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DELLA proteins are transcriptional regulators present in all land plants which have
been shown to modulate the activity of over 100 transcription factors in Arabidopsis,
involved in multiple physiological and developmental processes. It has been proposed
that DELLAs transduce environmental information to pre-wired transcriptional circuits
because their stability is regulated by gibberellins (GAs), whose homeostasis largely
depends on environmental signals. The ability of GAs to promote DELLA degradation
coincides with the origin of vascular plants, but the presence of DELLAs in other
land plants poses at least two questions: what regulatory properties have DELLAs
provided to the behavior of transcriptional networks in land plants, and how has the
recruitment of DELLAs by GA signaling affected this regulation. To address these issues,
we have constructed gene co-expression networks of four different organisms within
the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and
Solanum lycopersicum (both with GA-regulated DELLA proteins), Physcomitrella patens
(with GA-independent DELLA proteins) and Chlamydomonas reinhardtii (a green alga
without DELLA), and we have examined the relative evolution of the subnetworks
containing the potential DELLA-dependent transcriptomes. Network analysis indicates
a relative increase in parameters associated with the degree of interconnectivity in the
DELLA-associated subnetworks of land plants, with a stronger effect in species with
GA-regulated DELLA proteins. These results suggest that DELLAs may have played
a role in the coordination of multiple transcriptional programs along evolution, and
the function of DELLAs as regulatory ‘hubs’ became further consolidated after their
recruitment by GA signaling in higher plants.

Keywords: gene co-expression networks, integrative molecular systems biology, evo–devo, transcriptional
regulation, plant signaling

INTRODUCTION

Higher plants are characterized by a particularly flexible capacity to adapt to multiple
environmental conditions. In other words, environmental signals are very efficient modulators
of plant developmental decisions. This ability is generally assumed to be based on at least two
mechanistic features: the presence of an extensive and sensitive repertoire of elements that perceive
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environmental signals (such as light photoreceptors covering
a wide range of wavelengths), and the high degree of
interconnectivity between the different signaling pathways to
allow cellular integration of variable information (Casal et al.,
2004).

Evidence has accumulated in recent years about the important
role that plant hormones play in the translation of environmental
signals into developmental decisions. On one hand, it has become
evident that hormone pathways share common components
with the pathways that transduce light and other environmental
signals (Jaillais and Chory, 2010); and, on the other hand,
hormones have been shown to participate in the regulation
of developmental processes all throughout a plant’s life cycle
(Alabadi et al., 2009). In this context, gibberellins (GAs) and
DELLA proteins are a paradigmatic example of the mechanisms
that allow environmental signal integration. DELLA proteins
constitute a small clade within the GRAS family of loosely defined
plant specific nuclear proteins (Vera-Sirera et al., 2015). Their
name was coined on the basis of a short stretch of amino
acids (D-E-L-L-A) in their N-terminal region, which is tightly
conserved among all higher plant species. They also present
additional conserved motifs, such as the VHYNP domain, two
leucine heptad repeats which may mediate protein–protein
interactions, a putative nuclear localization signal, and a
putative SH2 phosphotyrosine-binding domain, among others
(Vera-Sirera et al., 2015). It has been shown in Arabidopsis
thaliana and rice that recognition of GAs by their GID1
receptor allows physical interaction with DELLA proteins and
promotes their degradation via the proteasome. In A. thaliana,
loss of DELLA function mimics the phenotype of plants treated
with an excess of GAs, both anatomically and also at the
transcriptional level (Schwechheimer, 2011; Locascio et al.,
2013b). Work in the past few years has established that DELLAs
regulate transcription through the interaction with more than
100 transcription factors (TFs) in A. thaliana (de Lucas et al.,
2008; Feng et al., 2008; Crocco et al., 2010; Hou et al., 2010;
Gallego-Bartolomé et al., 2012; Daviere et al., 2014; Marin-
de la Rosa et al., 2014, 2015; Resentini et al., 2015). In some
cases, interaction with the TF inhibits its ability to bind DNA,
while in other cases DELLAs seem to act as co-activators
(Locascio et al., 2013b; Daviere and Achard, 2016). For all the
cases examined in detail, the DELLA region responsible for
the interaction with the TFs is the C-terminal region of the
protein, the GRAS domain. Given that GA levels are strongly
regulated by environmental signals such as light, temperature and
photoperiod (Hedden and Thomas, 2012; Colebrook et al., 2014),
cellular DELLA levels seem to be a proxy for the environmental
status faced by plants (Claeys et al., 2014). Changes in DELLA
levels could in turn differentially modulate distinct sets of
TFs and their target genes in various developmental contexts.
The promiscuous interaction with TFs, and the observation
that A. thaliana dellaKO mutants display constitutive growth
even under stress, and suffer from increased sensitivity to
several types of stress factors such as salinity, cold, or fungal
attacks (Alabadí et al., 2004; Achard et al., 2006, 2007, 2008a,b;
Cheminant et al., 2011) suggests that DELLAs are potentially
important ‘hubs’ in the transcriptional network that regulates

