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Almond and sweet cherry are two economically important species of the Prunus genus.
They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-
component defense system, prunasin and amygdalin release toxic hydrogen cyanide
upon cell disruption. In this study, we investigated the potential role within prunasin and
amygdalin and some of its derivatives in endodormancy release of these two Prunus
species. The content of prunasin and of endogenous prunasin turnover products in the
course of flower development was examined in five almond cultivars – differing from very
early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars,
prunasin began to accumulate in the flower buds shortly after dormancy release and the
levels dropped again just before flowering time. In almond and sweet cherry, the turnover
of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile
pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower
buds at certain developmental stages. These findings indicate a role for the turnover of
cyanogenic glucosides in controlling flower development in Prunus species.

Keywords: amygdalin, dormancy, flowering time, LC-MS/MS, prunasin, prunasin derivatives, qRT-PCR

INTRODUCTION

Cyanogenic glucosides (CNglcs) are defense compounds present in more than 3,000 plant species
(Gleadow and Møller, 2014) including economically important fruit trees such as almond (Prunus
dulcis Miller D.A. Webb syn. P. amygdalus Batsch) and sweet cherry (P. avium L.). Both fruit
trees contain the phenylalanine-derived CNglcs prunasin and amygdalin. Prunasin is a β-D-
monoglucoside of R-mandelonitrile (Kuroki and Poulton, 1987; Swain et al., 1992; Hu and
Poulton, 1999; Neilson et al., 2011) and a precursor for the diglucoside amygdalin in which the
two glucose moieties are β-(1→6) linked (gentiobiose). In the bitter-kernelled almond cultivars,
prunasin is present in the tegument, endosperm, nucella, and cotyledons at the early stages
of seed development (Frehner et al., 1990; Dicenta et al., 2002; Sánchez-Pérez et al., 2008).
Amygdalin accumulates at the later state of fruit kernel development (Sánchez-Pérez et al., 2008)
where its content in the kernel is around 100-fold higher compared to prunasin (Dicenta et al.,
2002; Sánchez-Pérez et al., 2008). Conversely, prunasin is present in high amounts compared to
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amygdalin in the vegetative parts of the almond tree such as
leaf, petiole, stem, and root – with no major differences in
the ratios observed between sweet and bitter cultivars. Both
CNglcs are synthesized de novo in the kernel but only amygdalin
is accumulated in bitter kernels (Sánchez-Pérez et al., 2008).
In sweet cherry, prunasin is present in flowers, fruits, stems,
and seeds, whilst amygdalin is present in fruits and seeds only
(Nahrstedt, 1972).

Biosynthesis of prunasin and amygdalin (Figure 1) involves
the initial conversion of L-phenylalanine (Phe) (Mentzer and
Favrebonvin, 1961) into mandelonitrile by the action of the
two cytochromes P450 called CYP79D16 and CYP71AN24,
recently characterized in Japanese apricot (P. mume Sieb. et
Zucc) (Yamaguchi et al., 2014). An UDP-glucosyltransferase
(UGT1, UGT85A19) catalyzes the conversion of mandelonitrile
into prunasin (Franks et al., 2008). Finally, an unknown
glucosyltransferase (UGT2) catalyzes the conversion of prunasin
into amygdalin (Figure 1A).

The classic physiological function assigned to CNglcs is
in chemical defense against pathogens and herbivores. This
two-component defense system involves β-glucosidase and
α-hydroxynitrilelyase-catalyzed hydrolysis of CNglcs resulting in
the release of toxic hydrogen cyanide. The system is detonated
when the CNglcs and their hydrolytic enzymes get into contact
as a result of tissue and cell destruction, e.g., by herbivore
attack. In this bioactivation process, amygdalin is converted into
prunasin and glucose by amygdalin hydrolase (AH). Prunasin
hydrolase (PH) converts prunasin into mandelonitrile and
glucose (Kuroki and Poulton, 1987; Li et al., 1992; Zheng
and Poulton, 1995; Zhou et al., 2002; Sánchez-Pérez et al.,
2008, 2010, 2012) Mandelonitrile lyase 1 (MDL1) catalyzes the
dissociation of mandelonitrile into benzaldehyde and hydrogen
cyanide (Swain and Poulton, 1994a; Zheng and Poulton, 1995;
Suelves and Puigdomènech, 1998; Hu and Poulton, 1999), two
compounds that are bitter and toxic, respectively (Evreinoff,
1952) (Figure 1B).

To avoid hydrogen cyanide intoxication, plants have
developed a detoxification pathway in which β-cyanoalanine
synthase (β-CAS) catalyzes the conversion of hydrogen cyanide
into β-cyanoalanine (Figure 1C). In a subsequent reaction,
a type 4 nitrilase catalyzes hydration of β-cyanoalanine
resulting in the production of asparagine or aspartate and
ammonia (Piotrowski, 2008). Evidence for the operation of two
endogenous turnover pathways for cyanogenic glucosides has
recently been provided (Pičmanová et al., 2015; Nielsen et al.,
2016). In both these pathways, the nitrogen of the cyanogenic
glucoside is recovered as ammonia without any release of
hydrogen cyanide (Figure 1D).

