overexpression of miR396 had also led to
suppression of six GRF genes and GIF1 which acted as key
players in cell division in leaves. Additionally, the overexpression
of miR396 resulted in reduced stomata density, a feature that
favors drought tolerance in plants. Moreover, additional target
for miR396 had been identified which were basic Helix-Loop-
Helix (bHLH74) TF, required for Arabidopsis normal growth
and development (Debernardi et al., 2012). Further, in Populus
trichocarpa, precursor of the miR396c, which possess mature
sequence identical to miR396b in Arabidopsis, was expressed in
tobacco plant using CaMV35S promoter. The transgenic plant
exhibited altered organ development, where the third and fourth
whorls were turned into stigmatoid anthers and fasciated carpels
and delayed the flower development process (Baucher et al.,
2013).

Recent findings has discovered that miR396 and GRF
regulatory network may regulates the transition of stem cells
which are located at specific cellular context or stem cell niche
(SCN) to transit-amplifying cells (TACs) in the Arabidopsis root
meristem (Rodriguez et al., 2015). In SCN, miR396 is expressed,
but in TACs GRFs are expressed. The GRFs are essential for the
function of the TACs. Low expression level of GRFs in TACs
resulted in a low rate of the cell cycle. Additionally, it would affect
TACs by generating periclinal cell divisions typical of stem cells.
In opposite, the regulation of miR396 is required to repress the
GRFs from the SCN (Rodriguez et al., 2015).

In maize, in an attempt was carried out to explore the
profile changes profiles of miR396 and GRF TF and also to
analyze their potential regulatory roles during maize effective
grain filling period (Zhang et al., 2015). RNA sequencing was
carried out in developing maize. It was observed that miR396
was highly expressed at initial stages, and gradually declined
during later grain filling stages. By contrast, its target GRF TF
was initially negatively regulated, decreased at the beginning,
but increased continuously at later stages. Further analysis of
expression pattern provide the information that other miRNAs
like miR319, miR166, and RNA dependent RNA polymerase
may involve in the interaction between miR396 and GRF TF
during grain development in maize (Zhang et al., 2015). Similar
study was carried out in rice, where LOC_Os02g47280, which
is responsible for grain shape, was downregulated by miR396
(Zhang et al., 2013). The evidences obtained from A. thaliana,
Zea mays, and O. sativa clearly support that networking between
miR396 and GRF TF plays an important role in plant leaf growth
and grain development.
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miRNA and HD-ZIP: REGULATE SHOOT
APICAL MERISTEM and VASCULAR
PATTERNING DEVELOPMENT

Among four classes of HD-Zip TFs, the interaction of HD-Zip
III with miRNA families, 165 and 166, has been well studied
(Bao et al., 2004; Bowman, 2004; Du et al., 2011; Ramachandran
et al., 2016). In Arabidopsis, an overexpression of miR166 had
downregulated three HD-ZIP III genes; ATHB-9/PHV, ATHB-
14/PHB, and ATHB-15, resulting in recapitulate phenotypes. The
same phenotype was also observed in loss-of-function mutations
of these genes (Zhong and Ye, 2007). Similarly, overexpression
of miR165 had turned off all five HD-ZIP III genes, which
led to recapitulated phenotypes caused by loss-of-function of
mutations of hd-zip III genes, such as loss of shoot apical
meristem (SAM), changed in organ polarity and defects in
vascular tissues development and inter fascicular fibers (Zhong
and Ye, 2007; Zhou et al., 2007). Beside, miR165 and miR166
were also reported to regulate SAM and floral development
through WUSCHEL (WUS)-CLAVATA (CLV) pathway (Jung
and Park, 2007). Although miR165 and miR166 target the
same genes, individual miR165 and miR166 display different
expression domains in different part of plant tissues. For
instances, overexpression of miR165 and miR166 plant resulted
in the alterations in SAM activities and floral formation (Jung and
Park, 2007; Zhang and Zhang, 2012).

Additionally, in both Arabidopsis and maize, miR165 and 166
were observed with abundance on the abaxial side of leaf, and in
developing phloem of the leaf primordium, since both miRNAs
play critical role in leaf asymmetry patterning. Adaxialization and
overexpression of the rolled leaf1 gene occur when miRNA target
site of a REV homolog was mutated in maize rolled leaf1 (rld1)
mutant (Juarez et al., 2004; Ramachandran et al., 2016). Hence,
in both eudicots and monocots, HD-ZIP III which is responsible
for vascular patterning of leaves and stems has been suppressed
by miRNA from abaxial domains (Ramachandran et al., 2016).

miRNAs UNDER STRESS RESPONSE

MicroRNAs and TFs are the gene regulators which play an
important role under biotic and abiotic stresses in plant. In
this section, we have summarized latest information on the
interaction between miRNAs and TFs under biotic and abiotic
stresses and their effect on phenotypic and physiological changes
in plants.