the balance between growth and stress tolerance in higher
plants.

Previous interest in the evolution of DELLA proteins is
restricted to the question on how they were recruited to mediate
cellular signaling by GAs. Based on phylogenetic analyses and
shallow molecular analysis with fern and moss orthologs, it
seems that the GA/GID1/DELLA module originated with early
diverging tracheophytes (Wang and Deng, 2014). For instance,
the Selaginella genus possesses the ability to synthesize GAs, a
GID1 GA receptor, and a DELLA protein (Wang and Deng,
2014), which is sensitive to GA-induced degradation, even when
introduced in an angiosperm, such as A. thaliana (Hirano et al.,
2007; Yasumura et al., 2007). On the other hand, the DELLA
proteins that existed in other land plants before the emergence
of vascular plants were not involved in GA signaling. First,
there are no bona-fide DELLA genes in algae and, second, the
genomes of bryophytes like Physcomitrella patens encode DELLA
proteins that lack the canonical ‘DELLA motif ’ (Wang and Deng,
2014), and PpDELLAs are not sensitive to GAs when introduced
in A. thaliana (Yasumura et al., 2007). However, the ability of
DELLA proteins to modulate transcriptional programs relies on
the GRAS domain through which interactions with TFs occur,
and the evolution of this activity has not been addressed before.

In an attempt to identify the possible function of ancestral
DELLAs and to delineate how evolution has shaped the functions
of the GA/DELLA module in higher plants, we have addressed
the analysis of the transcriptional networks potentially regulated
by DELLAs in several species. For this reason, we have used
gene co-expression networks, in which genes are represented as
nodes, and if two genes exhibit a significant correlation value for
co-expression, the corresponding nodes are joined by an edge.
Importantly, if a node is a TF, first neighbors can be confidently
taken as targets for that particular TF (Franco-Zorrilla et al.,
2014). Therefore, the analysis of topological parameters of a
gene co-expression network is an interesting tool that may
reveal information about the function and evolutionary history of
transcriptional programs (Aoki et al., 2007; Usadel et al., 2009).

Here we have investigated the properties of networks formed
by DELLA-interacting TFs and their co-expressing genes in
A. thaliana, and compared them with the orthologous networks
in three other plant species: (i) Solanum lycopersicum (possessing
a fully operative GA/DELLA module); (ii) P. patens (possessing
GA-independent DELLA functions); and (iii) Chlamydomonas
reinhardtii (without GA perception or DELLAs) (Figure 1A). All
the parameters examined suggest that the functions regulated
by DELLA-interacting TFs (and thus DELLAs themselves) have
increased their level of coordination along evolution.

RESULTS AND DISCUSSION

Construction of Networks and
Subnetworks
Gene expression data from RNA sequencing (RNA-seq)
experiments in A. thaliana, S. lycopersicum, P. patens, and
C. reinhardtii were obtained from the Gene Expression
Omnibus, and gene co-expression networks were inferred for
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FIGURE 1 | Phylogenetic relationships between the chosen species. (A) Representation of the species tree indicating the origin of key elements related to the
gibberellin signaling pathway. (B) Venn’s diagram showing the number of OrthoMCL groups in which genes of each species are present. (C) Schematic
representation of the basis for subnetwork design. Nodes in different networks with the same color indicate an orthologous relationship.