Other potential physiological functions of CNglcs include a
role as transporters of carbon and nitrogen (Selmar et al., 1988),
suppliers of reduced nitrogen in form of ammonia (Sánchez-
Pérez et al., 2008; Nielsen et al., 2016), as modulators of oxidative
stress (Møller, 2010; Neilson et al., 2013) and as regulators of seed
germination (Swain and Poulton, 1994b; Pičmanová et al., 2015).
Seed germination is a developmental process closely related to
bud dormancy release (Wareing and Saunders, 1971; Rohde and
Bhalerao, 2007). CNglcs metabolism has also been hypothesized

to contribute to the nitrogen pool, thereby enabling bud opening
(Gleadow and Woodrow, 2000). The levels of CNglcs and
their metabolites in flower buds during endodormancy release
have not previously been reported. In temperate climates, bud
dormancy is the adaptive mechanism of perennial plant species
to counteract the harsh environmental conditions of winter
and is controlled by the required accumulation of chill and
the subsequent accumulation of heat. This process enables the
plant to time flowering and leafing to profit from weather
conditions that are favorable for growth and development.
Flowering will only happen when dormancy is broken (Fennell,
1999).

The flowering time is mainly determined by the cultivar-
dependent chill requirements, with heat requirements being less
important (Egea et al., 2003). The chill requirements necessary
for dormancy release and flowering have been studied in Prunus
species such as apricot (P. armeniaca L.) (Ruiz et al., 2007),
sweet cherry (Alburquerque et al., 2008), peach (P. persica L.)
(Weinberger, 1950), plum (P. domestica L.) (Okie and Hancock,
2008) and almond (Egea et al., 2003; Sánchez-Pérez et al., 2010,
2014).

When the chill requirements are low, e.g., in early-flowering
cultivars, late winter or cold temperatures in spring may
cause yield loss by frost (Scorza and Okie, 1991). Flowering
time is one of the most important agronomic traits in
almond, since late flowering cultivars counteract crop loss
caused by late spring frosts (Dicenta et al., 2005). In sweet
cherry, the situation is opposite, as this species has a higher
range of chill requirements. Due to global warming, chill
requirements are hardly fulfilled in warmer production areas
(Campoy et al., 2011). Therefore, different nitrogen- or sulfur-
based dormancy-breaking chemicals are applied by spraying
to compensate for missing chill and to induce flowering. The
most successful chemical, commercially known as Dormex R©

(AlzChem, Trostberg, Germany), is hydrogen cyanamide (Godini
et al., 2008). Hydrogen cyanamide advances flowering time up
to 3 weeks and synchronizes bud break. This facilitates and
advances fruit harvest as well. Even though hydrogen cyanamide
has been used for many years in different fruit trees such as sweet
cherry, peach, apricot, kiwifruit, and grapevine, its molecular
mechanism of action remains unknown (Ionescu et al., 2017).
It has been demonstrated in vitro that hydrogen cyanamide can
be converted to hydrogen cyanide and nitroxyl by the action of
catalase (Shirota et al., 1987).

Hydrogen cyanide has been implicated in seed germination
(Zagórski and Lewak, 1983; Bogatek et al., 1991; Bethke et al.,
2006; Oracz et al., 2009) and bud dormancy release (Tohbe
et al., 1998). Hydrogen cyanide release has been measured
in different reproductive tissues of Eucalyptus cladocalyx
(F. Muell). The highest content was detectable in young
buds, followed by older buds and flowers (Gleadow and
Woodrow, 2000). Due to the cyanogenic nature of CNglcs,
we hypothesize that they could be a source of hydrogen
cyanide and thus inducers of endodormancy release. The aim
of this study was therefore to investigate the possible role
of CNglcs in endodormancy release of almond and sweet
cherry.
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FIGURE 1 | Biosynthesis (A), bioactivation (B), detoxification (C), and alternative turnover (D) of prunasin and amygdalin in almond and sweet cherry. CYP79 and
CYP71: cytochromes P450; UGT1 and UGT2: UDP-glucosyltransferases 1 and 2, respectively; AH, amygdalin hydrolase; PH, prunasin hydrolase; Phe,
phenylalanine; MDL1, mandelonitrile lyase 1; β-CAS, β-cyanoalanine synthase; NIT4, nitrilase 4.

MATERIALS AND METHODS

Plant Material Sampling
Almond
Flower buds and different parts of the flower (pistils, petals,
and sepals) of five different almond cultivars chosen by their
differences in flowering time (very early: ‘Achaak’ and ‘Desmayo
Largueta,’ early: ‘S3067,’ late: ‘Lauranne’ and extra-late: ‘Penta’)
(Table 1) were collected every 2 weeks, from November 5th,
2013 to March 24th, 2014 (11 time points), in the experimental
orchard of CEBAS-CSIC, in Santomera (Murcia, South-East
Spain, 38.1095222, -1.037975). With the exception of the bitter
cultivar ‘S3067’ (sksk), all used cultivars are sweet-kernelled,
defined by the dominant Sk (Sweet kernel) gene locus (Table 1).

Four to six branches were collected per time point following
the phenological stages A to F (Felipe, 1977), as previously
described in (Sánchez-Pérez et al., 2010). Samples were
snap-frozen in liquid nitrogen and kept at−80◦C.