miRNA AND NY-FA: CONTRIBUTE
DROUGHT RESISTANCE

In Arabidopsis, interaction between miR169 and NF-YA
transcription factor regulates the drought tolerance (Li et al.,
2008; Ding et al., 2013). Coexpression of miR169 members
and NFYA5 revealed that miR169a was more effective than
miR169c in suppressing the NFYA5 at mRNA level. Arabidopsis
nfya5 mutants and transgenic plants overexpressing miR169a

showed more susceptibility toward drought as compared to
wild type plants. In contrast, overexpression of NFYA5, resulted
plants with enhanced drought tolerance. However, during
salinity stress, miR169 was significantly induced which halted
the expression of nfya5 in Arabidopsis (Kong et al., 2014). In
addition, ABA treatment to the Arabidopsis had significantly
induced NFYA5 TF and caused the downregulated of miR169
level (Contreras-Cubas et al., 2012; Cheng et al., 2016).

miRNA AND MYB: INVOLVED IN
FLAVONOID BIOSYNTHESIS PATHWAY
AND RESPONSE TO HIGH
TEMPERATURE

A study had been carried out to functionally characterized
miR858a in Arabidopsis. The miR858a, which putatively
targets R2R3-MYB transcription factors involved in flavonoid
biosynthesis (Sharma et al., 2016). Overexpression of miR858a
in Arabidopsis resulted in the downregulation of several MYB
TFs involved in flavonoid biosynthesis pathway, hence decrease
the flavonoid production. In contrast, knockdown of miR858a by
target mimic led to plant growth reduction and delayed flowering
(Sharma et al., 2016).

In cotton, MYB TF was found to be upregulated in response
to high temperature. Like the previous study (Guan et al., 2014),
MYB TF was targeted by miR828a and miR858 (Wang Q. et al.,
2016). From this finding, we suggest MYB TF and miR828 and
miR858 may have dual role in cotton, during fiber development
and adaptation against high temperature.

miRNA AND WRKY: RESPONSE TO HIGH
TEMPERATURE

In sunflower, when plant exposed to high temperatures, a WRKY
TF (HaWRKY6) exhibited inverse correlation with miR396. High
level of miR396 was observed in older leaves in contrast to the
distal portion where the expression was low (Giacomelli et al.,
2012). In rice treated with arsenic, miR396 was downregulated
which resulted in the upregulation of its target, WRKY TF (Liu
and Zhang, 2012). Currently, as per our knowledge, no functional
study involving the overexpression or loss-of-function of miRNA
and WRKY TF has been carried out.

miRNA AND TCP: REGULATE JASMONIC
ACID BIOSYNTHESIS

Last decade, a combination of genome-wide, biochemical and
genetic studies discovered TCP were responsible for the jasmonic
acid biosynthesis (Schommer et al., 2008). Leaf extracts analysis
from plants with high activity of miR319 regulate the expression
of the biosynthetic genes, which subsequently led to change in
jasmonic acid levels. Moreover, recent finding demonstrated that
root-knot nematode (RKN) resistance in tomato was established
by using reverse genetic approaches in the interaction of miR319
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and TCP4 (Zhao et al., 2015). These interactions affected both
jasmonic acid synthetic genes and the endogenous jasmonic acid
level in leaves. These finding suggest that the negative interaction
between miR319 and TCP4 acted as a systemic signal responder
and regulator that modulated the systemic defensive response,
mediated via jasmonic acid responsive to RKN (Zhao et al.,
2015).

miRNA AND NAC: REGULATE DROUGHT
RESISTANCE AND CONTRIBUTE
RESISTANCE AGAINST FUNGUS

The interaction between miR164 and NAC TF is well known
in developmental process in Arabidopsis. In addition to that,
miR164 and NAC TFs play an important role in regulating
drought resistance in rice; where overexpression of miR164
against NAC TFs led to susceptibility toward drought (Fang et al.,
2014).

In wheat, interaction between miR164 and novel TF
NAC21/22 was confirmed experimentally via co-transformation
of both genes in tobacco leaves. Transcript accumulation of
NAC21/22 and miR164 exhibited contrasting expression patterns
in wheat response to Puccinia striiformis f. sp. tritici (Pst).
Silencing of the NAC21/22 showed reduced stripe rust resistance
in wheat. These results indicate that the target of miR164 is
a novel NAC TF from wheat and plays an essential role in
developing stripe rust resistance in host plants (Feng et al., 2014).

