
OPINION
published: 25 April 2017

doi: 10.3389/fpls.2017.00629

Frontiers in Plant Science | www.frontiersin.org 1 April 2017 | Volume 8 | Article 629

Edited by:

Massimiliano Tattini,

Consiglio Nazionale Delle Ricerche,

Italy

Reviewed by:

Lina Fusaro,

Sapienza University of Rome, Italy

*Correspondence:

Filippo Bussotti

filippo.bussotti@unifi.it

†
Present Address:

Martina Pollastrini,

Forestry Research Centre, Council for

Agricultural Research and Economics,

Arezzo, Italy

Specialty section:

This article was submitted to

Functional Plant Ecology,

a section of the journal

Frontiers in Plant Science

Received: 13 February 2017

Accepted: 07 April 2017

Published: 25 April 2017

Citation:

Bussotti F and Pollastrini M (2017)

Observing Climate Change Impacts

on European Forests: What Works

and What Does Not in Ongoing

Long-Term Monitoring Networks.

Front. Plant Sci. 8:629.

doi: 10.3389/fpls.2017.00629

Observing Climate Change Impacts
on European Forests: What Works
and What Does Not in Ongoing
Long-Term Monitoring Networks

Filippo Bussotti * and Martina Pollastrini †

Laboratory of Environmental and Applied Botany, Department of Agri-Food Productions and Environmental Science,

University of Florence, Florence, Italy

Keywords: crown dieback, crown defoliation, ICP forests, ecosystem functions, ecosystem services, national

forest inventories, tree growth, tree mortality

INTRODUCTION

Ecosystem services of forests are related to specific functions, such as growth, photosynthesis,
regeneration, element cycling, soil formation, biodiversity holding, and so on. For this reason, a
wide “bouquet” of attributes must be taken into consideration to evaluate the overall functionality
of forests and their capacity to provide ecosystem services. These attributes may be considered
“proxies” for specific relative ecosystem functions and services. The growth of trees and standing
biomass is connected not only to the economic value of the forest (provisional services) but also
to carbon sequestration and climate regulation (regulatory services). The overall canopy closure
(i.e., leaf area index—LAI) can be considered a proxy for stand productivity (Gower et al., 1999)
and stand transpiration (Yan et al., 2012), trees’ capacity of uptake and filtration of air pollutants
(Janhäll, 2015), and element cycling (Burton et al., 1991) as well for soil conservation through the
regulation of heavy rain impacts (Park and Cameron, 2008). Parameters related to stand structure,
species composition, and diversity may be considered indicative of the capacity of regeneration,
to support game and wildlife and to host beneficial organisms against parasites. Some of these
attributes are currently assessed in national forest inventories, and data can be useful to map the
extension and level of related ecosystem services.

The ecosystem functions and services of forests can be affected by the harshening of
environmental conditions. Climate change impacts on forests is the result of complex interactions
between meteorological factors and soil conditions (Barbeta et al., 2015), pathological agents
(Wermelinger et al., 2007), forest fires (Flannigan et al., 2000), and environmental pollution (De
Vries et al., 2014). The action of these co-occurring factors contributes to tree mortality and
the reduction of canopy cover, as well-changes in stand composition and diversity (Millar and
Stephenson, 2015). These effects can be evaluated by comparing subsequent forest inventories;
however, the long period of time elapsing between two successive surveys can make them scarcely
applicable if our purposes are to detect andmonitor in time and space the impacts of climate change
on forest ecosystem structure, functionalities and services provided.

In Europe andNorth America are currently implemented programs for forest health assessment.
The European ICP Forests program (www.icp-forests.net) consists of two networks of monitoring
plots (extensive and intensive) where various monitoring activities are repeated at different
temporal bases. These networks were designed to assess the effects of transboundary air pollution
and atmospheric depositions (De Vries et al., 2014) and represent the most important tool to
assess changes in forest ecosystems health condition at national and European scales. A change
of perspective, from atmospheric pollution and deposition to multiple stress pressure related to
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climate change, suggests a revaluation of the overall structure of
the surveys and of the indicators adopted to observe the impacts
on forests. The aim of this study is to verify whether, and to what
extent, the current European forest health monitoring program
is suitable for assessing the impacts of new global environmental
factors, and give suggestions to enhance its informative potential.

