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Phytoplasmas are insect-vectored bacteria that cause disease in a wide range of plant
species. The increasing availability of molecular DNA analyses, expertise and additional
methods in recent years has led to a proliferation of discoveries of phytoplasma-plant
host associations and in the numbers of taxonomic groupings for phytoplasmas.
The widespread use of common names based on the diseases with which they
are associated, as well as separate phenetic and taxonomic systems for classifying
phytoplasmas based on variation at the 16S rBNA-encoding gene, complicates
interpretation of the literature. We explore this issue and related trends through a focus
on Australian pathosystems, providing the first comprehensive compilation of information
for this continent, covering the phytoplasmas, host plants, vectors and diseases. Of the
33 16Sr groups reported internationally, only groups Il, XI, Xll, XXIll, XXV, and XXXIII have
been recorded in Australia and this highlights the need for ongoing biosecurity measures
to prevent the introduction of additional pathogen groups. Many of the phytoplasmas
reported in Australia have not been sufficiently well studied to assign them to 16Sr groups
so it is likely that unrecognized groups and sub-groups are present. Wide host plant
ranges are apparent among well studied phytoplasmas, with multiple crop and non-
crop species infected by some. Disease management is further complicated by the fact
that putative vectors have been identified for few phytoplasmas, especially in Australia.
Despite rapid progress in recent years using molecular approaches, phytoplasmas
remain the least well studied group of plant pathogens, making them a “crouching tiger”
disease threat.

Keywords: “Candidatus Phytoplasma, ” 16S rRNA, biosecurity, taxonomy, biodiversity, vector, seed transmission,
host range

INTRODUCTION

Phytoplasmas are insect-vectored bacteria that cause disease in a wide range of plant species
(Lee et al, 2000; IRPCM, 2004; Bertaccini et al., 2014; Marcone, 2014). They contrast
with other phloem-limited bacteria (Gram-negative proteobacteria such as liberibacters and
phlomobacters Bove and Garnier, 2003) which are vectored by the same types of insects,
in lacking a cell wall and in having a much reduced genome size (0.53-1.2 kb; Streten
and Gibb, 2006). Spiroplasmas, another group of insect vectored plant pathogenic microbes,
share the absence of a cell wall but differ from phytoplasmas in that some are culturable
in vitro. In this mini review we seek to raise awareness of the importance of this group of
plant pathogens, summarizing five key issues that mean the threat they pose to agricultural,
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ornamental and natural vegetation is not fully appreciated,
making them worthy of the “crouching tiger” description. We
focus principally on the phytoplasmas of Australia, as a sub-set
of the large and rapidly-expanding global literature. We consider
the phytoplasmas, associated plant diseases, plant hosts and the
putative insect vectors (Table 1). Work from locations other than
Australia is mentioned where appropriate to provide context
and show where the issues we identify are generic rather than
Australian-specific as well as to point out opportunities that are
open for future study of Australian phytoplasma pathosystems.
The only other reviews of phytoplasmas in Australia are at least a
decade old and confined to tropical (Wilson et al., 2001) and sub-
tropical regions (Streten and Gibb, 2006) whereas the scope of the
present review includes the agriculturally important temperate
zone. Reviews of varying levels of comprehensiveness are
available for other geographical areas: New Zealand (Veerakone
et al,, 2015), Latin America (Pérez-Lopez et al., 2016), the Pacific
region (Davis and Ruabete, 2010) and Southern Italy (Marcone,
2011). Reflecting the large body of literature now available on
phytoplasmas, the only reviews with an international scope are
confined to particular crops such as coconut palm (Gurr et al.,
2016), date palm (Gurr et al., 2015), fruit trees (Adams et al.,
2001) and sugar cane (Smith et al., 2001).

