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Drought is a major abiotic stress that limits wheat production worldwide. To ensure food

security for the rapidly increasing world population, improving wheat yield under drought

stress is urgent and relevant. In this study, an RNA-seq analysis was conducted to

study the effect of drought on wheat transcriptome changes during reproductive stages

under field conditions. Our results indicated that drought stress during early reproductive

periods had a more severe impact on wheat development, gene expression and yield

than drought stress during flowering. In total, 115,656 wheat genes were detected,

including 309 differentially expressed genes (DEGs) which responded to drought at

various developmental stages. These DEGs were involved in many critical processes

including floral development, photosynthetic activity and stomatal movement. At early

developmental stages, the proteins of drought-responsive DEGs were mainly located in

the nucleus, peroxisome, mitochondria, plasma membrane and chloroplast, indicating

that these organelles play critical roles in drought tolerance in wheat. Furthermore, the

validation of five DEGs confirmed their responsiveness to drought under different genetic

backgrounds. Functional verification of DEGs of interest will occur in our subsequent

research. Collectively, the results of this study not only advanced our understanding

of wheat transcriptome changes under drought stress during early reproductive stages

but also provided useful targets to manipulate drought tolerance in wheat at different

development stages.
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INTRODUCTION

Drought is a major abiotic stress that limits wheat production worldwide. It can severely affect
wheat growth and development causing various physiological and biochemical damage. Drought
can lead to stomatal closure, reductions in photosynthesis and transpiration, growth inhibition,
antioxidant production, and changes in hormonal composition (Szegletes et al., 2000; Lawlor and
Cornic, 2002; Zhu, 2002). Depending on the onset time, duration and intensity of the stress,
drought can cut wheat yields by up to 92% (Farooq et al., 2014). The IPCC forecasted that drought
would be more frequent and severe in many crop-growing areas in the next decades due to climate
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change (IPCC, 2014). The world population is predicted to reach
9.6 billion by 2050, heightening the importance of improving
drought tolerance in wheat to ensure food security for the rapidly
growing population.

A survey of plant genes responsive to drought stress at the
whole genome level is essential for understanding the biology
of drought, and will, in turn, provide insight into the molecular
mechanisms of drought (Hübner et al., 2015). In this regard,
many drought-responsive wheat genes have been identified via
microarray and RNA-seq technology (Aprile et al., 2009, 2013; Li
et al., 2012; Liu et al., 2015). These genes responded to drought
at different growth stages, including seedling, booting, anthesis
and grain filling. These genes are a valuable genetic resource for
drought tolerance improvement in wheat. By contrast, although
drought during early reproductive stages (before booting) also
impacted wheat development and yield potential (Oosterhuis
and Cartwright, 1983; Qu, 1989; Ji et al., 2010), there have
been no reported transcript study on the genes responsive to
drought during these periods. Since many drought-related genes
are genotype and growth stage specific (Garg et al., 2016),
investigating wheat transcriptome changes under drought stress
during early reproductive stages will help us to understand how
drought affects gene expression during wheat development.

In the current study, we performed a transcriptomic
analysis of a drought-tolerant winter wheat variety “Luyuan502”
subjected to drought stress at various growth stages. Because
gene expression can change under different environments (Xu,
2016), the plants in our study were grown under field conditions
to simulate actual farming practices rather than using growth
chambers like previous studies. DEGs at five different time points
during early and late reproductive periods were investigated

FIGURE 1 | The developmental stages of plants used for tissue collection and RNA-seq analysis. T4: pistil and stamen differentiation stage; T5: anther

differentiation stage; T6: tetrad stage; T8: early flowering stage; and T9: grain formation stage.

for biological function. Furthermore, we selected five DEGs for
RT-qPCR validation using a drought-tolerant and a drought-
sensitive variety.

MATERIALS AND METHODS

Plant Materials and Stress Treatments
Based on a survey of 156 elite commercial wheat varieties in
the North China Plain, we selected Luyuan 502 for its drought
tolerance (Li, 2014). Seeds of Luyuan 502 were field sown in
early October 2014 at the Experimental Station of the Hebei
Agricultural University in Gaocheng County, China (114.84◦ E
38.03◦ N, 56m above sea level). Plants were arranged in three
blocks (A, C, and D), each being 12m long and 8.5m wide, with
a rain shelter to keep the plants from rain and snow (Figure 1).
To simulate local farming practices, a two-time irrigation strategy
was adopted. Block D (control block) was watered twice, whereas
block A and block C was watered once. On 1 April 2015, when
the first internodes of most plants (>80%) were visible (Feekes’
growth stage 6), the plants in blocks C and D were watered. On 1
May 2015, when most of the plants (>80%) had begun to flower
(Feekes’ growth stage 10.5.1) (Large, 1954), plants in blocks A and
Dwere watered. About 574 kg of water (equal to 60mm)was used
for each irrigation. During wheat growth, the relative soil water
content (RSWC) was recorded at nine time points (T1 to T9) to
monitor the level of drought stress in the three blocks (Figure 2).
The RSWC was calculated as RSWC = [(current pot weight −
soil dry weight)/weight of soil watered to field capacity]× 100.