Sweet Cherry
Flower bud samples were taken from sweet cherry trees of
the cultivar ‘Burlat’ on ‘Santa Lucia’ rootstock, grown in the

experimental orchard of the INRA Bordeaux in Toulenne
(south-west France, 44.575503, -0.283008). ‘Burlat’ is considered
a reference cultivar in sweet cherry. The chill requirements
(Richardson et al., 1974) of ‘Burlat’ in Toulenne were calculated
(976 CU in 2015, Bénédicte Wenden, personal communication)
and when 709.5 CU were fulfilled – still in the endodormant
state – 20 cm long branches were cut from the trees and placed at
controlled conditions in a growth chamber (forcing conditions:
25◦C day/20◦C night, 16 h light/8 h dark (6–22:00), 30 µmol/m/s
light intensity, direct lighting, 40% relative humidity). The
branches were immersed in tap water, which was changed every
3 days. Flower buds [stage A–E according to Baggiolini (1952)
(Figure 2)] were sampled up to 17 days after treatment, always
between 9 and 12 am. Samples were snap-frozen in liquid
nitrogen and kept at−80◦C.

Accumulation of Chill and Heat for
Breaking Dormancy and Flowering
Almond
Three 40 cm long branches of each almond cultivar were collected
every 2 weeks (Table 2) from the field and placed in a growth
chamber in controlled conditions (light period of 16 h at 25◦C,

TABLE 1 | List of cultivars classified by their flowering time and kernel bitterness (defined by Sk locus).

Cultivar Flowering time Genotype Endodormancy release CR (CU) HR (GDH)

Achaak Very early (25th January) Sweet (Sk/–) 30th-November 231 9276

Desmayo L. Very early (30th January) Sweet (Sksk) 6th-December 306 9395

S3067 Early (13th February) Bitter (sksk) 12th-December 391 11297

Lauranne Late (28th February) Sweet (SkSk) 25th-December 533 12399

Penta Extra-late (15th March) Sweet (SkSk) 02nd-February 819 7871

Chilling (CR) and heat (HR) requirements for breaking dormancy and flowering time of the almond cultivars used in this study. Abbreviations: CU, chill units; GDH, growing
degree hours.
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FIGURE 2 | Significant phenological stages of the sweet cherry flower buds sampled in this study. (A) stage A, (B) stage BC, (C) stage D, (D) stage E.
(E) stage F. White arrows indicate flower buds in the appropriate stages.

40% relative humidity and darkness period of 8 h at 20◦C and
60% relative humidity). The branches were placed in jars and
immersed in a 5% saccharose and 1% aluminum sulfate solution,
which was replaced every 5 days. The developmental stage of the
flower buds was measured 10 days later, establishing the date
of endodormancy release when 50% of the flower buds were in
the BC stage. In the field, the flowering date was determined as
the date where 50% of the flowers of the tree had fully opened
(F stage).

Calculation of chill requirements was performed in Chill Units
(CU) according to the method of Richardson et al. (1974), as
a function of the number of hours at a certain temperature
range accumulated from November 15th. This method takes into
account that temperatures outside this range counteract chill
accumulation (chill negation) (Erez et al., 1979).

Heat requirements were calculated as growing degree hours
(GDH), which is the hourly temperature minus 4.5◦C. The heat
requirements of each cultivar were calculated as the number of
GDH accumulated between the release of endodormancy and
flowering time, when 50% of flowers were open (F50) (Table 1).

TABLE 2 | Sampling time points for the almond and sweet cherry samples
used in this study.

Almond Cherry

Batch
no

Date CU GDH Day of
sampling

Date Stages

1 5th of November 0 0 0 19.01.15 A

2 18th of November 56 512 1 20.01.15 A

3 2nd of December 260 2244 3 22.01.15 A

4 16th of December 441 4243 7 26.01.15 B,C

5 30th of December 590 6455 10 29.01.15 B,C,D

6 13th of January 673 9151 15 02.02.15 B,C,D,E

7 27th of January 754 11824 17 05.02.15 B,C,D,E

8 10th of February 859 14338

9 24th of February 902 17272

10 10th of March 917 20339

Almond samples were taken in the field from November to March and Chill Units
(CU) and heat requirements (GDH) indicated for each batch. For cherry, the
sampling was conducted in a growth chamber at seven different time points from
January to February.

Sweet Cherry
Starting in November 2014, the endodormancy status of ‘Burlat’
flower buds was determined. At each time point, three branches
were cut from the trees and placed in a growth chamber in
controlled conditions. Bud break was measured as the percentage
of flower buds that pass developmental stage BC (Baggiolini,
1952) (Figure 2). With 50% of all flower buds beyond stage C,
endodormancy was considered broken. In this experiment, it was
not possible to determine flowering time (50% of flowers open),
because only 18% of all flower buds opened to the point of a full
flower. The reason for this might be a lack of nutrient resources
in the branches.

LC-MS Analysis
Cyanogenic glucosides were analyzed as described previously
(Pičmanová et al., 2015). Samples (100 mg) were ground to
a fine powder in liquid nitrogen, mixed with 400 µL 85%
methanol, boiled 5 min, placed on ice and centrifuged (5 min,
20,000 × g). Aliquots (20 µL) of the supernatant were mixed
with 70 µL of water and 10 µL of 500 µM internal standard
(linamarin) and filtered through a filter plate (0.45 µm, Millipore)
by centrifugation (5 min, 1,107× g).