ISSUE 1: PHYTOPLASMOLOGY IS A
YOUNG SCIENCE

Difficulties in studying phytoplasmas greatly limited early
progress because phytoplasmas cannot be grown in axenic
culture. Researchers were reliant initially on symptomology
and transmission experiments, sometimes using grafting or the
parasitic plant dodder (Cuscuta spp.) as in Australian work by
Gibb et al. (1995), to study symptoms and host ranges but were
unable to determine the nature of the pathogen or differentiate
phytoplasmas from plant pathogenic viruses. Electron
microscopy allowed phytoplasma bodies to be visualized in
plant and insect vector tissue and differentiation of phytoplasmas
from viruses. Bertaccini and Duduk (2010) provide a useful
summary of the development of methods in phytoplasmology.
Enzyme-linked immunosorbent assay (ELISA)-based methods
began to emerge in the 1980s allowing more rapid detection and
identification. The development of polymerase chain reaction
(PCR) and restriction fragment length polymorphism (RFLP)
methods for the detection and identification of phytoplasmas
since the early 1990s allowed major advances, particularly in
diagnostics and development of a genetic system for phenetic
group classifications of phytoplasmas. By 1998, the international
total of 34 representative phytoplasma strains were differentiated
into 14 groups and 32 sub-groups based on similarity coefficients
derived from RFLP analyses (Lee et al, 1998; Duduk and
Bertaccini, 2011). More recent work has extended these counts to
33 groups and at least 100 sub-groups (Dickinson and Hodgetts,
2013; Davis et al., 2015; Zhao and Davis, 2016).

The increasingly widespread availability of molecular
methods, equipment and expertise in recent decades has led
to a proliferation of discoveries of phytoplasma-plant host

associations and in taxonomic groupings for phytoplasmas.
Many articles on phytoplasma pathosystems published
this century are “first report” or “first record” articles for
phytoplasmas in geographical regions or report known
phytoplasmas from new host plant species. More fundamentally,
new taxa of phytoplasma are being reported on a frequent
basis. Progress has accelerated with the development of
new approaches for detection and study of phytoplasmas. A
prominent example is loop-mediated isothermal amplification
(LAMP; Obura et al.,, 2011; Dickinson, 2015). This approach
offers the advantages of low cost and high sensitivity, low risk
of cross-contamination because reaction vessels do not need to
be opened and, most especially, use in a kit form that requires
very little training and can be used in the field (Hodgetts et al.,
2011; Dickinson, 2015; Kogovsek et al., 2015). Though LAMP
assays have yet to be used in studies of Australian phytoplasma
pathosystems they have recently proven useful in studies of
Bogia coconut syndrome in nearby Papua New Guinea (Lu et al.,
2016).

In parallel to the use of simple LAMP diagnostics, next-
generation sequencing (NGS) technologies have provided
genomic characterization of phytoplasmas, and this has
profoundly advanced the understanding of phytoplasma
evolution and pathogenicity over recent years (Marcone, 2014).
To date, complete genomes of six phytoplasma strains (Oshima
et al., 2004; Bai et al, 2006; Kube et al., 2008; Tran-Nguyen
et al., 2008; Andersen et al., 2013; Orlovskis et al., 2017) and an
additional 16 draft or incomplete genomes have been reported
(refer Genomes OnLine database [GOLD]; https://gold.jgi.doe.
gov).

Comparative genomic analyses of phytoplasma and other
mollicutes have provided direct evidence of reduced genomic
complexity in phytoplasmas, characterized by encoding for
fewer metabolic functions and pathways (Oshima et al., 2004).
This highlights the obligate adaptation to, and reliance on,
varied metabolic substrates available in hosts and vectors by
phytoplasmas (Kube et al., 2013). Genomic studies have also
detailed genes putatively encoding for phytoplasma virulence
factors, including “effector” proteins which phytoplasmas
produce and secrete to alter host cell activities, thereby
modifying host development and reducing host defences against
herbivorous arthropod vectors (Hogenhout and Loria, 2008;
Hogenhout et al, 2008, 2009). Interestingly, comparative
genomic analysis of five diverse phytoplasma groups failed to
detect a consistent shared set of predicted secreted effector
encoding genes (Wang et al., 2014). This suggests virulence
encoding genes are likely to be diverse among phytoplasma
strains, and may explain the wide range of pathogenicity in
different 16Sr groups. Other work (Chung et al., 2013) indicates
that horizontal gene flow of mobile genetic elements among some
divergent phytoplasma strains may have facilitated horizontal
transfer of effector genes linked to the mobile elements,
adding a novel pathway for increasing the adaptive potential
of phytoplasmas with regards to their hosts. NGS methods
have been applied also for population metagenomics, allowing
valuable insight into the ecology and dynamics of phytoplasmas
and their relationships to hosts (Nicolaisen et al., 2011). Finally,
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phylogenetic analyses of phytoplasmas using NGS data are
likely to improve understanding of systematic and taxonomic
relationships in the genus, traditionally reliant on analyses of
the 16S rRNA gene region (see Issue 3) and (in some cases) use
of additional informative loci for comparison of very recently
diverged strains (Al-Abadi et al., 2016).