Plant samples were taken in blocks A and D at T4 (7 April;
7 days after first irrigation), T5 (14 April; 14 days after first
irrigation) and T6 (21 April; 21 days after first irrigation), and
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FIGURE 2 | Profile of relative soil water content (RSWC) during wheat growth. T: time point.

in blocks C and D at T8 (7 May; 7 days after second irrigation),
and T9 (14 May; 14 days after second irrigation) (Figure 2). At
T4, T5, and T6, the upper parts of main tillers were collected,
while at T8 and T9, the developing spikes were collected after
removing awns and rachis. The developmental stages of plants at
these five time points were checked by microscope or the naked
eye. Plant materials from five individual plants in each block
were pooled as a biological replicate for RNA extraction. Three
biological replicates were collected at each time point, resulting
in 30 samples for cDNA library construction and sequencing
(three biological replicates × two blocks × five time points =
30 samples). The collected samples were frozen immediately in
liquid nitrogen and stored at −80◦C until required. To examine
the effects of drought on plant growth and development in each
block, total dry biomass before flowering, total dry biomass at
maturity, spike and spikelet numbers, number of fertile and
infertile spikelets per spike, thousand grain weight and grain yield
were recorded. The differences between grain setting rate and
grain yield difference to the control were also calculated.

RNA Isolation, Library Construction,
Transcriptome Sequencing, and Reads
Mapping
Total RNA was extracted using TRIzol reagent (Invitrogen)
according to the manufacturer’s instructions. DNA was removed
by digestion with RNase-free DNase (Qiagen), and RNA
was purified and concentrated using an RNeasy column
(Qiagen). RNA quality was evaluated by gel electrophoresis,
spectrophotometer analysis and an Agilent 2100 bioanalyzer.
RNA samples were sent to Novogene Bioinformatics Technology
Co. Ltd., Beijing, China (http://www.novogene.cn) for further
processing and sequencing. The sequencing libraries were
sequenced on Illumina HiSeq 2500 (Illumina, San Diego, USA)
and 125/150 bp paired-end reads were generated. The RNA
sequences have been deposited at the National Center for
Biotechnology Information (NCBI) with the accession number

of SRP102636. The raw reads were filtered by removing adapter
sequences, ambiguous nucleotides (if the proportion of “Ns”
exceeded 10%), and low-quality sequences (when the percentage
of bases with low Phred quality score ≤20 is greater than 50%
in a read). At the same time, Q20, Q30, and GC contents of the
clean data were calculated. All downstream analyses were based
on clean data.

The clean reads were aligned to wheat reference genome
sequences released by the International Wheat Genome
Sequencing Consortium (IWGSC) (ftp://ftp.ensemblgenomes.
org/pub/release-23/plants/fasta/triticum_aestivum/dna/) using
TopHat 2.0.12 (Trapnell et al., 2010). Mismatches of no more
than two bases were allowed in the alignment. After alignment,
HTSeq v0.6.1 was used to count the read numbers that were
mapped to each gene. The expected number of Fragments Per
Kilobase of transcript sequence per Million base pairs sequence
(FPKM) of each gene was calculated to determine the expression
values of this gene. Pearson’s correlation coefficients between
the three biological replicates were calculated in the R software
package to quantify the correlation between biological replicates.

DEGs Identification and Functional
Annotation
A consensus FPKM across the three biological replicates was
calculated and used in the DEG analysis (Trapnell et al., 2010).
For each gene, the relative homologous rice gene, homologous
rice gene annotation, and NCBI non-redundant protein database
annotation were investigated. DEGs were identified using DESeq
1.10.1 (Anders and Huber, 2010). To assess the variability among
samples, we performed principal component analysis (PCA) for
the wheat genes identified at T4, T5, and T6 using the prcomp
command with default parameters in the R software package
(Robinson et al., 2010).

Five pair-wise comparisons between the three blocks were
made to identify the drought-responsive genes. At T4, T5, and
T6, the comparison was made between blocks A and D while
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at T8 and T9, the comparison was made between blocks C
and D. A corrected p-value < 0.05 was set as the criteria for
determining DEGs. We created heatmaps to demonstrate the
gene expression data of T4 using Java TreeView (Robinson et al.,
2010). The subcellular locations of proteins for the DEGs at T4
were analyzed using PSORT Prediction software (http://psort.
hgc.jp/form.html).

To study the biological significance of the DEGs, an
enrichment analysis of gene ontology (GO) terms was
conducted with GO seq R package. Statistically significant
over-representation of GO categories (corrected p-value < 0.05)
in response to the drought treatment was determined separately
for each time point. Similarly, KOBAS software was used to test
the statistically enriched pathways associated with the DEGs at
each time point in the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database.

