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Grassland loss has been extensive worldwide, endangering the associated biodiversity

and human well-being that are both dependent on these ecosystems. Ecologists

have developed approaches to restore grassland communities and many have been

successful, particularly where soils are rich, precipitation is abundant, and seeds of native

plant species can be obtained. However, climate change adds a new filter needed in

planning grassland restoration efforts. Potential responses of species to future climate

conditions must also be considered in planning for long-term resilience. We demonstrate

this methodology using a site-specific model and a maximum entropy approach to

predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie

region of the U.S. using the Intergovernmental Panel on Climate Change scenarios

A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4◦C,

whereas the A2 scenario predicts temperature increases from 2 to 5.4◦C and much

greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to

occur by the year 2100. Model projections for 2040 under the A1B scenario predict that

all but three modeled species will lose ∼90% of their suitable habitat. Then by 2080, all

species except for one will lose ∼90% of their suitable habitat. Models run using the A2

scenario predict declines in habitat for just four species by 2040, but models predict that

by 2080, habitat suitability will decline for all species. The A2 scenario appears based on

our results to be the less severe climate change scenario for our species. Our results

demonstrate that many common species, including grasses, forbs, and shrubs, are

sensitive to climate change. Thus, grassland restoration alternatives should be evaluated

based upon the long-term viability in the context of climate change projections and risk

of plant species loss.
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INTRODUCTION

About one quarter of the Earth’s terrestrial surface is covered by
grasslands, and these are some of the most highly productive
ecosystems in the world (Ramankutty and Foley, 1999; Bond,
2008). The inherent productivity of grassland soils has resulted
in the conversion of large expanses of grassland to row crop
agriculture (Hill and Olson, 2013; Wright and Wimberly, 2013).
Woodland encroachment (Van Auken, 2000; Archer et al., 2001;
Knapp et al., 2008) and urban expansion create additional
threats (Kerns et al., 2016). The combination of such threats has
relegated grassland ecosystem as one of the most endangered
ecosystems in the U.S. (Noss et al., 1995; Samson et al., 1994). The
ecological, sociological, and economic effects of grassland loss
include threats to biodiversity (Lamarque et al., 2011; Ratajczak
et al., 2012), losses in the suite of potential ways humans
can interact with the landscape (Zheng et al., 2015), increased
erosion, and a limited suite of economic land use options. While
grasslands can be restored, particularly in places where soil is
productive and native seeds can be collected and grown, the
cost of restoration is often prohibitive. In some cases, removal
of existing vegetation via herbicide or plowing is necessary prior
to the reseeding. After establishment, management of grassland
via fire and herbivores may be required to maintain the structure
and composition of the native grassland (Fuhlendorf and Engle,
2001).

In the recent past, the goal in restoring an ecosystem was
defined by baseline conditions (i.e., prior to human settlement)
that generally included the species that had existed in the region
historically (Hobbs and Norton, 1996). Once an ecosystem was
restored, it was expected that, if the system was resilient, it
could potentially stay in that state for decades or more (i.e.,
steady state). However, the threat of climate change has added
a new complication. We can no longer simply replace the plant
community that previously existed under historical conditions
and assume that it will be successful. In the face of current
knowledge about how ecosystems across the globe are changing
with climate change (Field et al., 2014), ecologists now need
an additional filter through which they must evaluate potential
success. That is the filter of resilience to future climatic variation
and future climatic change and anticipating species losses before
they occur.

The Midwestern part of the United States is a place where
grassland conversion has been extensive historically, even in the
recent decade. Between 2006 and 2011, nearly 530,000 hectares
(1.3 million acres) of grassland in the Western Corn Belt (WCB)
were converted to cropland (Wright and Wimberly, 2013) for
corn and soybean production. In response to this habitat loss and
fragmentation, many grassland species are in decline (Jackson,
2001). As a result, there is also quite a bit of interest by natural
resource managers in restoring and reconstructing grasslands.