IMPACTS AT TREE LEVEL: TREE GROWTH
AND CROWN DEFOLIATION

The overall impacts of environmental stress on trees can be
summarized with their effects on growth. Tree growth is a
key parameter for evaluate the ability of forests to mitigate
climate change and provide ecosystem services (Bonan, 2008).
Forest health, however, is commonly assessed by means of
crown defoliation (Michel and Seidling, 2014). Defoliation is
a visual estimate of the relative amount of foliage loss of the
target tree compared with that of the reference standard tree.
Crown defoliation has been assessed extensively since the 1980s,
and the trends recorded are assumed to be correlated with
the effects of environmental stress, such as air pollution and
climate change (Van Leeuwen et al., 2000). Although no clear
relationships were found between defoliation and ecological
factors at European level, local studies evidenced the impacts
of ozone pollution (Augustatis and Bytnerowicz, 2008); extreme
drought and heat weaves (Carnicer et al., 2011) and fluctuating
climatic conditions (Ferretti et al., 2014). Intuitively, defoliation
may affect growth through the reduction of the photosynthetic
surface, but different ecophysiological processes (e.g., better
exploitation of sunlight from the foliage in the inner part of
the crown, increase of photosynthetic efficiency in the remaining
foliage) can compensate for the loss of leaves. Growth reduction
has been verified only for the most defoliated pine species
(Pinus sylvestris L.) in Spain (Sánchez-Salguero et al., 2012),
Italy (Castagneri et al., 2015), and Lithuania (Augustatis and
Bytnerowicz, 2008).

CHANGES AND DYNAMISMS IN FORESTS
SUBJECTED TO CLIMATE CHANGE

According to Millar and Stephenson (2015), forest cover
under climatic change undergoes a progressive dieback of the
crown and mortality of trees. During the period of decline, a
regeneration of trees of different species, or of different genotypes
of the same species, will occur. The decline of canopies induced
by climate change may trigger a vegetational dynamism, with
a temporary success of the early-successional tree species. In
a longer time span, the regeneration of a “definitive” (mature)
tree cover is supposed to be ensured by more xerophytic species
coming from proximal areas (e.g., from lower elevation). This
new generation of trees is supposed to be better adapted to
the environmental condition of the previous one. The functions
and services of forests are assumed to decrease during the
canopy-decline period, but they are likely to be restored when
the “new forest” is well-established. The equilibrium of the
forest, adapted to a new environment, implies probably a

different level of ecosystem functions and services, with respect
to that which is provided by forests before the action of
disturbing factors. Adaptation to drier conditions determines
slower growth rates, lower foliar mass, reduced regeneration
rate, and so on. These processes are ongoing in some parts
of Europe and can be observed, for example, in P. sylvestris
stands in the Valais (Switzerland) and the Italian Western
Alps, where Quercus pubescens Willd. is going to replace P.
sylvestris in the driest conditions (Rigling et al., 2013). The
changes in the forest structure and species composition are
associated with several events and signals, among which the
most significant, due to its consequences, is the drought-induced
tree mortality (Allen et al., 2015) and insect attacks in trees
weakened by drought (Wermelinger et al., 2007; Anderegg et al.,
2015).

Large spatial-scale events of drought-induced tree mortality
have been registered in Europe and North America (Anderegg
et al., 2013). Tree death is generally preceded by a severe decline
of the growth and the dieback of a large part of the crown
(Sánchez-Salguero et al., 2012). Dobbertin and Brang (2001)
probed that the adoption of “defoliation” improves models to
predict the mortality of trees in national forest inventories.
Substantial reduction of foliar mass is assumed reflect the loss
of photosynthates and compromises carbon allocation and tree
growth (Garcia-Forner et al., 2016). According to Grote et al.
(2016), big trees are especially subjected to water shortage and
more likely to die than small trees, but Ruiz-Benito et al. (2013)
and Van Gunst et al. (2016) found that in a “competitive”
environment, as far as water resources are concerned, small trees
are more likely to die.

A different scenario suggests the persistence of the current tree
species, but with changes in the forest structure (i.e., reduction
of tree density) to withstand the reduction of water resources.
The “local evolution,” or adaptation, of dominant tree species
is promoted by the selection of more adapted individuals, that
are those bearing the most suitable genotypes (Savolainen et al.,
2007). The local evolution of species as a result of climate
change is achieved by taking advantage of the existing genetic
variability in natural populations. Increasing interest is devoted
to epigenetic acclimation processes (Barbeta et al., 2013) and
the so-called memory effect (Crisp et al., 2016), which may be
responsible for the progressive reduction of the negative effects of
severe drought on tree physiology and survival (Liu et al., 2015).

Tree diversity enhances growth and stabilizes productivity at
stand level and on individual trees (Jucker et al., 2014; Liang
et al., 2016), and it is supposed to modify the impacts of stress
factors through “plant-to-plant” interactions. Such interactions
may be either negative (competition) or positive (facilitation).
According to the “stress gradient” hypothesis (He and Bertness,
2014), positive interactions are more frequent than negative ones
in the poorest sites, where resources are scarce.