Validation of RNA-Seq Analysis by
RT-qPCR
To confirm the RNA-seq results, among the identified DEGs in
Luyuan 502, 21 genes were randomly selected and assessed using
RT-qPCR. RT-qPCRs were conducted on a StepOne Plus Real-
Time PCR system (Applied Biosystems) using SYBR Green I for
the detection of PCR products. Each reaction was performed
in a final volume of 16 µL, containing 8 µL SYBR Green PCR
Master Mix (Applied Biosystems), 250 nM of each primer and
50 ng cDNA template. The thermal cycling conditions were
94◦C for 10 min, followed by 40 cycles of 94◦C for 15 s, 55◦C
for 30 s, and 60◦C for 1 min, with fluorescence detection at
the end of each cycle. The amplification of a single product
per reaction was confirmed by melting curve analysis. All
reactions were performed in three technical triplicates. Wheat α-
tubulin (forward: ATCTGTGCCTTGACCGTATCAGG; reverse:
GACATCAACATTCAGGACACCATC) was used as an internal
reference gene to normalize Ct values of each reaction (Chen
et al., 2016), which were determined using the CFX96 software
with default settings. The sequences of the 21 genes and primers
used in the RT-qPCR analysis are listed in Table S5.

Validation of DEGs at Early Reproductive
Stages under Different Genetic
Backgrounds
A drought-tolerant variety Cangmai 6001 and a drought-
sensitive variety Hanmai 9 were subjected to normal watering
as a control, and 5 days of non-watering as a drought treatment
until the RSWC reached the threshold (35%) at the tilling stage
in the glasshouse. To confirm their different sensitivities to
drought, four drought-related physiological indexes—ascorbate
peroxidases (APX) activity, catalase (CAT) activity, H2O2

content and MDA content—were measured in both varieties
before sampling.

Wheat leaves subjected to drought stress or mock treatments
were sampled for physiological index determination. The MDA
(malondialdehyde) level was estimated according to Li et al.
(2014). H2O2 (hydrogen peroxide) accumulation was assessed
using commercial kits (Jiancheng Biotech Inc., Nanjing, China)

according to Yang et al. (2016). Each sample was homogenized
in pre-cooled phosphate-buffered saline (PBS) using 1 mL of
buffer per 0.1 g of fresh tissue. The homogenate was centrifuged
at 10,000 g for 10 min at 4◦C. Freshly isolated supernatant
fractions were used immediately for measuring H2O2 content.
Adduct formation was measured spectrophotometrically at 405
nm using Thermo Scientific Multiskan FC (Shanghai, China) in
strict accordance with the manufacturer’s instructions. Protein
contents were determined using an Enhanced BCA Protein Assay
Kit (Beyotime, Shanghai, China). The activities of antioxidant
enzymes, including catalase (CAT) and ascorbate peroxidase
(APX), were measured as described previously (Rao et al., 1996;
Li et al., 2011; Tian et al., 2014). The assay of enzyme activity was
carried out using a spectrophotometer at 25◦C.

As we mainly focused on genes differentially expressed
during early reproductive stages, we selected five DEGs
during early reproductive stages for RT-qPCR validation:
Traes_5DS_CCCDA48421 (T4), Traes_5BS_9584239E51 (T4),
Traes_2DL_77F25CE27 (T4 & T5), Traes_3DL_304C8DD67 (T4
& T5) and Traes_7DS_1D74598FD (T4 & T6). These five
DEGs were associated with floral organ development, stomatal
movement or photosynthesis activity etc. RNA of Hanmai 9 and
Cangmai 6001 was extracted using TRIzol reagent (Invitrogen).
Three trials were conducted for the measurement of four
drought-related physiological indexes and RT-qPCR analysis. A
general mean across each trial was calculated and used. Two-
tailed unpaired Student’s t-tests was used to determine if the
differences between the two varieties were significant or not.
Wheat α-tubulin was used as the reference gene (Chen et al.,
2016). RT-qPCR primer sequences are listed in Table S5.

RESULTS

RSWC and Plant Response to Drought
Initially, RSWC in blocks A, C, and D was similar at T1 and T2.
The first irrigation on 1 April in blocks C and D, increased RSWC
in these two blocks to 62.2 and 63.0% at T3, then decreased to
52.8 and 53.5% at T4, 46.5 and 46.9% at T5, and 35.5% at T6. In
contrast, RSWC in the unirrigated block A changed little (36.7–
30.8%) during the same period. The second irrigation on 1 May
in blocks A and D increased RSWC in these two blocks to a much
higher level than in block C at T7, T8 and T9 (Figure 2).