The effects of climate change will potentially exacerbate the
loss and fragmentation of grasslands. Global climate change
models predict that future climate in the U.S.Midwest is expected
to become highly variable (Wuebbles and Hayhoe, 2004). The
pattern of precipitation over the next few decades is forecast
to come in the form of large downpours, which translates

into a higher likelihood of flooding, and increased intervals of
drought between precipitation events (Meehl and Tebaldi, 2004).
Increased temperatures and altered precipitation patterns are a
threat to the biodiversity, the stability of grassland native plant
communities (Thomas et al., 2004; Hampe and Petit, 2005) and
the goods and services that grasslands provide (Adger et al., 2005;
Stern, 2007). The inevitable consequence of changing species
distributions and environmental alterations through climate and
land use change, will be a higher proportion of “novel” or
“emerging systems” (Harris et al., 2006; Root and Schneider,
2006; Hobbs et al., 2009), which will have significant implications
for restoration and management practices.

Here, we use a case study of grassland restoration in the central
part of the U.S. (Miller et al., 2012) to provide an example of
how grassland restoration can be accomplished in a way that
is resilient to climate change. We hypothesized that vegetation
responses to forecasted climate change would be variable among
photosynthetic pathways and plant functional group types and
that by quantifying this variation recommendations for plant
species selection and restoration can be guided by our modeling.
We start with a suite of plant species known to exist in present
grasslands and reconciled with field data. We then apply a fine
scale climate model to this region, and evaluate the habitat
suitability for each of these plant species under future conditions.
This allows us to summarize which species will be most successful
under future climate conditions and which species will not. This
case study demonstrates the additional new planning step that
will be needed to ensure successful long-term restoration of
native grassland plant communities.

We used fine scale climate models and species distribution
modeling to evaluate the future success of a suite plant species
commonly associated with U.S. Midwestern grasslands. We
used native perennial grasses such as [Andropogon gerardii
(Big bluestem), Schizachyrium scoparium (Little bluestem), and
Sorghastrum nutans (Indian grass)] as these three species
are particularly characteristic of the tallgrass prairie of the
Midwestern U.S. region. Species distribution modeling has been
used for both conservation planning and theoretical research
on ecological and evolutionary processes, and these analyses
are primarily conducted at coarse geographic scales (Ferrier
et al., 2002; Funk and Richardson, 2002; Loiselle et al., 2003;
Rushton et al., 2004; Elith et al., 2006; Peterson, 2006; Kozak
et al., 2008). In contrast, fine scale species distribution models
have primarily been used for modeling distributions of a
smaller number of either weedy or rare and endangered plant
species (Collingham et al., 2000; Engler et al., 2004; Williams
et al., 2009). These models establish relationships between
occurrences of species and environmental conditions in the
study area. A variety of species distribution modeling methods
is available to predict potential habitat for a species (Guisan and
Zimmermann, 2000; Kumar et al., 2006; Wisz et al., 2008). Each
method is unique with regard to data requirements, statistical
methods and overall ease of use (Guisan and Zimmermann,
2000). The prediction and mapping of potential habitat for
threatened and endangered species can guide the monitoring
and restoration of these declining native populations (Gaston,
1996).
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We predicted habitat suitability responses to climate change
for 33 species of grasses, forbs, shrubs, and woody species of the
Midwestern tallgrass prairie ecosystem. Our objectives were to
(1) develop models that estimate the relative suitability of habitat
occupied currently by these species, (2) utilize these models to
project change in the suitability of habitat, and (3) evaluate how
these results might affect a manager’s perspective on restoration
within this ecosystem. We modeled responses at two time frames
using climate change scenarios which differ dramatically in their
predicted CO2 emissions. The larger goal of presenting this case
study was to demonstrate the use of such downscaling techniques
so that they could be applied in other grasslands worldwide.

METHODS

Study Region and Species Data
The Grand River Grasslands (GRG) of Ringgold County,
Iowa, and Harrison County, Missouri, is a 28,000 hectare
conservation priority area comprised mostly of privately owned
farms and ranches (Delaney et al., 2015; Figure 1). It has
been identified as the best known opportunity to restore
a functional tallgrass prairie system in the entire Central
Tallgrass Prairie ecoregion (The Nature Conservancy, 2008). This
Conservation Opportunity Area supports a diversity of grassland
wildlife of conservation concern, including northern prairie
skinks (Plestiodon septentrionalis), regal fritillary butterflies
(Speyeria idalia), and grassland birds [(Greater Prairie-Chickens
(Tympanuchus cupido), Henslow’s Sparrows (Ammodramus
henslowii), Dickcissels (Spiza americana), Bobolinks (Dolichonyx
oryzivorus), Northern Harriers (Circus cyaneus)]. We obtained
occurrence records of plant species in the GRG from Whittaker
plot surveys conducted in 11 experimental pastures in Iowa
and one in Missouri during May-August 2011 and 2012.
Methodologies are described in McGranahan et al. (2012). We
used a total of 33 plant species common to these pastures,
including native and exotic warm-season and cool-season
grasses, forbs, and woody species (Table S1). Occurrence records
for each county in Iowa and one county in Missouri were
obtained from The Biota of North America (BONAP), North
American Plant Atlas (Kartesz, 2013).