Anticipated widespread use of affordable NGS services
will result in a proliferation of the availability of published
phytoplasma genomes and meta-genomic analyses, and this will
ultimately lead to more advanced understanding of evolutionary
relationships of species in this genus, and their interactive
pathways with hosts and vectors including for Australian
pathosystems.

ISSUE 2: COMPLEX TAXONOMIC
NOMENCLATURE

A major impediment to comprehension of the phytoplasma
literature and comparisons between studies, particularly for the
non-specialist, is the taxonomic nomenclature with three systems
currently in use. First, reflecting the history of phytoplasmology
described above, the early literature uses disease common names
based on symptoms (e.g., little leaf, yellows, witches’ broom)
often coupled with the host plant’s name. These disease common
names have been applied also to the phytoplasmas and continue
to be used frequently in recent literature. Examples from the
Australian literature include Buckland Valley grapevine yellows
phytoplasma, tomato big bud phytoplasma and Cockey apple
witches’ broom phytoplasma (Table 1). This allows great scope
for confusion because a given phytoplasma can be found in
multiple plant species and can cause different disease symptoms
in different hosts.

Second, as molecular methods became available, workers
were able to group and phenetically classify phytoplasmas using
restricted fragment length polymorphism (RFLP) analysis of a
PCR amplified portion of the 16S rRNA gene with a defined
set of restriction enzymes (Lee et al., 1998). The RFLP profiles
generated for different phytoplasmas are generally consistent
with sequence-based phylogenetic analyses of the 16S rRNA
gene, particularly in the co-identification and grouping of
related strains. The 33 16Sr groups currently defined each
have a similarity of <85% compared with any representative
phytoplasma from within an established 16Sr group (Zhao and
Davis, 2016). Table 1 summarizes available information on the
16Sr groups reported in Australian studies. Of the 33 16Sr
groups reported internationally, only groups II, XI, XII, XXIII,
XXV, and XXXIII have been recorded in Australia and this
highlights the need for ongoing biosecurity measures to prevent
the introduction of additional pathogen groups.

Third, phytoplasmas are classified in the provisional
genus “Candidatus Phytoplasma” (IRPCM, 2004). To date,
there are 42 formally described species and ten potentially
novel phytoplasma species (Davis et al.,, 2015). This number
exceeds the current number of 16s rRNA groups because some
of these groups contain several “Candidatus Phytoplasma”

species. At least 100 subgroups are known (Dickinson and
Hodgetts, 2013). According to Phytoplasma/Spiroplasma
Working Team-Phytoplasma Taxonomy Group, a novel “Ca.
Phytoplasma” species description should refer to a single, unique
16S rRNA gene sequence (>1,200 bp), and a strain can be
recognized as a novel “Ca. Phytoplasma” species if its 16S rRNA
gene sequence has <97.5% similarity to that of any previously
described “Ca. Phytoplasma” species (Duduk and Bertaccini,
2011). Additional biological characters such as antibody
specificity, host range and vector transmission specificity as well
as genetic markers can also be used in an integrative taxonomy
approach for species differentiation. Of the 42 recognized “Ca.
Phytoplasma” species, only Ca. Phytoplasma aurantifolia, Ca.
Phytoplasma australasiae and Ca. Phytoplasma australiense are
reported in Australia (Table 1) but uncertainty exists because
many papers appear without Ca. Phytoplasma names which are
used consistently only in the case of the GenBank database.