Total plant biomass was a direct growth parameter to measure
the effects of drought on wheat growth and development. As
expected, the plants in block A which suffered drought stress
during early reproductive stages had the lowest total dry biomass
before flowering. At maturity, due to second irrigation, the
biomass of plants in block A had increased to a similar level as
that in block C, but was still much lower than block D (control). A
similar trend was observed for grain setting rate and yield. Blocks
A and C had lower values (−6.6 and −6.1%; −4.9 and −2.4%)
on these two important traits compared with block D. Detailed
information on the traits measured in the three blocks is shown
in Table 1.

Microscopic inspection determined that plants at T4, T5, and
T6 were at the pistil and stamen differentiation stage, anther
differentiation stage and tetrad stage, respectively. Plants at T8
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TABLE 1 | Yield related traits in each block at harvesting.

Block TDB1 TDB2 SN SLN NFS NIS GSRD TGW GY GYD

A 12412.3a 19294.5a 696a 18.2a 15.4a 2.8b −6.6% 46.0b 8946.5b −6.1%

C 13695.1b 19307.1a 750b 18.0a 15.5a 2.5b −4.9% 41.7a 9294.5a −2.4%

D 13695.5b 19963.5a 744b 18.4a 16.7b 1.7a 0 44.5b 9522.9a 0

TDB1, total dry biomass before flowering (kg/hm2 ); TDB2, total dry biomass at maturity (kg/hm2 ); SN, spike number (104/hm2 ); SLN, spikelet number; NFS, number of fertile spikelets

per spike; NIS, number of infertile spikelets per spike; GSRD, grain setting rate difference to control; TGW, thousand grain weight (g); GY, grain yield (kg/hm2 ); GYD, grain yield difference

to control. The student’s t-test was performed for statistical analysis, and different letters within a column indicate statistically significant differences between blocks at p < 0.01.

and T9 were at the early flowering and grain formation stages,
respectively (Figure 1).

Summary of RNA-Seq Data
The quality of total RNA was good (Figure S1). Of the 1.7 billion
raw reads generated from the 30 cDNA libraries, approximately
1.6 billion clean reads were identified, ranging from 47 million
to 69 million reads per library. Clean reads were mapped to the
wheat genome released by IWGSC using TopHat 2.0.11. The
mapping rates of each library ranged from 98.74 to 99.14%. A
total of 99,411 genes from IWGSC and 16,244 novel isoforms of
known genes were identified (Table 2). The genes with FPKM
(transcript abundance of the gene) above 1.0 accounted for
around 40%, and those above 3.0 accounted for around 25%.
The biological replicates were highly correlated. The Pearson’s
correlation coefficients among the three replicates for each time
point ranged from 0.82 to 0.98 (Figure S2), indicating that the
three replicates were consistant. The PCA analysis indicated that
most of the variation in gene expression among different ellipses
was a consequence of the developmental stage. Furthermore, two
distinct groups formed within each ellipse; one comprised plants
in block A and the other comprised plants in block D, indicating
that the transcriptomes of drought and irrigated plants clearly
differed from each other (Figure 3).

DEGs, Functional Annotation of DEGs and
KEGG Pathway Analysis
Drought induced 309 DEGs across different time points:
226, 44, 8, 6, and 25 DEGs at T4, T5, T6, T8, and T9,
respectively (Figure 5, Table S1). The GO terms and KEGG
pathways associated with those DEGs are listed in Tables S2, S3,
respectively.

At the pistil and stamen differentiation stage (T4), 193 up-
regulated DEGs and 33 down-regulated DEGs were identified.
Their expression patterns are shown in Figure 4. The genes
in clusters 1–4 were up-regulated genes by drought, whereas
those in cluster 5 were down-regulated genes. Furthermore,
subcellular location analysis of 100 proteins of the DEGs
revealed that they were mainly located in the nucleus (18),
peroxisomes (18), mitochondria (13), plasma membrane (13),
and chloroplasts (9) (Figure 4 and Table S4). These results
suggest that these organelles play critical roles in drought stress,
and that the peroxisome, nucleus and mitochondria may be
more sensitive to drought stress damage in wheat at early
developmental stages. GO analysis showed that the “protein

TABLE 2 | Number of reads sequenced and mapped with Tophat at each

time point.

Time Block Raw reads Clean reads Total mapped Reads mapped

point reads to gene (%)

T4 A 55,101,326 52,359,821 39,568,121 99.00

C 66,209,493 63,131,921 48,451,375 98.97

T5 A 53,179,667 51,277,891 39,809,444 98.90

C 60,931,653 58,045,403 45,280,010 99.07

T6 A 52,067,162 50,169,858 38,980,092 98.97

C 64,661,216 61,811,627 48,822,803 98.94

T8 C 56,984,949 54,509,265 42,577,251 98.74

D 54,114,718 52,046,468 40,899,491 98.80

T9 C 51,186,386 48,646,447 38,516,348 98.83

D 52,790,373 50,615,959 39,526,817 99.14

The average value of three biological replicates for each stage was calculated and used

in the table.