Predictor Variables
We chose six predictor variables: temperature seasonality
(represents seasonal variation in temperature), annual
precipitation, precipitation of driest quarter, precipitation
of the driest month, isothermality [mean diurnal range in
temperature/(maximum temperature of warmest month—
minimum temperature of coldest month)], and precipitation of
wettest quarter. We chose these variables because they influence
growth and survival patterns of plant species (Woodward, 1987;
O’Donnell et al., 2012) and because these predictor variables
were uncorrelated as Pearson correlations were <0.75 (Booth
et al., 1994; Table 1). Current (1950–2000) and future climate
time periods (2040’s and 2080’s) derived at 30 arc seconds (∼1
km) resolution from theWorldclim dataset (Hijmans et al., 2005)
were used for model simulation. Future climate scenarios were
obtained from the Delta Method—a downscaling method based

TABLE 1 | Selected environmental variables and their percent contribution

to Maxent model for plant species in the Grand River Grasslands.

Bioclimatic variables Percent contribution to model (%)

Isothermality 34.2

Annual precipitation 27.1

Precipitation of the wettest quarter 20.6

Precipitation of the driest month 8.2

Temperature seasonality 5.7

Precipitation of the driest quarter 4.2

The Percent Contribution column is an estimate of variable use relative to other variables

in the model building process.

on thin plate spline spatial interpolation of anomalies (deltas)
of original Global Climate Model (GCM) outputs (Hijmans
et al., 2005). We compared species responses under two climate
scenarios (A1B and A2). The A1B scenario predicts a linear
increase in temperature from 1.4 to 6.4◦C, and CO2 emissions
remain stable at 15 gigatons of carbon from 2040 to 2080.
Whereas, the A2 scenario predicts temperature increases from 2
to 5.4◦C and CO2 emissions range from 16 Gigatons of carbon
in 2040 to 23 Gigatons of carbon by 2080 (Field et al., 2014).

Modeling Methods
We modeled species current and future distributions using the
maximum entropy model Maxent version 3.3.3 k (Phillips et al.,
2006; Phillips andDudík, 2008).Maxent is considered a presence-
background modeling technique because it does not require
the use of absence data and it incorporates information on
environmental variation across the study area (aka “background
data”) during model development. Maxent has been compared
to other presence-only methods and is regarded as the most
reliable and robust (Elith et al., 2006; Hernandez et al., 2006;
Wisz et al., 2008). This technique is also particularly effective
when species sample sizes are small. Maxent uses occurrence
data and environmental variables at those occurrence points
to create distributional models. The environmental variables
or features impose constraints on the unknown distribution
so the mean of each feature is required to be within some
error bounds of the empirical average over the presence sites.
The constraints are relaxed using regularization parameters.
Regularization prevents Maxent from “overfitting” occurrence
points to environmental variables in order to avoid negative
effects on predictive performance (Hastie et al., 2001). Models
that are over-fit fail to predict independent evaluation data and
transferability to another region or time period (Phillips and
Dudík, 2008). Maxent approximates an unknown distribution
using the known occurrences and background points and among
all distributions satisfying the constraints, chooses the one of
maximum entropy, or the most unconstrained one (Jaynes,
1957). In our study, the known distributionmaps were developed
for each species based on points/grid cell values across the 99
counties within the state of Iowa.

For each species, we modeled the current distribution and
then projected it onto two sets of future time periods (2040 and
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2080) and two emission scenarios (A1B and A2). We increased
the level of regularization for each species to two (from a default
setting of 1), as doing so alleviates overfitting when sample
sizes are small and greatly increases model performance and
model transferability to future climates (Dudík et al., 2007; Elith
et al., 2010; Anderson and Gonzalez, 2011; Radosavljevic and
Anderson, 2014). To ensure that our models did not extrapolate
beyond the environmental envelop of the occurrence data used in
model development, we ran the Maxent model using the default
“clamping” option to generate mapping predictions which treat
variables outside the training ranges as if they were at the end of
their training range (Elith et al., 2011). The “donotextrapolate”
option was also used as this sets predictions to zero whenever
variables are outside of the training range. Lastly, we selected
the logistic output format, which yields continuous values that
indicate relative environmental suitability for the species (Phillips
and Dudík, 2008). These values range from 0 (low probability
of presence) to 1 (high probability of presence). Because we
were modeling the future distributions within a relatively small
geographic region (the Grand River Grasslands), we built our
current distribution models using occurrence points from across
all of Iowa to increase background data and ensure a broader
representation of environmental conditions.