REMARKS, FUTURE PERSPECTIVE, AND
POTENTIAL APPLICATION

miRNA as Secondary Metabolite
Regulator
Gathering all information above, interaction between miRNAs
and TFs will help in understanding the regulatory networks
influenced directly by these regulators and cross talking
between various biological processes in plants. As miRNAs
has been found to be related in secondary metabolite
regulation which need to be further explored (Bulgakov
and Avramenko, 2015). In Arabidopsis, the interaction
between miR156 and SPL resulted in the negative regulation
of anthocyanin biosynthesis (Gou et al., 2011). Moreover,
in Arabidopsis, loss-of-function of miR163 also led to the
accumulation of methyl farnesoate. miR163 also found to
regulate another mRNA encoding S-adenosylmethionine
dependent methyltransferases that is responsible for methylation
of secondary metabolites and different signaling molecules (Ng
et al., 2011).

In opium, miR13, miR2161, and miR408 were involved
in indole alkaloid biosynthesis (Boke et al., 2015). In
medicinal herb, Picrorhiza kurroa, miR4995 was involved
in the regulation of terpenoid biosynthesis (Vashisht et al.,
2015). These interactions can be utilized as a tool to enhance
secondary metabolite production either by overexpressing

miRNA or transcription factor. Other approach can be the
knockdown of miRNA/TF which interfere in the secondary
metabolite production. In Persicaria minor plant, an interaction
among different miRNAs and TFs investigated. For instance,
the targets of miR156 and miR172 (SPL and AP2) were
downregulated, whereas targets of miR858 and miR894
(MYB and WRKY) were upregulated under elicitation by
Fusarium oxysporum (Samad et al., 2016). These finding
supported the previous studies; especially, in model plant
where the TFs that played role in defense mechanism were
upregulated while those TFs which mostly involved in plant
development were downregulated by miRNA under stress
condition.

Artificial miRNA (amiRNA) for Secondary
Metabolites and Disease Resistance in
Plants
One of the most important global issues is food security to ensure
everyone living in this globe can access sufficient food. Since
world population is increasing on an alarming rate every effort
must be taken in account to obtain higher food production.
Genetic modification technology based on miRNA and TFs
approaches, can be one of the solutions that contribute to crop
yields directly by developing superior plants which can survive
under environmental stresses, with high yield and nutrients. This
technology will also promote a healthy environment due to less
pesticide usage, and this reduced pesticide cost will be used to
elevate the living standard of the poor agricultural community
across the globe.

After the breakthrough of miRNA discovery, extensive studies
had been done which led to development of new version of
miRNA called amiRNA (Carbonell et al., 2014; Shriram et al.,
2016). This approach utilize the unique stem-loop structure of
endogenous pri-miRNAs, in which the miRNA/miRNA∗ duplex
sequences are being replaced with amiRNA/amiRNA∗ sequences
that direct the silencing of target gene with high efficiency
(Eamens et al., 2014). AmiRNA technique exhibited some
advantages when compared with conventional RNA interference
(RNAi), where amiRNA can be useful for targeting groups
of closely related genes, including tandem arrayed and the
prediction of gene targeted by amiRNA could be more precise
(Schwab et al., 2006; Ossowski et al., 2008; Carbonell et al., 2015).
This approach was effectively used for the downregulation of
Chalcone synthase genes in Arabidopsis (Niemeier et al., 2010;
Kamthan et al., 2015).

Beside, amiRNA can be a new approach for developing
pathogen tolerant plants, especially virus (Vu et al., 2013; Ilardi
and Tavazza, 2015; Wagaba et al., 2016). T2 transgenic tomato
plants expressing amiR-AV1-1 were highly tolerant to Tomato
leaf curl New Delhi virus (ToLCNDV), while those plants
expressing amiR-AV1-3 showed moderate tolerance (Vu et al.,
2013). Moreover, recent study in cassava showed transgenic
plants which carry four amiRNA challenged with Cassava brown
streak virus (CBSV) and Ugandan cassava brown streak virus
(UCBSV) isolates, showed resistance levels that ranged between
∼20 and 60% (Wagaba et al., 2016).
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CONCLUSION AND REMARKS

In the present article, we have reviewed the regulatory
relationships between miRNAs and various families of TFs
like; NF-YA, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL,
from different plant species. The studied interactions between
various miRNAs and above mentioned TFs have important roles
during drought tolerance, signal transduction and biosynthesis of
secondary metabolites, floral development and nodule formation,
leaf development, multiple stresses tolerances, lateral root
growth, and plant transition from juvenile to adult, respectively.
Being the major gene regulators, miRNAs and TFs determine the
phenotype, physiology and response to various environmental
stresses. Our current review, with lots of newly developed
relations between different miRNAs and TFs, will help plant
scientists to develop plants with desired phenotypes and stress
tolerance ability against particular stress. The plants with
stresses tolerance will help to secure the food production for
the ever increasing world population. Moreover, some studied
interactions have important role in regulation of secondary

metabolites biosynthesis and can be used as tool for the
production of plant based medicinal biomolecules.
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