FIGURE 3 | PCA displaying the intrinsic biological variation among

samples. Group A: samples from block A. Group D: samples from Block D.

The three trilaterals or roundness in each ellipse represents three biological

replicates at the same time point (development stage).
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FIGURE 4 | Heatmap of 226 drought-responsive genes at T4 (pistil and stamen differentiation stage) based on fpkm values for each gene. The color

scale of blue (low), yellow (medium), and red (high) represents the transcriptome levels of differentially expressed genes. The predicted subcellular location of 100

proteins from 226 genes was located mainly in the plasma membrane, vacuole and endoplasmic reticulum.

disulfide oxidoreductase activity” and “cell redox homeostasis”
were enriched (Table 3). Four KEGG pathways-“galactose
metabolism,” “circadian rhythm–plant,” “starch and sucrose
metabolism” and “flavonoid biosynthesis”-were significantly
impacted by drought stress (Table 4).

At the anther differentiation stage (T5), 37 up-regulated DEGs
and seven down-regulated DEGs were identified. Three GO
terms “magnesium ion binding,” “carbon fixation,” and “ribulose-
bisphosphate carboxylase activity” were over-represented

(Table 3). The “carbon fixation in photosynthetic organisms,”
“glyoxylate and dicarboxylate metabolism” and “carbon
metabolism” pathways were significantly enriched (Table 4).
Interestingly, five DEGs were shared between the pistil and
stamen differentiation stage (T4) and the anther differentiation
stage (T5) (Figure 5). Of these, the drought up-regulated
DEG Traes_3DL_304C8DD67 was annotated to the vacuolar-
processing enzyme (VPE), which has been associated with
growth inhibition, cell death and stomatal movement in
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TABLE 3 | GO terms significantly enriched for the DEGs at each time point.

Time GO term Corrected

p-value

Gene

T4 - pistil and

stamen

differentiation

stage

Protein disulfide

oxidoreductase

activity

<0.01 TRAES3BF036400010CFD_g

Traes_5AS_F5FE1307A

Traes_5AS_2743D6D23

Traes_5BS_9584239E5

Traes_5BS_39B20151B

Traes_5DS_A92D3B63C

Traes_5DS_5143441CB

Traes_5DS_CCCDA48421

Cell redox

homeostasis

<0.01 TRAES3BF036400010CFD_g

Traes_5AS_F5FE1307A

Traes_5AS_2743D6D23

Traes_5BS_9584239E5

Traes_5BS_39B20151B

Traes_5DS_A92D3B63C

Traes_5DS_5143441CB

Traes_5DS_CCCDA48421

T5 - anther

differentiation

stage

Magnesium ion

binding

<0.01 TRAES3BF007300100CFD_g

TRAES3BF007300110CFD_g

TRAES3BF136800060CFD_g

Traes_5DL_CC4E32ECC

Traes_7AS_97A8A5101

Traes_7DS_1D74598FD

Ribulose-

bisphosphate

carboxylase

activity

<0.01 TRAES3BF007300100CFD_g

Traes_7AS_97A8A5101

Traes_7DS_1D74598FD

Carbon fixation <0.01 TRAES3BF007300100CFD_g

Traes_7DS_1D74598FD

Traes_7AS_97A8A5101

T9 - grain

formation stage

Alpha-amylase

activity

<0.01 Traes_5BL_D1DF6C31E

Traes_5BL_AC845F1C1

Traes_5DL_91B56C21D

Calcium ion

binding

<0.05 Traes_5AL_3D9E58850

Traes_5BL_AC845F1C1

Traes_5BL_D1DF6C31E

Traes_5DL_91B56C21D

Arabidopsis (Hara-Nishimura et al., 2005; Yamada et al., 2005;
Albertini et al., 2014).

At the tetrad stage (T6), two up-regulated DEGs and
six down-regulated DEGs were identified. The pathways of
metabolism of porphyrin and chlorophyll were significantly
affected (Table 4). This enriched pathway only contains
one DEG, Traes_2DS_BB50DEEF8, which was homologous
to the rice gene LOC_Os03g20700 encoding magnesium
chelatase H subunit (CHLH). In our study, the expression of
Traes_2DS_BB50DEEF8 in the water-stressed block A was 4.53-
fold higher than that in the control block D, suggesting a positive
response of this gene to drought stress. Traes_2DS_BB50DEEF8

was one of the five genes shared between T4 and T6 (Figure 5).
The CHLH subunit affected plant hormone abscisic acid (ABA)
signaling in stomatal guard cells, and overexpression of the
CHLH gene in guard cells improved plant drought tolerance by
promoting stomatal closure (Tsuzuki et al., 2013).