LC–MS/MS was carried out using an Agilent 1100 Series LC
(Agilent Technologies) coupled to a Bruker HCT-Ultra ion trap
mass spectrometer (Bruker Daltonics). A Zorbax SB-C18 column
(Agilent; 1.8 µm, 2.1 mm × 50 mm) maintained at 35◦C was
used for separation. The mobile phases were: (A) water with
0.1% (v/v) HCOOH and 50 mM NaCl; (B) acetonitrile with
0.1% (v/v) HCOOH. The gradient program was: 0–0.5 min,
isocratic 2% B; 0.5–7.5 min, linear gradient 2–40% B; 7.5–8.5 min,
linear gradient 40–90% B; 8.5–11.5 min isocratic 90% B; 11.6–
17 min, isocratic 2% B. The flow rate was 0.2 ml·min−1 but
increased to 0.3 ml·min−1 in the interval 11.2–13.5 min. ESI–
MS2 was run in positive mode. The data was analyzed using
the Bruker Daltonics programme Data Analysis 4.0. Extracted
ion chromatograms for specific [M+Na]+ adduct ions (as NaCl
is added to one of the mobile phases, the great majority of
adducts formed are [M+Na]+; we could also see [M+H]+
and [M+NH4]+, but these are minute in comparison with the
sodium adducts) and their MS2 profiles were used to identify the
compounds.
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Table 3 shows the names, structures, and retention times
of all the compounds detected in this study. Amygdalin
was bought from Sigma–Aldrich. Prunasin was chemically
synthesized (Møller et al., 2016). Prunasin amide, prunasin acid,
prunasin anitrile, 1-O-benzoyl-β-D-glucopyranose, prunasin-
6′-β-D-apioside and prunasin-6′-β-D-xyloside were chemically
synthesized (Motawia MS, unpublished work). The reference
compounds were used for absolute quantification in a range
of concentrations from 0.5 to 125 µM. As for the relative
quantifications presented, the ionization efficiency of prunasin
and its derivatives may differ by a factor of approximately two,
and hence the ratios expressed as percentages of prunasin content
are correct within this span (Pičmanová et al., 2015). The MS and

MS2 spectra observed for each compound were in agreement with
the spectra previously reported (Pičmanová et al., 2015).

Samples were assayed in two to three technical replicates,
except for the last time point of the prunasin content in S3067.

qRT-PCR Analysis in Sweet Cherry
Quantitative real-time polymerase chain reaction (qRT-PCR)
based expression analysis was carried out on 12 selected
genes using three reference genes (TEF2, 18s rRNA, and
RPL13) (Table 4). The targeted gene sequences were based on
homologous genes derived from different Prunus species and
preliminary transcriptomic data from sweet cherry ‘Burlat’ flower
buds (Ionescu et al., 2017).

TABLE 3 | Structures of compounds detected in this study.

Compound Chemical name m/z [M+Na]+ r.t. [min]

Prunasin (2R)-2-(β-D-
Glucopyranosyloxy)phenylacetonitrile

318 7

Prunasin amide (2R)-2-(β-D-
Glucopyranosyloxy)phenylacetamide

336 4.4

Prunasin acid (2R)-2-(β-D-Glucopyranosyloxy)phenylacetic
acid

337 5.7

Prunasin anitrile Benzyl β-D-glucopyranoside 293 6.5

Prunasin pentoside (2R)-2-(Pentosyl(1→6)-β-D-
glucopyranosyloxy)phenylacetonitrile

450 6.9

Prunasin anitrile apioside Benzyl
β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside

425 6.8

Prunasin anitrile xyloside Benzyl
β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside

425 6.9

Prunasin anitrile arabinoside Benzyl a-L-arabinopyranosyl-(1→6)-β-D-
glucopyranoside

425 6.7

Amygdalin (2R)-2-[β-D-glucopyranosyl-(1→6)-β-D-
glucopyranosyloxy]phenylacetonitrile

480 6.6

β-D-Glucose-1-benzoate 1-O-Benzoyl-β-D-glucopyranose 307 6.7

m/z, mass-to-charge ratio; r.t., retention time.
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Sweet cherry ‘Burlat’ flower buds samples were obtained
from branches kept for 1, 3, 7, 10, 15, and 17 days
at controlled conditions. Frozen plant material was ground
with mortar and pestle in liquid nitrogen. For each sample,
total RNA was extracted using the SpectrumTM Plant Total
RNA Kit (Sigma–Aldrich, St. Louis, MO, USA) and 500 ng
of RNA was used to generate cDNA using the iScriptTM

cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Gene-
specific primer pairs were designed for target and reference
genes using two web based tools: NCBI’s Primer-BLAST1

and IDT’s2 PrimerQuest© (Table 4). Primer efficiencies were
82 ± 12% and their sequence specificity was determined by
sequencing the amplicon and comparing it to the original coding
sequence used for initial primer design (see Supplementary
Data Sheet 1, DS1). Obtained sequences were aligned to the
associated coding sequences using a local alignment with
Needleman–Wunsch algorithm (Needleman and Wunsch, 1970).
Herein, sequence coverage was 75 ± 6% and identity was
83± 9%.

qRT-PCR was performed using a CFX384TM real-time PCR
detection system. Reactions were conducted in 8 µl volume
using the DyNAmo Flash SYBR Green qPCR Kit (Thermo
Fisher Scientific, Waltham, MA, USA) with each reaction
containing 1x DyNAmo Flash SYBR Green qPCR Mix (2x),
5 ng of cDNA template and 625 nM of both forward and
reverse primer. The following PCR protocol was used: 7 min
at 95◦C, [10 s at 95◦C, 30 s at 60◦C, 1x plate read] × 40
cycles, 1 min at 60◦C. A melting curve was performed for
each reaction. Further, no template controls as well as no RT
controls were included. A standard curve for TEF2 was used
as interrun control using the deduced PCR efficiency as factor

1http://www.ncbi.nlm.nih.gov/tools/primer-blast/; last accessed on 10.04.2017
2http://eu.idtdna.com/Primerquest/; last accessed on 10.04.2017

for interrun deviation. Relative gene expression levels were
computed from the qPCR data using the 11Cq calculation
method (Livak and Schmittgen, 2001). Therein a normalization
factor based on the expressional variation of three reference
genes among the examined samples was used. This factor
was obtained using geNorm version 3.5 (Vandesompele et al.,
2002).