The general literature uses a mix of Ca. Phytoplasma names,
16Sr group and sub-group names, and common names that often
reflect the host plant or symptom (Table 1). Though formally
named Ca. Phytoplasma species each align with a group or sub
group in the 16Sr system, many groups and sub-groups do not
currently have a “Candidatus Phytoplasma” species name.

ISSUE 3: LARGE AND POORLY
UNDERSTOOD BIODIVERSITY AMONG
PATHOGENS AND WIDE HOST RANGES

Whilst it is important to note that a given type of phytoplasma
can attack more than one plant species, and that a given plant
species can be attacked by multiple types of phytoplasma, the list
of phytoplasma disease common names from Australia (Table 1)
is instructive in indicating the wide range of plant species that
are affected, even for specific phytoplasmas. Examples extend
over forage, broadacre and horticultural crops of a perennial
and annual nature, as well as ornamental and uncultivated (i.e.,
natural vegetation) species.

There is an especially poor knowledge of phytoplasma
pathosystems in temperate Australia, largely because of the
tropical and sub-tropical zone focus of most of the key Australian
workers in the last 20 years. Many of the phytoplasmas reported
in Australia have not been sufficiently well studied to assign them
to 16Sr groups so it is likely that unrecognized groups—as well as
sub-groups—are present, particularly in native vegetation.

Great efforts are currently being made to define the extent
and diversity of phytoplasmas in Australia (most recently the
discovery of Stylosanthes little leaf 16Sr XII phytoplasma from
lucerne in New South Wales Gopurenko et al, 2016) and
elsewhere but this remains a challenge because of the apparent
high levels of biological diversity. As we approach a definitive
list of 16Sr groups and sub groups, “Ca. phytoplasma” species
names need to be assigned that avoid scope for confusion over
the host plant, perhaps by wider use of names that reflect
the country in which the phytoplasma was first discovered (as
is the case for Ca. Phytoplasma australiense, though noting
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the potential confusion with Ca. Phytoplasma australasiae and
the redundant Ca. Phytoplasma australasia Table 1) or a more
neutral name based, perhaps, on the discoverer rather than the
use of host plant taxon names such as pini, palmicola, pruni and
oryzae, all of which are reported internationally though not from
Australia.

Reflecting and compounding the three, related issues outlined
above, there is no universally recognized taxonomic resource for
phytoplasmas. For other higher taxa, there is a name-bearing
type specimen lodged in an accessible scientific collection that
can be checked by subsequent researchers, allowing comparison
with unknown or new taxa. With phytoplasmas, however, the
extreme difficulties associated with axenic culture mean that
the “type” is a DNA sequence in GenBank®, the National
Institutes of Health’s annotated collection of all publicly available
DNA sequences (Benson et al, 2013), and not a biological
specimen. Further, there is no common platform for registering
phytoplasma groups and sub-groups (Zhao and Davis, 2016). The
International Journal of Systematics and Evolution (formerly the
International Journal of Systematic Bacteriology) is the official
journal of record for novel prokaryotic taxa since it is the official
publication of the International Committee on Systematics of
Prokaryotes and the Bacteriology and Applied Microbiology
Division of the International Union of Microbiological Societies.
Accordingly, new “Ca. Phytoplasma” species are published in this
journal. Importantly, however, new 16Sr groups can be (and are)
published in other journals provided that the group contains
a previously described “Ca. Phytoplasma” species. This lack of
a common platform for group names means that a given 16Sr
group number can inadvertently be applied by different authors
to different “Ca. Phytoplasma” taxa. Zhao and Davis (2016)
provide the example that “Ca. Phytoplasma” allocasuarinae was
assigned as 16SrXXXIII (Bertaccini et al., 2014) but the same
16Sr group name was also subsequently used for another new
(Chilean grapevine phytoplasma) group (Pérez-Lopez et al,
2016). This led to the recent suggestion (Zhao and Davis,
2016) that 16Sr groups and sub-groups should be registered
via a web-based portal linked to iPhyClassifier, itself a web-
based resource that allows identification and classification of
phytoplasmas by simulating restriction enzyme digestions and
electrophoresis to produce “virtual” RFLP patterns for submitted
query sequences.