Compared with earlier reproductive periods, the number
of DEGs detected during flowering declined. During early
flowering (T8), six DEGs were identified, including one
up-regulated gene and five down-regulated genes. The
down-regulated gene TRAES3BF077200010CFD_g encoded
LTPL38 which may contribute to mineral accumulation in
wheat grain (Singh et al., 2014). At the grain formation
stage (T9), 25 DEGs were identified (two up-regulated and
23 down-regulated). The GO terms “alpha-amylase activity”
and “calcium ion binding” were enriched (Table 3). The
“starch and sucrose metabolism” pathway was enriched
(Table 4).

Validation of DEGs through RT-qPCR
To verify the RNA-seq results, RT-qPCR analysis was conducted
against 21 randomly selected genes. The expression patterns
of these 21 genes assessed by RT-qPCR correlated well
(R2 = 0.9345) with those obtained from the RNA-seq
analysis (Figure 6). These results confirm the accuracy of
the transcriptome changes obtained by RNA-seq in this
study.

Validation of DEGs under Different Genetic
Backgrounds
The two varieties used for RT-qPCR validation responded
differently to drought in terms of drought-related physiological
indexes. Cangmai 6001 had higher APX and CAT activities and
lower MDA and H2O2 contents than Hanmai 9 in response to
drought stress, thus confirming the better drought tolerance of
Cangmai 6001 (Figure 7).

The RT-qPCR confirmed the involvement of five selected
DEGs in drought tolerance under different genetic backgrounds.
For example, the up-regulated DEG Traes_3DL_304C8DD67
(encoding VPE) shared by T4 and T5 increased in Cangmai
6001 and Hanmai 9, but more so in the drought-sensitive
Hanmai 9. The two down-regulated CC-type GRXs genes
(Traes_5DS_CCCDA48421 and Traes_5BS_9584239E51)
declined less in Cangmai 6001 than Hanmai 9, while
Traes_2DL_77F25CE27 and Traes_7DS_1D74598FD increased
more in Cangmai 6001 than Hanmai 9 under drought, which
were in line with RNA-seq results (Figure 8).

DISCUSSION

Plant Response to Drought Stress Applied
during Different Growth Periods
The total dry biomass of plants in blocks A and C declined,
indicating a negative impact of drought on wheat growth and
development, compared with the control block D. Drought had
the greatest effect on grain number related traits of plants in block
A, with reductions of 6.45% in spike number, 11.02% in spikelet
number per spike and 6.64% in grain setting rate, compared with
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TABLE 4 | KEGG pathways significantly enriched for the DEGs at each time point.

Time point KEGG pathway Corrected p-value Gene

T4 - pistil and stamen differentiation stage Galactose metabolism <0.01 Traes_7DS_E488AA1F2|Traes_7AS_6B6BF3A81|

Traes_7DS_5A68A26E9|Traes_7DS_E34DA2F50|

Traes_5DL_E863CA1AE|Traes_4AL_C9F401064|

Traes_7DS_5E23019F5|Novel13135

Circadian rhythm - plant <0.01 Traes_2BS_0FA5E53AD|Traes_2DS_B9D014DE1|

Traes_7DS_12C14942B|Traes_2DS_1BA7B8A2C|

Traes_3AS_6D1315D0A|Traes_2DS_8827E95F0

Flavonoid biosynthesis <0.01 Traes_2DS_1BA7B8A2C|Traes_1BL_2426A1F42|

Traes_2DS_8827E95F0|Traes_2BS_0FA5E53AD|

Traes_2DS_B9D014DE1

Starch and sucrose metabolism <0.05 Traes_7DS_E488AA1F2|Traes_7AS_6B6BF3A81|

Traes_7DS_5A68A26E9|Traes_7DS_E34DA2F50|

Traes_4AL_C9F401064|Traes_7DS_5E23019F5|

Novel13135

T5 - anther differentiation stage Carbon fixation in photosynthetic organisms <0.01 Novel10984|Traes_7DS_1D74598FD|

TRAES3BF007300110CFD_g|Traes_7AS_97A8A5101|

TRAES3BF007300100CFD_g|Traes_5DL_CC4E32ECC|

TRAES3BF136800060CFD_g

Glyoxylate and dicarboxylate metabolism <0.01 Traes_7DS_1D74598FD|TRAES3BF007300110CFD_g|

Traes_7AS_97A8A5101|TRAES3BF007300100CFD_g|

Traes_5DL_CC4E32ECC|TRAES3BF136800060CFD_g

Carbon metabolism <0.01 Novel10984|Traes_7DS_1D74598FD|

TRAES3BF007300110CFD_g|Traes_7AS_97A8A5101|

TRAES3BF007300100CFD_g|Traes_5DL_CC4E32ECC|

TRAES3BF136800060CFD_g

T6 - tetrad stage Porphyrin and chlorophyll metabolism <0.05 Traes_2DS_BB50DEEF8

T9 - grain formation stage Starch and sucrose metabolism <0.01 Traes_5BL_AC845F1C1|Traes_5DL_91B56C21D|

Traes_5BL_D1DF6C31E|Traes_2BL_33E5CFD18

the control block D. Plants in block C had the lowest thousand
grain weight, declining by 6.24% compared with control block
D (Table 1). It can be concluded from these observations that
drought during early reproductive periods (before flowering)
mainly impacted grain number related traits whereas drought
during flowering affected grain weight. This is consistent with
other studies on wheat, where drought during stem extension
caused floret and whole spikelet death and drought during
grain filling reduced grain size and weight (Oosterhuis and
Cartwright, 1983; Dorion et al., 1996; Ji et al., 2010; Pradhan et al.,
2012).