The predictive ability of all models was evaluated by using
the area under the receiver-operator curve (AUC) which is
a threshold-independent measure of predictive accuracy based
only on the ranking of locations (Fielding and Bell, 1997). AUC
is interpreted as the probability that a randomly chosen presence
location is ranked higher than a randomly chosen background
point (Merow et al., 2013). This approach corresponds to finding
a model that identifies attributes of the species distribution and
not artifacts of noise such as sampling bias. The AUC statistic
measures the quality of a fitted model when calculated for the
training data set, and it is a measure of the quality of prediction
for novel environments. The AUC for our models ranged from
good (0.7) to near perfect discrimination (≥0.9) (Table S1). If
species had samples sizes of <25 records, models were tested and
trained using the re-sampling K-fold cross-validation method,
where the data are split into training data (to fit the model) and
test data (to evaluatemodel predictions). Using this approach, the
data are split into K independent subsets, where K is the number
of replicates you specify, and one subset is left out while themodel
is fit to the other n-1 subsets. The subset withheld is used to test
the model and calculate AUC (Elith et al., 2011). For species with
samples sizes of >100, 25% of the training data were set aside for
testing. If the number of species occurrence points was 10 or less,
one data point was used for testing (Pearson et al., 2007).

RESULTS

As with most climate change projection studies, model
projections depend greatly on simulations of future climate,
GHG emission levels, and species dispersal scenarios (Bakkenes
et al., 2002). Our models were made using the IPCC global
emissions climate scenarios A1B and A2. The A1B scenario
predicts a temperature increase of as much as 5◦C between

the years 2040 and 2080 whereas the A2 scenario predicts a
3.4◦C temperature increase but larger changes in CO2 emissions
(increases by much as 7 gigatons of carbon/year between
2040 and 2080). In addition, the variable isothermality made
the greatest contribution to our Maxent model. Isothermality
quantifies the range between the day-to-night temperature
oscillation and summer to winter oscillation. We found that
the values of isothermaility in the A1B scenario decreased by
a factor of 84% in both the 2040 and 2080 climate scenarios
in comparison to the current scenario. This was not observed
in the A2 scenario. Annual precipitation increased in both
scenarios from the year 2012. Annual precipitation in the A1b
scenario increased by 70mm in 2040 and by 79mm in 2080.
Under the A2 scenario precipitation increased by 92 mm of
precipitation per year (2040 and 2080). The A1B scenario was
the most severe, predicting very low values of habitat suitability
and low variation in these values across species in both time
periods (Table 2). The A2 scenario predicted higher habitat
suitability scores and more variation in those scores among the
species for both time periods. However, both models predict
the majority of species will experience declines in habitat by
2040. Projections to 2080 show that suitable habitat may only be
available for a small subset (∼12%) of the 33 species considered
here (Table 2). We have provided a view of habitat suitability for
two examples of common forbs, Achillea millefolium (yarrow)
and Pycnanthemum tenuifolium (slender mountain mint) and
one example of a common grass, S. scoparium (big bluestem)
found in Midwestern prairies and grasslands (Figures 2–4).
The full set of results for all 33 species can be viewed in
Figures S1–S4.

Models based on the A1B scenario show that by both 2040 and
2080 only 10% or less of currently available habitat will be suitable
in the Grand River Grassland for many plant species (Table 2,
Table S1). The few species with relatively high habitat suitability
in 2040 such asDicanthelium spp. (panic grass), S. nutans (Indian
grass), and Trifolium repens (white clover) are predicted to
undergo a substantial decrease to their habitat suitability by 2080.
The only species that shows high habitat suitability from in 2080
is Vernonia baldwinii (Baldwin’s ironweed).