each species from transcriptomic data as described in section
“Materials and Methods.” All four networks are scale-free
networks (Supplementary Figure S1) (Romero-Campero et al.,
2013, 2016) and have comparable sizes in terms of number of
nodes, but there are remarkable differences in the way they are
connected (Table 1). The A. thaliana network contains more
than twice as many edges than the others, the average degree
of its nodes (average number of connections) is one order of
magnitude higher and its average shortest path length (average
number of nodes between two random nodes) is lower. Even
though the number of genes of each species represented in the
networks is similar, in some species they are more connected,
possibly due to differences in their endogenous regulation and

the availability of experimental data. For that reason, we decided
to do every comparative analysis between the different species in
relative terms.

To be able to compare the co-expression networks of the
different species, we first identified the orthologous nodes in
each of them using the OrthoMCL method (Li et al., 2003). Up
to 17,053 groups of genes were obtained. Genes in the same
group were considered orthologs or paralogs if they belonged to
different or the same species, respectively. The four species were
represented unequally, as both A. thaliana and S. lycopersicum
genes were present in ca. 70% of the groups, while P. patens
genes were found in little more than 50% of them, and only
ca. 30% of the groups contained genes from C. reinhardtii

TABLE 1 | General parameters in co-expression networks.

C. reinhardtii P. patens S. lycopersicum A. thaliana

Full Neigh Ortho Full Neigh Ortho Full Neigh Ortho Full Neigh Ortho

Nodes 8652 48 658 8564 448 1503 7851 1314 2885 5663 2070 2949

Edges 145903 78 1173 295317 15078 19828 287409 153396 169171 593730 460951 512042

Average degree 33.73 3.25 3.57 68.97 67.31 26.38 73.22 233.48 117.28 209.69 445.36 347.26

Average shortest path length 7.37 1.91 8.71 13.11 1.39 12.01 13.78 1.67 5.63 4.28 2.15 3.09

Diameter 23 4 24 46 4 41 44 6 25 20 9 12

Parameters of networks and subnetworks used in this study. Full, full gene co-expression network; Neigh, first neighbors subnetwork; Ortho, orthologs subnetwork;
C. reinhardtii, Chlamydomonas reinhardtii; P. patens, Physcomitrella patens; S. lycopersicum, Solanum lycopersicum; A. thaliana, Arabidopsis thaliana.
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(Figure 1B). This was already expected, given the evolutionary
distance among these species and the genomic complexity of
each one.

To assess the possible contribution of DELLA proteins to
co-expression networks architecture, we created subnetworks
based on reported DELLA interactors known to act as
transcriptional regulators. First, we compiled a list of all
published DELLA interactors (Supplementary Table S1),
obtained their orthologs for the four species, and localized them
in their respective networks. Since most of the interactions have
been described for A. thaliana, the corresponding orthologs in
the other species are only “putative interactors of the DELLA
proteins” (PIDs), and the first neighbors of AtDELLA interactors
and PIDs are their putative expression targets. Second, we built
two different subnetworks using this information. The first
one, called “Neighbors” subnetwork (abbreviated as AtNeigh,
SlNeigh, PpNeigh, and CrNeigh), is composed of the DELLA
interactors (or the corresponding PIDs) and their first neighbors
(Figure 1C and Supplementary Table S2). The second one,
called “Orthologs” subnetwork (abbreviated as AtOrtho,
SlOrtho, PpOrtho, and CrOrtho), contains the orthologs of all
the first neighbors of PIDs in all the species (Figure 1C and
Supplementary Table S3). For a given species, the “Neighbors”
subnetwork provides a good approximation to its actual DELLA-
dependent transcriptome, while the “Orthologs” subnetwork
represents the full landscape of potential transcriptional targets
for DELLAs, since it includes orthologs of genes that are DELLA
transcriptional targets in other species (Figure 2).