A critical and direct parameter for measuring drought damage
is grain yield. It is well established that drought during flowering
and grain filling can severely reduce wheat yield (Farooq et al.,
2014). Some studies have focused on the drought-responsive
genes during these periods (Aprile et al., 2009, 2013). In contrast,
genes responsive to drought at early reproductive periods were
mostly unknown. A study conducted by Ugarte et al. (2007)
indicated that the high temperature during stem elongation
reduced wheat yield by 46%, compared with that from booting

to anthesis (27%) and heading to anthesis (15%) (Ugarte et al.,
2007) Our results with drought stress followed a similar trend,
where grain yield in block A (drought stress applied during
early reproductive stages before flowering) declined by 6.1%
compared with 2.4% in block C (drought stress applied after
flowering periods) (Table 1). Therefore, like heat, drought stress
during early reproductive periods may affect wheat yields more
than drought during flowering periods. Investigation of genes
responsive to drought during the early reproductive stage is
needed.

Effect of Drought Stress on Gene
Expression at Early Reproductive Stages
In contrast to previous wheat transcriptome studies where
hundreds or even thousands of DEGs have been identified
(Aprile et al., 2009, 2013; Li et al., 2012; Liu et al., 2015),
only 309 DEGs were identified in our study. The likely reason
for this is our experimental design (irrigation strategy). The
small difference in the level of drought stress between control
and test samples can reduce the number of DEGs identified in
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FIGURE 5 | Venn diagrams showing the common genes at different

time points. T4 (blue): pistil and stamen differentiation stage; T5 (yellow):

anther differentiation stage; T6 (green): tetrad stage.

FIGURE 6 | Comparison of the log2 fold change of 21 selected

transcripts using RNA-seq and RT-qPCR.

transcriptome analyses (Aprile et al., 2009). We adopted a two-
times irrigation schedule in the control block as this schedule
is widely adopted in the North China Plain, where about two-
thirds of China’s total wheat output is produced (Lu and Fan,
2013). This two-times irrigation strategy is sufficient to maintain
wheat production under drought stress conditions (Li et al.,
2005; Yang et al., 2006). By simulating this strategy, we aimed to
study the molecular mechanisms to maintain wheat production

in local areas and to provide useful genetic resources for drought
tolerance improvement.

In our study, the most DEGs were identified at T4
(pistil and stamen differentiation stage). The chalcone synthase
gene (CHS) and flavonoid 3′-hydroxylase gene (F3H) in
the enriched flavonoid biosynthesis pathway, and fructan
biosynthesis genes (1-FFT, 6-SFT, and 1-SST) in the enriched
starch and sucrose metabolism pathways were known to
be associated with dorught tolerance in wheat (Kawakami
and Yoshida, 2002; Ithal and Reddy, 2004; Ji et al., 2010;
Ma et al., 2014; Wang et al., 2016). The two enriched
GO terms at this stage (protein disulfide oxidoreductase
activity and cell redox homeostasis) were associated with the
same group of DEGs, including one up-regulated and seven
down-regulated DEGs. These DEGs were annotated to CC-
type glutaredoxins (GRXs), which are small (10–15 kDa)
oxidoreductases that catalyze the reduction of disulfide bonds
of their substrate proteins in the presence of glutathione
(GSH). The loss-of-function mutants of CC-type GRXs genes
in Arabidopsis, maize and rice had fewer petal primordia,
disrupted anther lobe differentiation, and disabled meiotic
entry of sporogenous cell progenies (leading to male sterility;
Xing and Zachgo, 2008; Wang et al., 2009; Hong et al.,
2012; Kelliher and Walbot, 2012). Therefore, down-regulation
of CC-type GRXs genes in wheat may explain the spikelet
death caused by drought during the early reproductive stage
(Oosterhuis and Cartwright, 1983), but this needs further
investigation. Meanwhile, a previous study reported increased
sensitivity to oxidative stress in Arabidopsis mutants with knock
down GRX genes (Li et al., 2014). Under drought stress,
the two CC-type GRXs genes (Traes_5DS_CCCDA48421 and
Traes_5BS_9584239E51) declined less in Cangmai 6001 than
in Hanmai 9, which was in line with its drought tolerance
(Figures 7, 8).