Models run using the A2 scenario showed that only four plant
species [P. tenuifolium (Slender mountain mint), Symphoricarpos
orbiculatus (Buckbrush), Toxicodendron radicans (Poison ivy),
and V. baldwinii (Baldwin’s ironweed)] are expected to
experience declines in habitat suitability by 2040 (Table 2,
see Figure 3 as an example and Figure S2), but then show
increases in habitat suitability between 2040 and 2080. Given that
species have to pass through low habitat suitability conditions
in 2040 to get to higher 2080 suitability conditions it is
possible that they may not have the chance to recover. Ten
species (four warm-season grasses, two cool-season grasses,
and four forbs) show no change in habitat suitability by
2040 but suitability will decline substantially by 2080 (Table 2,
Figure S3). Of particular note relative to Midwestern grassland
restorations is that perennial grasses [A. gerardii (Big bluestem),
S. scoparium (Little bluestem), S. nutans (Indian grass), and
Sporobolus clandestinus (Rough dropseed)] show a much more
dramatic reduction in habitat suitability between the two time
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TABLE 2 | Plant species modeled and relative habitat suitability values under the A2 and A1B scenario.

A2 A1B

Species 2012 2040 2080 2040 2080

Achillea millefolium (common yarrow) 0.90 0.75 0.16 0.01 0

Ambrosia artimisiifolia (common ragweed) 0.90 0.01 0 0.01 0

Andropogon gerardii (big bluestem) 0.86 0.63 0.10 0 0

Antennaria neglecta (pussy toes) 0.86 0 0 0 0

Aster ericoides (aster heath) 0.96 0.16 0 0 0

Asclepias syriaca (common milkweed) 0.84 0.84 0.24 0 0

Bromus inermis (smooth brome) 0.90 0 0 0.01 0

Daucus carota (wild carrot) 0.90 0.71 0.13 0.01 0

Dicanthelium spp. (panic grass) 0.90 0.79 0.21 0.78 0.21

Dactylis glomerata (orchard grass) 0.90 0.78 0.24 0.10 0.10

Erigeron strigosus (daisy fleabane) 0.90 0 0 0 0

Schedonorus arundinacea (tall fescue) 0.90 0 0 0 0

Fragaria virginiana (wild strawberry) 0.90 0 0 0.01 0

Lotus corniculatus (birdsfoot trefoil) 0.90 0.75 0.11 0 0

Maclura pomifera (osage orange) 0.90 0 0 0 0

Monarda fistulosa (wild bergamot) 0.90 0 0 0.01 0

Panicum virgatum (switchgrass) 0.90 0 0 0.01 0

Phleum pratense (timothy) 0.88 0 0 0 0

Plantago rugelii (plantain blackseed) 0.87 0 0 0 0

Poa pratensis (Kentucky bluegrass) 0.90 0 0 0.01 0

Potentilla simplex (common cinquefoil) 0.90 0.20 0.04 0 0

Pycanthemum tenuifolium (slender mountain mint) 0.90 0.44 0.90 0 0

Ratibida pinnata (gray headed coneflower) 0.84 0 0 0 0

Schizachyrium scoparium (little bluestem) 0.80 0.80 0.10 0 0

Sorghastrum nutans (Indian grass) 0.80 0.80 0.20 0.80 0.20

Sporobolus clandestinus (rough dropseed) 0.80 0.80 0.20 0 0

Symphoricarpos orbiculatus (buckbrush) 0.90 0.10 0.80 0 0

Toxicodendron radicans (poison ivy) 0.90 0.10 0.50 0 0

Trifolium pretense (red clover) 0.90 0 0 0 0

Trifolium repens (white clover) 0.90 0 0 0.91 0

Vernonia baldwinii (Baldwin’s ironweed) 0.90 0.20 0.90 0.20 0.90

Viola pedata (birdsfoot violet) 0.90 0 0 0.01 0

Viola pedataifida (prairie violet) 0.90 0 0 0.01 0

Relative environmental suitability for the species ranges from 0 (lowest suitability score) to 1 (highest suitability score).

periods. And similarly, relative to current conservation issues
related to monarch butterfly (Danaus plexippus) restoration,
even common milkweed, Asclepias syriaca, suffers low habitat
suitability by 2080. For all other species, suitable habitat begins
to decline by 2040 and continues to decline by 2080 (Table 2,
Figure S4).