RESULTS AND DISCUSSION

Prunasin and Amygdalin in Flower Buds
of Almond and Sweet Cherry
The CNglc prunasin (Table 3) was detected in all five almond
cultivars during the entire developmental period of the buds from
dormancy to flowering (Figure 3A). Prunasin was also detected
under controlled conditions in flower buds of the sweet cherry
‘Burlat,’ but in levels approxiamtely 10-fold lower than in almond
(Figure 4A). Amygdalin, the other CNglc present in almond, was
detected in all five cultivars in minute amounts, approximately
200-fold lower, compared to prunasin (Figure 3E). This is within
the range (37–300-fold lower) that had been previously observed
in two almond cultivars (Ramillete-sweet and S3067-bitter),
when prunasin and amygdalin were measured in the leaves of
almond trees after the almonds had been harvested (Figure 5
in Sánchez-Pérez et al., 2008). In sweet cherry flower buds, no
amygdalin was detected. The di-glucoside amygdalin is present in
very minute amounts compared to the monoglucoside prunasin
and this is in agreement with a previous observation (Frehner
et al., 1990; Dicenta et al., 2002; Sánchez-Pérez et al., 2008). The
situation is reverse in bitter almond seeds where amygdalin is
the dominating cyanogenic glucoside. In vegetative parts of the
tree, prunasin is always the dominating cyanogenic glucoside
present.

TABLE 4 | Primer sequences for qRT-PCR analysis of reference and target genes.

Gene Accession number Forward primer (5′–3′) Reverse primer (5′–3′) Amplicon size (bp) C % I %

18s rRNA – GTGAGGCCATATGCAGTGAAG TAACGTCCTCTGGCTGTGAAG 133 72 85

RPL13 – GAGGAGCTTGCCAATGCTAC CTCGCACCAACATGACGTTC 161 78 68

TEF2 – GGGAGATGATGTCGTCTGAT TTGTCCTCAAACTCGGATAGT 121 75 89

Catalase EF165590.1 GCATTTGTTGTCCCTGGTATC TCACTGGGAGCTGCATATAG 118 76 92

Peroxidase – CAGCTCAATTCCATGTTTGC GACTGAAGCTGTAAATCCGA 124 73 94

CYP79D16 AB920488.1 CGGCCATGAGAAGATCATAAAG AGTCTACTGGGACCTTGTTTC 119 59 87

CYP79A68 XM 008243186.1 GCAAACCACGGAGCTG CCCACTACCCTATCTAGTTCC 129 75 66

CYP71AN24 AB920492.1 GGGAAGCAATGTCTGATGTAAA CTCAAACCTCTCTGGCATAAAC 137 83 76

CYP71AP13 XM_008241135.1 TCAAGGCTATCATCTTGGACA AACACCTCGTACTTCTGCTT 131 71 93

AH1 U26025.2 CATTCACTGTGCTTCTCTCAAC CTTGGTCCTCTACCATCTTCTT 123 81 82

PH5 XM_008245363.1 CAATGAAGGAGGGTGCTAATG AGTGCGTCGATAGTTTTGAG 150 83 84

ACC oxidase NM 001293254.1 CTTCCCAATCATCAACTTGGA CCATGACTCACAAGCTCAAA 111 77 80

ACC synthase NM 001293270.1 CTCTCCTTACTATCCAGCATTTT TGATGTTGTTCTTTTGGGCT 149 74 91

SAM synthetase JX876836.1 GTGTCCACACTGTCCTAATTTC CAAGGTACTTCTCAGGGATCA 114 75 86

CAS XM 008246435.1 ACTCATCGGTAGAACTCCCA AAGTGCTGGTCTGTCTTTGA 121 72 72

Genes are displayed with their corresponding accession number used for primer design. Herein, sequence data that derived from preliminary transcriptomic data (Ionescu
et al., 2017) is indicated with a hyphen and shown in SD.1. PCR products generated on sweet cheery ‘Burlat’ flower bud cDNA were sequenced and sequence coverage
(C) as well as identity (I) in percent were assessed.
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FIGURE 3 | Prunasin (A), prunasin amide (B), prunasin acid (C), prunasin
anitrile (D), and amygdalin (E) content in flower buds from five almond
cultivars with different flowering times (earliest to latest: Achaak, Desmayo,
S3067, Lauranne and Penta) from the 5th of November to 24th March.
Downward arrows indicate endodormancy release and upward arrows
indicate flowering time. Bars indicate standard error.

FIGURE 4 | Prunasin (A) and prunasin amide (B) content flower buds of the
sweet cherry cultivar ‘Burlat’. Downward arrows indicate endodormancy
release (10.4 days). Data points represent three biological replicates. Bars
indicate standard error.