The subcellular location of the proteins of the DEGs at
T4 indicated that the peroxisome, nucleus and mitochondria
might be sensitive to drought stress damage. This finding
differed from those of Hippophae rhamnoides seedlings, where
the proteins responsive to drought stress were mainly located
in the chloroplast, mitochondria and secretory pathway (He
et al., 2016). Plant oxidative stress can be caused by excess
H2O2 accumulation under drought stress, which severely
damages biomolecules due to the elevated and non-metabolized
cellular H2O2 (Sofo et al., 2015). In this study, Hanmai 9
accumulated significantly more H2O2 under drought stress
than Cangmai 6001, and significantly less H2O2-metabolizing
enzymes such as CAT and APX. Peroxisomes are involved
in the response of plants to biotic and abiotic stresses (Kaur
et al., 2009; Hu et al., 2012; Smith and Aitchison, 2013).
Importantly, plant peroxisomes are involved in conserved
functions (e.g., detoxification of reactive oxygen species, or
ROS) and plant-specific functions (e.g., photorespiration and
metabolism of hormones) (Kaur et al., 2009; Hu et al., 2012;
Smith and Aitchison, 2013). The DEGs encoding proteins
in the peroxisome may be involved directly or indirectly in
ROS scavenging in wheat at early developmental stages under
drought.
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FIGURE 7 | Drought-related physiological traits in Hanmai 9 and Cangmai 6001. Data are mean ± standard deviation of three trials. *p < 0.05; **p < 0.01.

At the anther differentiation stage (T5), the genes
involved in photosynthetic activities were significantly affected
by drought. The enriched GO terms (ribulose-bisphosphate
carboxylase activity and carbon fixation) contained three
up-regulated DEGs encoding ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco). Rubisco catalyzes the first
step in net photosynthetic CO2 assimilation and is a central
component of photosynthesis—a new “green revolution”
(Whitney et al., 2011; Long et al., 2015). Studies have shown that
Rubisco activase acclimates in situ to high temperature when the
stress is imposed at a slow rate in the field. Altered expression
of Rubisco activase might be crucial for continued CO2

fixation under drought stress, protecting plant photosynthetic
capacity (Crafts et al., 1998; Law and Crafts-Brandner, 2001).
In addition, Pelloux et al. (2001) and Fu et al. (2007) reported
that the expression pattern of some Rubisco genes under
drought stress had a temporal manner in Aleppo pine and
rice, which increased at an early stage of growth but then
decreased at a later stage. Similarly, of the three wheat
Rubisco genes in our study, one (Traes_7DS_1D74598FD)
was up-regulated by drought at T5 and later down-regulated
at T8. Further experiments are required to investigate the
mechanism for different expression of Rubisco genes during
wheat growth.

At tetrad stage (T6), eight DEGs were identified. Most
of these DEGs had unknown functions in wheat. However,
the stomatal movement related gene Traes_2DS_BB50DEEF8
(encoding CHLH) which was shared between T6 and T4

arose our interests. As plants lose over 95% of their water
via transpiration through stomata, the engineering of stomatal
activity is believed to be a promising approach to reduce the water
requirement of crops and to enhance productivity under stress
conditions (Schroeder et al., 2001).

Effect of Drought Stress on Gene
Expression during Flowering
Compared with early reproductive stages, drought stress during
flowering had less effect on wheat gene expression in the
developing grains because fewerDEGswere detected during early
flowering (T8; 6 DEGs) and grain filling (T9; 25 DEGs). We
found that drought stress induced several grain development-
related genes. For example, during early flowering, the DEG
TRAES3BF077200010CFD_g was annotated to the lipid-transfer
protein LTPL38, which may contribute to mineral accumulation
in wheat grains (Singh et al., 2014). At grain filling (T9), four
DEGs in the enriched KEGG pathway “starch and sucrose
metabolism” stood out: three were annotated to the wheat a-
Amy3 gene that encodes a-amylase, and one was annotated to
a rice gene encoding glycoside hydrolase family 31 proteins,
a-glucosidase (ONG2) (Nakai et al., 2007). Both a-amylase
and ONG2 can hydrolyze raw starch granules (Sissons and
Macgregor, 1994). a-Amy3 mainly provides energy for early
developing wheat grains in the spikes (Zanetti et al., 2000).
Rice ONG2 and its mRNA is only produced during ripening
and remains an active and key enzyme in starch degradation
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FIGURE 8 | RT-qPCR validation of selected genes in Hanmai 9 and Cangmai 6001. Data are mean ± standard deviation of three trials. *p < 0.05; **p < 0.01.

metabolism during the initial stage of germination (Sissons
and Macgregor, 1994; Nakai et al., 2007). The change in these
genes under drought may affect wheat grain development;
we will investigate the functions of these genes in future
experiments.
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