DISCUSSION

Our case study demonstrates that even the most common plants
in the Midwestern region of the U.S. are vulnerable to climate
change and that we have a rapidly shrinking time window to
understand how to conserve and restore these critical ecosystems.
The decline in suitability for native perennial grasses such as
[A. gerardii (Big bluestem), S. scoparium (Little bluestem), and

S. nutans (Indian grass)] under both scenarios is particularly
troubling. If significant changes are projected for even the
most common species, the implications of climate change mean
that there could be state transitions in the plant and animal
communities associated with Midwestern grasslands in the
coming decades (Briske et al., 2005).

The A1b and A2 scenarios delivered different results. We
believe these differences are driven by a decrease in the diurnal

temperature range (DTR) of our study region. In the current
scenario, the isothermality values indicate that the DTR and
the annual temperature range were about even. In the 2040

A2 scenario the isothermality values plunged, indicating that

the DTR decreased below the annual temperature range. These
changes in DTR can directly affect photosynthesis, respiration,
growth and tissue restoration in plants (Hughes, 2000).
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FIGURE 1 | Location of the experimental pasture plots in Grand River Grasslands study area in Ringgold County Iowa and Harrison County Missouri.

Because these projected changes have ramifications for
agriculture, conservation, and society in general, our results
imply that it is imperative that future land management
in this region incorporate climate variability as a driver
of plant communities (Scasta and Rector, 2014). Current
national and regional frameworks for land management have
very few ecological site descriptions (ESD’s) and state-and-
transition models that include climate change (Twidwell
et al., 2013). It also begs the question of how resilient we
should expect grasslands to be in other parts of the world
where seed sources, precipitation, and soil quality are more
limiting.

The reduction of some of the plant species in this Midwestern
U.S. example could have important implications for pollinator
species and other wildlife. For example, three common species, S.
orbiculatus (Buckbrush), and V. baldwinii (Baldwin’s ironweed)
and P. tenuifolium (Slender mountain mint) are expected to
decline in habitat suitability under 2040 projected models. Both
slender mountain mint and Baldwin’s ironweed are important
nectar sources for pollinators (Kopper et al., 2001), so a decline
in the abundance of these species could cascade across other taxa
such as butterflies and bees. Similarly, Buckbrush is one of the
most common shrubs in these prairies, providing nesting habitat
for some grassland birds and browse for deer (Soper et al., 1993;
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FIGURE 2 | Current (A), 2040 (B), and 2080 (C) distribution of Common

milkweed. A1 scenario predictions are coded blue (lowest suitability) to

orange—red (highest suitability).

Holechek, 2001; Coppedge, 2010). Declines in Buckbrush could
thus have important effects on birds and wildlife. The predicted
decline in Buckbrush is also surprising because it is resilient to
regular disturbance such as fire, even during periods of extreme
drought like 2012 (Scasta et al., 2014). We should note that in
some of these cases species showed declines in habitat suitability
in 2040 followed by increases in habitat suitability in 2080. It
is essential to note that in a real world scenario, if populations
decline in 2040, they may not be resilient enough to increase by
2080.

Given the results that we obtained, some specific
recommendations for this study region can be made. Dominant
grasses in the tallgrass prairie region include [A. gerardii (Big
bluestem), S. scoparium (Little bluestem), and S. nutans (Indian
grass)]. Of these three species, S. nutans is the species that has
the highest habitat suitability across all of the scenarios in the
future, so it may be wise for managers to consider increasing
the proportion of this species in future plantings. Dominant
forbs (flowering plants) native to tallgrass prairies that we
evaluated here include species such as A. millefolium (common
yarrow), Monarda fistulosa (wild bergamot), Ratibida pinnata
(gray headed coneflower), and Potentilla simplex (common
cinquefoil). Of these flowering plants, A. millefolium and
P. simplex are the two species that have the highest habitat

FIGURE 3 | Current (A), 2040 (B), and 2080 (C) distribution of Slender

Mountain Mint. A2 scenario predictions are coded blue (lowest suitability) to

orange—red (highest suitability).

suitability in the future and might similarly be considered as
good candidates to increase in future seed mixtures. Using this
example as a model, managers of other grasslands could use a
similar approach to revise the prescriptions used for restoration
seed mixes.