In general, during the entire dormancy-flowering period, the
level of prunasin was highest in the early cultivars Achaak and
Desmayo, followed by S3067. Lauranne and Penta contained the
smallest amounts of prunasin (Figure 3A). The prunasin profiles
obtained shared clear relations to the dates of dormancy breaking
and flowering time. In all five almond cultivars as well as in the
single sweet cherry cultivar, prunasin started to accumulate at the
time of dormancy release or shortly thereafter and reached its
maximum just before flowering took place. This may suggest that
prunasin plays a role in flower development after dormancy is
broken.

Dissection of almond flowers enabled detection of prunasin
and minute amounts of amygdalin in pistils, petals and sepals
of all five almond varieties (Supplementary Figure S1). S3067
was the only variety where prunasin could be detected in the
pollen, but the amount of pollen available was too low to acquire
biological and technical replicates. In relation to this, amygdalin
content has previously been reported in almond pollen at about
1890 ppm (London-Shafir et al., 2003) and reported to deter
inefficient pollinators, thus allowing more efficient pollination
by honeybees, adapted to tolerate higher levels of amygdalin.
Prunasin had previously been reported detected in sepals, petals,
pistils, and pollen of flowers from bitter and sweet almond
cultivars (Abarrategui, 2010). Amygdalin levels were almost zero,
except in the bitter cultivars.

In the case of Lotus japonicus, the two aliphatic CNglcs
linamarin and lotaustralin are present throughout in the flower
tissue (Lai et al., 2015). As mentioned previously (Figure 1B),
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FIGURE 5 | Prunasin pentoside (A), prunasin anitrile pentoside (B) and β-D-glucose-1-benzoate (C) (% of prunasin) in flower buds from five almond cultivars with
different flowering times (earliest to latest: Achaak, Desmayo, S3067, Lauranne and Penta) from the 5th of November to 24th March. Upward empty arrows indicate
endodormancy release and upward filled arrows indicate flowering time. Bars indicate standard error.

bioactivation of the CNglc takes place only when specific
β-glucosidases come into contact with their corresponding
substrate. In L. japonicus the reproductive organs are only
cyanogenic when a specific β-glucosidase BGD3 is expressed (Lai
et al., 2015). Hydrogen cyanide release was derived specifically
from the keel and enclosed reproductive organs of the flower.
Sepals, wings, buds, and pods also contained the cyanogenic
glucosides linamarin and lotaustralin, but no release of any
hydrogen cyanide from these tissues was observed because the
β-glucosidases were not present in these tissues (Lai et al.,

2015). It needs to be investigated whether or not a particular
β-glucosidase might also be expressed in almond and cherry
flower buds.

The presence of CNglcs in flowers of other species has
previously been reported. Within the Prunus genus, prunasin was
quantified in flowers of P. avium, whereas amygdalin was not
detected (Nahrstedt, 1972). Prunasin as well as amygdalin were
identified in flowers of P. yedoensis Matsum (Matsuoka et al.,
2011). Five different CNglcs were also found in flower buds of
Eucalyptus camphora subsp. humeana, namely prunasin and the
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diglucosides amygdalin and eucalyptosins A, B, and C (Neilson
et al., 2011). In Turnera ulmifolia L., the content of CNglcs
decreased to zero when the plant began to flower (Schappert
and Shore, 2000) indicating complete endogenous turn-over of
CNglcs for alternative uses. CNglcs have also been detected in
flower tissues of Grevillea species, Linum usitatissimum L. (flax),
L. japonicus L., Ryparosa kurrangii B.L. Webber (rainforest tree)
and E. camphora L.A.S. Johnson and K.D. Hill (Lamont, 1993;
Niedźwiedź-Siegieñ,, 1998; Forslund et al., 2004; Webber and
Woodrow, 2008; Neilson et al., 2011).

Putative Derivatives of Prunasin in
Flower Buds
In addition to prunasin and amygdalin, structurally related
derivatives were also found in the flower buds of the five almond
cultivars (Table 3 and Figures 3B–D, 5), in almond pistils, sepals
and petals (Supplementary Figure S1) and in the one sweet
cherry cultivar analyzed in this study (Table 3 and Figures 4B,
6). The prunasin derivatives prunasin amide, prunasin acid,
prunasin anitrile, and the diglycoside prunasin pentosides were
all present in amounts much lower than prunasin. In contrast,
the non-cyanogenic diglycoside prunasin anitrile pentosides
(prunasin anitrile arabinoside and xyloside in almond and
most probable prunasin anitrile apioside in cherry) were highly
abundant at certain stages of flower development (Figures 5, 6).

The content of prunasin amide (Figures 3B, 4B) displayed
a very interesting and consistent pattern in the five almond
and the single cherry cultivar analyzed. Prunasin amide was
not detectable until it peaked very close to flowering time. In
almond, the highest amount of prunasin amide was found in
the earliest cultivar (Achaak). In all studied cultivars, the peak
of prunasin amide coincided with a decrease in prunasin levels,
indicating turnover of prunasin into its amide. The conversion
of prunasin to prunasin amide may occur non-enzymatically via
the Radziszewski reaction in the presence of hydrogen peroxide
(Sendker et al., 2016). Hydrogen peroxide is produced during
flower development (Kuroda et al., 2002). Although present in
small amounts, formation of prunasin amide may thus serve as
a quenching reaction to avoid toxic hydrogen peroxide levels
(Møller, 2010). Alternatively, prunasin amide might be formed
from prunasin catalyzed by a bifunctional nitrilase or by a nitrile
hydratase (Pičmanová et al., 2015).