WHAT WORKS AND WHAT DOES NOT

Changes in the health and physiological conditions of trees
are assumed to provide insights for the prevision of changes
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in ecosystems and may represent an alarm signal to interpret
the dynamics of acclimation and/or adaptation processes of
forests in new environmental conditions. Moreover, responses
at tree and stand levels are influenced by stand structure, tree
species composition, genomic features and overall diversity.
Therefore, adopting a holistic view in the interpretation of
interactions between tree health and all the components
and processes of the ecosystem is necessary and more
realistic.

The greatest usefulness of the extensive forest monitoring
network in Europe is its very existence, as well as the
existence of expert groups of scientists and technicians at
national and European levels and a set of consolidated
methods and manuals that make the assessed parameters (i.e.,
defoliation) reliable and generally accepted. What it needs is the
introduction of concepts and indicators suitable for evaluating
the mechanisms and processes performed by trees to withstand
new environmental challenges owing to climate change. This
integration of the current forest monitoring approach implies
a substantial improvement of the diagnostic capacity of tree
health indicators, combining the traditional visual assessment
with more effective morphological and physiological indicators
(Bussotti and Pollastrini, 2015).

The data series of ICP Forests (Level I, Timmermann
et al., 2016), available from’90 in the past century, suggest
a substantial stability (or slightly increasing defoliation) of
crown conditions at the European level of some of the
most diffuse tree species (P. sylvestris, Picea abies (L.) Karst.,
Fagus sylvatica L.), alongside a progressive worsening of
crown conditions of Mediterranean species. Local events of
mortality (Bussotti et al., 2014, 2015), with impact at the
regional level, are scarcely captured in the current forest

monitoring activities. Therefore, for management purposes,
locally intensifying the network to capture the most critical
tree species and/or ecological conditions may be useful. This
result can be achieved by involving local communities, as well
as appealing to the so-called citizen science (McKinley et al.,
2017).

CONCLUSIONS: WHAT WE CAN DO

To make the current terrestrial surveys able to capture the
changes in forest ecosystems due to climate change, we need
to shift the focus from the conditions of individual trees to the
demography of the community. Mortality (including small trees,
suckers, and understory woody vegetation) and regeneration
are therefore key parameters to predict and interpret changes
in tree species composition, local evolution, and possible
desertification processes. Before tree death physiological stress
conditions occur. These changes in plant health status,
can be effectively assessed by foliar parameters, such as
carbon isotope composition (that is proxy of drought stress,
(Farquhar et al., 1982), and of carbon sequestration strategies
of plants), chlorophyll fluorescence analysis, as indicator of
overall plant stress conditions (Bussotti et al., 2010), and leaf
morphology parameters (e.g., SLA, that indicates photosynthetic
acclimation and vulnerability to stress, Bussotti, 2008). Tree
ring analysis, moreover, is highly desirable to explore tree
growth responses in relation to resilience, mortality and
foliage loss (Lloret et al., 2011). A first list of the actions
needed to improve the informative potential of extensive
monitoring surveys in forest ecosystems is provided in
Table 1.

TABLE 1 | Summary of the main features of the current extensive terrestrial survey in Europe (ICP Forests, Level I), and proposed additions to make the

survey more effective to capture the effects of climate change.

Current surveys Proposed surveys

GENERAL OBJECTIVES

Tree-based survey Stand (forest population/community)-based survey

To assess the conditions of trees in relation to air pollution,

atmospheric deposition, and other environmental stress

To assess the changes in the structure and species composition of forests under climate change

SAMPLING DESIGN

Spatial distribution according to a regular grid Regular spatial distribution can be locally intensified to capture the most critical situations. Contribute of

local communities and citizens

Assessment is done every year. Assessment may be done at multi-year basis (e.g., every 3–5 years)

INDICATORS

Mortality of trees with diameter at breast height (DBH)>10 cm Mortality of trees and woody vegetation, including suckers and understory

Crown conditions (defoliation and symptoms) of trees with

DBH>10 cm

Foliar analysis (Chlorophyll content and fluorescence, carbon isotope composition, leaf morphology)

combined with crown condition assessment

Measurement of DBH every 5 year Measurement of DBH combined with tree ring analysis to assess responses and resilience to severe

weather events

Leaf Area Index evolution

Regeneration

RESULTS REPORTING

Percent of trees with defoliation over a certain threshold Temporal and spatial changes in structure and composition of forest in relation to environmental factors

Percent of symptomatic trees
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Establishing close relationships and exchanges between
different levels of intensity in monitoring programs is desirable.
Intensive monitoring networks, observational comparative plots
(Baeten et al., 2013; von Gadow et al., 2016) and experimental
plots (ecosystem manipulation, Perry and Troelstrup, 1988) are
relevant for the assessment and validation of the feasibility of

the proxies to be extensively assessed and their ecological and
physiological significance.
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