ISSUE 4: CHALLENGES ASSOCIATED
WITH VECTOR STUDIES

The insect vectors of phytoplasmas are yet to be investigated
thoroughly in Australia and more generally and this is a
major constraint on the development of disease management
approaches that focus on vector control. The Australian literature
provides putative vector names only for Australian lucerne
yellows, sweetpotato little leaf, tomato big bud, Stylosanthes little
leaf and Vigna little leaf phytoplasmas (Table 1).

Since phytoplasmas are phloem-limited pathogens, they are
transmitted by phloem-feeding hemipteran insects, especially

leafhoppers and planthoppers (Weintraub and Beanland,
2006) though psyllids are responsible in some non-Australian
pathosystems (Carraro et al, 1998). The identification of
potential vector species involves field surveys to determine
Hemiptera species that are spatially and temporally associated
with plant symptoms followed by the use of PCR to detect
phytoplasma DNA in the insects. However, the detection of
phytoplasma DNA in an insect does not establish vector status
because DNA may be confined to the gut as a result of feeding on
an infected host plant rather than the pathogen having colonized
the salivary glands making it a competent vector (Vega et al,
1993; Danielli et al., 1996). Definitive proof of vector status can
be obtained from transmission tests confining putative vectors
on phytoplasma-free host plants in insect-proof cages. Whilst
this has been done in a preliminary manner for Australian
lucerne yellows (e.g., Pilkington et al., 2004), vector transmission
testing is logistically demanding, especially if host plants are
large perennial species, if the pathogen is vectored inefficiently
or if symptoms develop slowly (Gurr et al,, 2016). A relatively
new method that is intermediate in ease of use and the level of
proof involves holding individual insects in vessels from which
they can feed on a sucrose solution through a parafilm barrier
with subsequent PCR-based detection of phytoplasma DNA in
the medium (Tanne et al., 2001). Though this approach involves
many samples (i.e., one per insect rather than one per plant as in
the case of a cage transmission test) a recent study has employed
LAMP to readily handle the large numbers of samples associated
with screening multiple putative vector species of Bogia coconut
syndrome (Lu et al., 2016).

ISSUE 5: POSSIBILITY OF SEED
TRANSMISSION

Among the crop species of great economic importance in
Australia, tomato, canola and maize have all been experimentally
shown to exhibit seed transmission of phytoplasmas, a
phenomenon previously considered unlikely and this adds
to the importance of ongoing biosecurity and research efforts.
In that study, PCR was used to detect phytoplasma DNA in
laboratory grown seedlings arising from seed of phytoplasma
infected plants of oilseed rape, tomato and corn (Calari et al,
2011). Caution is required in extrapolating from those tests
with herbaceous annuals, however, because earlier reports of
phytoplasma DNA in embryos of various woody perennial
plant species including coconut have not been followed-up with
conclusive evidence of seed transmissibility (Nipah et al., 2007)
but see Oropeza et al. (2017).

CONCLUSION AND PERSPECTIVE

The ubiquity of PCR capacity and the advent of LAMP Kkits
for simple diagnostics and NGS for advanced genomic and
meta-genomic analyses will spur the discovery of many new
phytoplasma diseases and allow rapid advances in understanding
of phytoplasma biodiversity and biology in Australia and

Frontiers in Plant Science | www.frontiersin.org

April 2017 | Volume 8 | Article 599


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Liu et al.

Phytoplasma Threats

internationally. This has great practical relevance to address
issues such as vector identity and the field-relevance of seed
transmission. Because Australia is an island nation with well-
established biosecurity measures, improvements in knowledge
of phytoplasma biodiversity, host range and detection will
be particularly valuable in the prevention of and appropriate
responses to phytoplasma incursions. Further sustained research
effort by specialists is important but this needs to be
complemented by efforts to make this group of pathogens better
known and easier to understand, especially taxonomically.
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