Our analysis was not extensive enough to make broad
generalizations among plant photosynthetic pathways given the
limited number of species and C3 and C4 graminoids that
both exhibit similar suitability responses across models [i.e.,
Dichanthelium species (panic grass) and S. nutans (Indian
grass)]. Similarly, broad generalizations regarding functional
group responses are difficult because different species within a
functional group display both positive and negative suitability
responses across models. No clear trend for the responses of
invasive species was evident either. However, we can provide
some insights based on the species we did examine. We included
two woody species Maclura pomifera (osage orange) and S.
orbiculatus (Buckbrush). Both species show declines, but the
decline of M. pomifera, a tree species, is more dramatic than
that for S. orbiculatus, a shrub species, particularly under
Model A2. Similarly, we only examined one invasive species
Schedonorus arundinacea (tall fescue), which is a grass frequently
planted to pastures in the region. Habitat suitability for S.
arundinacea drops to zero in both models and both time
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FIGURE 4 | Current (A), 2040 (B), and 2080 (C) distribution of Big bluestem.

A2 scenario predictions are coded blue (lowest suitability) to orange—red

(highest suitability).

periods. A reduction in the cover of an invasive grass species
may be considered a potential benefit by managers. Finally, T.
radicans (poison ivy) is not an exotic species, but it is a vine-
forming species that can cause an itchy rash after skin contact.
The predicted decline in habitat suitability, particularly under
Scenario A1B, would be considered a potential benefit by many
land managers.

In addition to thinking about seed mixes for restoration and
the potential survival of particular plant species, adjustments
to grassland management practices may be in order. For
example, if conditions are getting hotter and drier, current
fire, and grazing management practices may have different
effects on the plant communities than they have had in the
past. Similarly, changing precipitation regimes may influence
biomass production. As such, it may be appropriate to lengthen
the fire-return interval, change the timing of burning, and/or
modify stocking rates on grazed grasslands (e.g., Holechek et al.,
1995).

In further interpreting these results, it is essential that we
take into consideration the model assumptions. The bioclimatic
models implemented in this study make a number of simplifying
assumptions that may bias the projections (Pearson and Dawson,

2003; Guisan and Thuiller, 2005). There are several factors that
would exacerbate the projected impacts of climate change, which
our models ignore. These include specialization to restricted
soil types (Harrison et al., 2006), the spread of invasive species,
which could take over otherwise potentially appropriate habitat
(Seabloom et al., 2006), local adaptation of populations within
species, and genetic constraints on evolutionary response to
climate change (Etterson and Shaw, 2001). On the other hand,
resilience of established plants and seed banks (Chapin and
Starfield, 1997), differing population responses at range margins
(Hampe and Petit, 2005), and adaptive evolutionary responses
might mitigate the influence of climate change. Also, we need to
take into consideration the effect of grain size on our models, as
there simply are not many types of climate data available for a
study area of this size. However, our results point out the value
of using regional approaches to understanding climate change
effects. Finally, parsing out the regulating effects of climate and
land-use change is difficult, particularly in the context of the
removal of fire from the landscape and such effects on woody
vs. non-woody vegetation (Archer et al., 1995). Both climate
and land-use change will affect species distributions (Halpin,
1997), but it is not clear how the cumulative effects of these
dual threats will manifest themselves in terms of future species
responses.

Nonetheless, the outcomes from our modeling example
provide a sobering perspective relative to long term
sustainability of grasslands in the central portion of
North America. Ecologists and managers will indeed
need to add this new filter of regional habitat suitability
under climate change as they manage for the future.
Because large-scale grassland restorations are often costly
endeavors, both in terms of human time and financial
investments, ecologists will need to know whether they
can expect restorations to be successful under future
climatic conditions. We have thus developed the following
recommendations:

• To ensure resilience in the face of climate change, take
a proactive perspective to restoring grasslands, thinking
about which species are expected to do well in the future
and what geographic regions will be expected to provide
suitable growing conditions. It would also be prudent
to take a larger geographic perspective when thinking
about restoration of particular communities. Model results
could be used to triage restoration efforts toward both
species and locations that are most likely to provide future
habitat.

• Adjustments to management practices may be in
order. Fire and grazing management practices may
have different effects on the plant communities than
they have had in the past and changing climatic
patterns may influence ecosystem responses to
disturbance. The effects of such changes should be
considered when evaluating how grasslands respond to
management.

In essence, ecologists and grassland managers will have to adjust
our thinking to this “new normal” using our prior understanding
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of how communities function, but incorporating these new filters
that describe how grasslands may function in the future.
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