DELLA-Associated Subnetworks Reflect
Increased Relevance of DELLAs after
Being Recruited by GA Signaling
It is important to take into account a circumstance that affects
the construction of subnetworks: OrthoMCL does not always
retrieve orthologs for some of the genes, because either they do
not exist in the other species, or the method does not provide
high-confidence results. This results in a particular bias toward
smaller subnetwork sizes with increasing phylogenetic distance
(Table 1). However, the impact of this bias can be disregarded
when analyzing relative parameters. Hence, regardless of the
absolute sizes, we observed that the average degree in the
Neighbor subnetworks increased dramatically in SlNeigh and
AtNeigh with respect to their full networks (more than threefold
and twofold, respectively), while this parameter did not change
in PpNeigh, and it actually decreased in CrNeigh (Table 1).
Similarly, the Orthologs subnetworks displayed an equivalent
behavior as the Neighbors subnetworks: their diameter and
average shortest path length decreased considerably more in
SlOrtho and AtOrtho with respect to the full networks; and
the same happened with the increase of the average degree.
In summary, both subnetworks showed a higher compaction
and interconnection of nodes in relative terms in the case
of S. lycopersicum and A. thaliana compared with P. patens
and C. reinhardtii, indicating that the putative interactors and
targets of the DELLAs become more connected in those species
presenting GA-regulated DELLAs.

A confirmation of the impact of GA regulation on the
relevance of DELLA function is found in the analysis of
neighborhood conservation. Figure 3A shows the percentage
of genes with a significantly overlapping neighborhood
in each comparison (see Materials and Methods). When
comparing P. patens with the other species, there are no
substantial differences between the full network and the
Orthologs subnetwork. On the contrary, SlOrtho and AtOrtho
contain a considerably higher proportion of genes with
conserved neighborhood than their corresponding full networks
(15% vs. 10%). Between S. lycopersicum and A. thaliana, the
regulation of the putative DELLA targets is more conserved than
for the network in general, so this group of genes seems to have a
cohesive element in the two species.

Furthermore, we examined gene–gene co-expression values,
as a measure of the conservation of individual edges. For
every pair of linked genes in one species, if the corresponding
orthologs are also linked in a second species, it is considered that
gene–gene co-expression is conserved. Therefore, the calculation
of conserved links between two subnetworks is a measure of
functional conservation of a regulatory module. Interestingly,
we observed that gene links between PpOrtho and SlOrtho
were less conserved than in the full networks, and almost
unaltered between PpOrtho and AtOrtho (Figure 3B). However,
the gene–gene co-expression was three times more conserved
between SlOrtho and AtOrtho than between their full networks
(11% vs. 3.5%). In other words, these data are compatible with
the proposition that the presence of GA-regulated DELLAs
(in S. lycopersicum and A. thaliana) provides stronger links
between transcriptional programs, not detected in an organism
with GA-independent DELLAs (P. patens).

Efficiency of Transcriptional Regulation
Is a DELLA-Associated Parameter
The efficiency of a transcriptional regulatory mechanism can
be evaluated through two additional parameters in gene co-
expression networks: shortest path length distribution and motif
frequency. In network theory, average shortest-path length is
defined as the average number of steps along the shortest paths for
all possible pairs of network nodes. It is a measure of the efficiency
of information propagation on a network, with a shorter average
path length being more efficient (Vragovic et al., 2005). When
we compared the distribution of shortest path lengths in full and
Orthologs subnetworks, we observed a clear tendency toward
shorter path lengths in the Orthologs subnetworks of organisms
possessing DELLAs (S. lycopersicum, A. thaliana, and P. patens)
compared with the situation in an organism without DELLAs
(C. reinhardtii) (Figure 4).

Network motifs are small recurring patterns involving a
few nodes that appear more frequently in biological networks
than in randomized ones. They consist of a certain level of
regulation which connects small sets of nodes with a particular
topology. Motifs characterize a network, as some of them
are useful for the regulation of determined functions, and
thus conserved along evolution (Kashtan and Alon, 2005).
After measuring the frequency of the eight common motifs
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FIGURE 2 | Gene co-expression networks. Full Chlamydomonas reinhardtii (A,E), Physcomitrella patens (B,F), Solanum lycopersicum (C,G), and Arabidopsis
thaliana (D,H) gene co-expression networks. Neighbors subnetworks are comprised of yellow-marked nodes in A-D. Orthologs subnetworks are comprised of
yellow-marked nodes in (E–H).