The presence of prunasin acid (Figure 3C) was detected at
the beginning of almond flower bud development, although with
relatively high standard error margins. In the mid-late cultivars
S3067, Lauranne and Penta, small amounts of prunasin acid were
observed to accumulate at the time point of flowering. Prunasin
acid is likely formed from the prunasin amide (Figure 7). The
levels of prunasin acid in the cultures Achaak and S3067 were
close to zero. Low amounts of prunasin anitrile were accumulated
in the almond cultivars, with peak levels before endodormancy
release (Figure 3D).

In addition to the monoglucosides described above, two
diglycosides (pentosides) derived from prunasin were identified
in this study. Absolute quantification was not possible due to
the lack of reference compounds. Therefore, we expressed the

levels of these compounds as % of prunasin (Figures 5, 6). The
levels of prunasin pentoside in almond (potentially a mixture of
two prunasin pentosides) (Pičmanová et al., 2015) were higher
at the beginning in the dormant stage, where CU had not yet
accumulated (Figure 5A). All almond cultivars exhibited the
presence of prunasin anitrile pentoside during endodormancy
release, reaching relative amounts of up to 2000% of prunasin
(e.g., Achaak, Figure 5B). In cherry, the levels of prunasin anitrile
apioside increased toward the end of the experiment (Figure 6A).

In senescent leaves of P. laurocerasus L., novel benzoic acid
esters have recently been reported as formed from prunasin
(Sendker et al., 2016). This inspired us to investigate the possible
presence of benzoic acid derivatives in almond and sweet cherry
flower buds. A compound identified as β-D-glucose-1-benzoate
was indeed found to be present in high amounts compared to
prunasin in the flower buds of all studied almond cultivars as
well as in the cherry cultivar (Figures 5C, 6B). β-D-Glucose-
1-benzoate was suggested to be formed as a novel extension
of the oxidative catabolism of prunasin (Sendker et al., 2016).
The amount of accumulated β-D-glucose-1-benzoate is high
compared to the prunasin level implying that β-D-glucose-1-
benzoate might also be synthesized by a different route in the
flower buds. Moreover, in almond and cherry flower buds, the
formation of β-D-glucose-1-benzoate from the corresponding
aldehyde could potentially be connected to the release of
hydrogen peroxide during dormancy release. As mentioned
previously, hydrogen peroxide has been implicated in flower
development in Japanese pear (Pyrus pyrifolia Nakai) (Kuroda
et al., 2002).

These results are in accordance with a recent study reporting
the presence and structural identification of CNglc derived
metabolites including di- and tri-glycosides in cassava, sorghum,
and almond (Pičmanová et al., 2015). The amides, acids and
anitriles derived from prunasin and amygdalin were identified
in seedlings of the bitter almond cultivar S3067. The levels of
the derivatives of prunasin and amygdalin were generally much
lower than those of their mother compounds. Prunasin amide,
acid and anitrile were found in low levels in seeds, roots, shoots,
and leaves of the seedling and at different stages of germination.
Prunasin acid was the most abundant derivative in seeds, shoots,
and leaves and prunasin anitrile was most abundant in roots. An
important increment of the prunasin derivatives was observed
in the seed at the beginning of the germination (Pičmanová
et al., 2015). Similarly, minor components related to CNglcs were
detected in P. persica seeds: amygdalin acid, prunasin acid, benzyl
gentiobioside and benzyl glucoside (Fukuda et al., 2003). The
latter two compounds correspond to the amygdalin anitrile and
prunasin anitrile compounds denoted in our study.

Our current study provides further evidence in support
of the conclusions by Pičmanová et al. (2015) that CNglcs
occur together with their putative structural derivatives: amides,
acids and anitriles. In this respect, it was suggested that these
derivatives could play a role in the recycling of reduced
nitrogen. An alternative endogenous turnover pathway was
proposed in which CNglcs are converted to non-CNglcs, without
release of HCN (Figure 1D). Hypothetically, amides, acids, and
anitriles are produced from CNglcs in this turnover pathway,
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FIGURE 6 | Prunasin anitrile pentoside (A) and β-D-glucose-1-benzoate
(B) (% of prunasin) in sweet cherry ‘Burlat’ flower buds. Downward arrows
indicate endodormancy release (10.4 days). Data points represent three
biological replicates. Bars indicate standard error.

with a concomitant release of NH3 and CO2. In this form,
reduced nitrogen and carbon originating from the CNglcs could
be utilized in primary metabolism. This alternative pathway
might operate concurrently with the “conventional” bioactivation

pathway, in which amygdalin and prunasin are hydrolyzed and
decomposed into benzaldehyde and HCN; the latter is further
detoxified through β-cyanoalanine into asparagine, aspartate
and NH3.