FIGURE 3 | Gene connections are more conserved in species with GA-regulated DELLAs. Pairwise comparisons of P. patens, S. lycopersicum, and
A. thaliana Full networks and Ortho subnetworks regarding: (A) Percentage of genes with significantly overlapping neighborhoods; (B) Percentage of conserved
gene–gene links.

composed of three and four nodes in the full networks, we
found that there was no relative enrichment of any particular
motif between species when comparing the full networks or
the Orthologs subnetworks (Figure 5A). However, the AtOrtho,
SlOrtho, and PpOrtho subnetworks displayed a clear enrichment
in virtually every motif, compared with their respective full
networks (Figure 5B). Given that the function of this sort

of motifs is to allow coordinated expression of a group of
genes with shared function (Alon, 2007), the increase in the
proportion of small regulatory patterns among all the putative
DELLA targets in species that do contain DELLAs indicates
an increase in the complexity of gene regulation, in which
DELLAs might mediate the coordination of transcriptional
programs.
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FIGURE 4 | Paths are shorter in DELLA-associated subnetworks. Shortest path length distribution in Full networks and Orthologs subnetworks from the four
species. The graphs represent the relative number of nodes (y-axis) joined by a given number of intermediate nodes (x-axis).

FIGURE 5 | Network motifs are enriched in DELLA related networks. (A) Percentage of motifs found in each network compared to possible combinations of
three and four nodes. (B) Ratio of motif enrichment comparing Orthologs subnetworks to Full networks per species (upper panel), and per motif (lower panel).
Dashed lines in (B) mark a ratio of 1. Motifs are as depicted in X-axis. Letters indicate significant differences between groups, p < 0.01 (One way ANOVA, Tukey
HSD Post Hoc test). Box-plot whiskers are Tukey-defined (extended 1.5 times the IQR from the box edges).
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FIGURE 6 | Gene Ontology terms enriched in Neighbors subnetworks. Scatterplots show cluster representatives after redundancy reduction in a two
dimensional space derived by applying multidimensional scaling to a matrix of the GO categories semantic similarities. Bubble size is proportional to p-value
significance of GO enrichment.

The Regulation of the Stress Response:
A Likely Role of Ancestral DELLA
Proteins
The results shown above suggest that the origin of DELLAs
in land plants would be associated to an increase in the
co-expression between genes that are putative targets of
DELLA-interacting TFs, both in terms of size of the gene set and
degree of the co-expression value. Therefore, DELLAs would have
helped in the coordination of certain transcriptional circuits, and
their recruitment to mediate GA signaling later in development
would have further expanded their coordination capacity. To
reveal the most likely functions ultimately regulated by DELLAs
in the common ancestor of land plants, we carried out Gene
Ontology (GO) analyses on each of the Neighbor subnetworks,
with the idea that the terms shared by those in S. lycopersicum,
A. thaliana, and P. patens could represent likely functions
regulated by the ancestral DELLA proteins.

Not surprisingly, given the larger size of AtNeigh (Table 1),
GO analysis rendered a much larger number of terms
significantly enriched in this subnetwork, compared to those
from the other three organisms (Supplementary Table S4).
Terms referring to chloroplast function, such as plastid
organization, photosynthesis, or pigment biosynthesis (including
chlorophyll) were specifically enriched among the putative
DELLA targets in A. thaliana only (Figure 6). This result
might reflect functions whose regulation by DELLA has been
acquired more recently, or it could simply be a bias of
the analysis, caused by the big difference in size of the
analyzed sets in the different species. On the contrary, the
finding that terms comprised under general ‘response to
stress’ were significantly over-represented in the subnetworks
of the three land plants, but not C. reinhardtii, suggests that
this function might have been the primary target of the
regulation by ancestral DELLAs through their interaction with
specific TFs.
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CONCLUSION

Our analysis suggests that DELLAs may have contributed to
the acquisition of an increasing degree of coordination between
transcriptional programs during plant evolution. Although these
results are consistent with the current view of DELLAs as ‘hubs’ in
transcriptional programs in higher plants, and provide a plausible
evolutionary scenario, it is important to remark that further
experimental work is required to validate most of the conclusions
from in silico network analysis. In fact, several reasonable
assumptions have been made that would be relatively easy to
confirm. For instance, actual transcriptomic data of dellaKO
mutants in the different species, coupled to comparative analysis
would help establish the role of ancestral DELLAs. Moreover,
our current analysis would be strengthened by the experimentally
obtained information of which PIDs are in fact bona-fide DELLA
interactors in the different species. Finally, the conclusion that
DELLAs have probably contributed to the establishment of
new co-regulatory circuits during land-plant evolution does not
explain the molecular mechanism that supports this progressive
acquisition, and it can be generated by changes in DELLA
proteins, in their interactors, or in both.

MATERIALS AND METHODS

Gene Co-expression Network Inference
The C. reinhardtii and A. thaliana networks were downloaded
from the web resources of previous work (Romero-Campero
et al., 2013, 2016). For the new networks, RNA-seq data were
selected from equivalent experiments involving comparable
tissues and environmental situations (Supplementary Table S5).
The P. patens gene co-expression network was inferred from
the RNA-seq data freely available from the Gene Expression
Omnibus identified with accession numbers GSE19824,
GSE33279, GSE36274, and GSE25237. The S. lycopersicum
network was constructed based on the RNA-seq data identified
with the accession numbers GSE45774, GSE64665, GSE64981,
GSE68018, and GSE77340 in the Gene Expression Omnibus.
In both cases, RNA-seq data was processed using the Tuxedo
protocol (Trapnell et al., 2012) to obtain gene expression levels
measured as FPKM. Briefly, short reads were mapped to the
corresponding reference genome using Tophat, transcripts were
assembled using Cufflinks and expression levels were computed
using Cuffdiff. The Bioconductor R package cummeRbund
(Goff et al., 2013) was used for subsequent analysis of the results
generated by the Tuxedo protocol. In order to reduce noise
in our analysis only genes that were detected as differentially
expressed in at least one of the studies integrated in this work
were considered. Differentially expressed genes were determined
comparing each condition with the corresponding control
within each study using a fold-change threshold of two. For each
species, a matrix containing the expression levels of the selected
genes was extracted. The Pearson correlation coefficient between
every pair of gene expression profiles was computed using the
cor function from the stats R package to generate a correlation
matrix. Two genes were assumed to be co-expressed when the

Pearson correlation coefficient between their expression profiles
over the analyzed conditions was greater than 0.95. Following
this criterion, the corresponding adjacency matrix was generated
from the correlation matrix. Using the R package igraph1 (Csardi
and Nepusz, 2006), each network was constructed from its
adjacency matrix and exported in gml formal for subsequent
analysis.

Data Compilation and Processing
The reference proteomes from A. thaliana TAIR10,
S. lycopersicum iTAGv2.3, C. reinhardtii v5.5, and P. patens
v3.3 were downloaded from Phytozome (Goodstein et al., 2012).
From all the possible proteins from each locus tag only the
longest protein was kept and assigned to its locus tag. These files
were used to identify the orthologs among the four species with
OrthoMCL (Li et al., 2003).

The networks were converted to SIF format and processed
using the package igraph1 (Csardi and Nepusz, 2006) made
with R2 (R Core Team, 2016). Only the edges between two
non-identical nodes were conserved. If a given node was not
identified in the proteome files, it was removed from the network.
Afterward, components with fewer than seven elements were
removed from the network to generate the complete network
for each species. The orthologs for the set of manually curated
DELLA interactors from A. thaliana were identified, and these
nodes were selected from the complete networks. The first
neighbors for all the selected nodes were identified and used to
build a subnetwork. Finally, the orthologs on each species for all
the genes in the previous subnetworks were identified and used
to generate a new subnetwork for each species.

Network Analysis and Visualization
All networks were imported into the software package Cytoscape
(Smoot et al., 2011) for their visualization using the Prefuse Force
Directed layout.

The measures of network topology were calculated using
both predefined and custom made functions. The gene–
gene co-expression and neighborhood conservation were
determined following the approach described by Netotea
et al. (2014), using Fisher exact tests to check for statistical
significance.

Gene Ontology analysis on Neigh subnetworks was made with
AgriGO (Du et al., 2010), and represented with ReviGO (Supek
et al., 2011).
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