Based on the general alternative turnover pathway proposed
by Pičmanová et al. (2015), we suggest three possible routes for
the turnover of CNglcs in Prunus species (Figure 7), starting with
the hydrolysis of amygdalin to prunasin. Then, in the first route,
prunasin is further hydrolysed to prunasin amide and/or acid
and NH3. Prunasin acid is converted into prunasin anitrile or
to β-D-glucose-1-benzoate, with a release of CO2. In the second
route, prunasin is converted directly into the corresponding
anitrile with the release of NH3 and CO2. NH3 as CO2 produced
in these proposed pathways may be channeled into primary
metabolism. In a third route, prunasin is glycosylated to a
prunasin pentoside that would also produce NH3 and CO2, when
converted to prunasin anitrile pentoside. The latter could also be
deglycosylated into prunasin anitrile.

Other Functions of Cyanogenic
Glucosides
Cyanogenic glucosides are biosynthesized from amino acids,
therefore the plant must mobilize and transport these precursor
substances to the sites where CNglcs are needed. Supply of
nitrogen for the biosynthesis of CNglcs is especially important
in young tissues, which are weaker than mature tissues and are in
greater need of defense against pathogens and herbivores. On the
other hand, at times where defense responses are less urgent, the
plant can reuse nitrogen from CNglcs and redirect it into primary
metabolism (Vries et al., 2017).

In Eucalyptus, it has been demonstrated that up to 20% of leaf
nitrogen is stored in CNglcs, with the highest levels in young and
reproductive tissues (Gleadow and Woodrow, 2000). In spring,
coinciding with the flowering period, there was an important
allocation of nitrogen to the reproductive tissues in detriment
to the leaves to form CNglcs. The levels of these compounds

FIGURE 7 | Proposed turnover pathways (1, 2, 3, and R) for prunasin without the release of hydrogen cyanide (after Pičmanová et al., 2015; Sendker
et al., 2016). In pathway 1, prunasin is sequentially converted into its amide and/or acid and anitrile; moreover, β-D-glucose-1-benzoate may be formed from
prunasin acid. Prunasin anitrile might also be produced directly from prunasin without intermediates (pathway 2). Pathway 3 entails the glycosylation of prunasin to
prunasin pentoside and its further conversion into prunasin anitrile; a glycosyltransferase and a β-glycosidase are involved in these processes. R is the Radziszewski
reaction where, by addition of hydrogen peroxide, prunasin amide can be formed, liberating water and oxygen, what may quench the ROS produced during
dormancy release. Font size represent the abundance of the compounds in the samples analyzed.
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FIGURE 8 | qRT-PCR analysis in the first genes involved in the (A) biosynthesis of CNglcs (CYP79D16, CYP79A68, CYP71AN24, CYP71AP13), (B)
bioactivation (Amygdalin hydrolase and prunasin hydrolase), (C) oxidation (catalase and peroxidase), (D) ethylene biosynthesis (SAM synthase, ACC synthase, and
ACC oxidase) and (E) detoxification (L-3-cyanoalanine synthase) in sweet cherry ‘Burlat’ flower bud samples under controlled conditions. Downward arrows indicate
endodormancy release (10.4 days). Data points represent one biological replicate analyzed in three technical replicates.

decreased gradually during fruit development (buds – flowers –
fruits).

Cyanogenic diglycosides may have additional functions as
transport forms, pollinator attractants and germination inducers.
In E. camphora trees, the highest levels of diglucosides were
found in flower buds and expanded leaves (Neilson et al.,

2011). Theoretically, the diglucosides are synthesized in the
expanded leaves and then transported to the developing flower
buds. The levels of cyanogenic diglucosides were much lower
in immature fruits suggesting that nitrogen was remobilized
and used during the flower development (Neilson et al.,
2011).
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HCN Factor
As previously mentioned, HCN may be produced and
metabolized during flower bud development, indicated by a
decrease in CNglc levels. Past as well as recent studies have also
shown that HCN may activate the flower bud and the flower
opening in Lemna paucicostata and grapevine (Tanaka et al.,
1983; Tohbe et al., 1998).

Interestingly, HCN has also been reported in releasing seed
dormancy in orthodox seeds (Roberts, 1973; Roberts and Smith,
1977) by inducing the formation of Reactive Oxygen Species
(ROS); ROS in turn activates a cascade involving Ethylene
Response Factor 1 (ERF1), which leads to the production of
germination-associated proteins (Oracz et al., 2009). Extensive
literature describes the importance of the HCN in seed
germination. Considering the common mechanisms regulating
seed and bud dormancy, this process could be similar in
endodormancy release (Taylorson and Hendricks, 1973; Bogatek
et al., 1991; Flematti et al., 2013).

Involvement of Cyanogenic Glycosides in
Regulation of Sweet Cherry Flower Bud
Dormancy as Monitored by qRT-PCR
Analysis
To obtain more information on the possible regulation of these
processes, qRT-PCR analysis was performed on the sweet cherry
samples. The expression levels of a selected number of genes were
analyzed (Figure 8). In CNglcs biosynthesis: CYP79 and CYP71
(Figure 8A). In bioactivation: amygdalin and prunasin hydrolase
(Figure 8B). In oxidation reactions: catalase and peroxidase
(Figure 8C). In ethylene biosynthesis: SAM synthase, ACC
synthase, and ACC oxidase (Figure 8D). In the detoxification
pathway: L-3-cyanoalanine synthase (Figure 8E).

Both CYP79 genes displayed their highest level of expression
after dormancy release, indicating that CNglcs biosynthesis
takes place during early flower development in sweet cherry
(Figure 8A). In buds of Japanese apricot (P. mume), CYP79A68
was the only examined cytochrome P450 monooxygenase
encoding gene showing a substantial level of expression
(Yamaguchi et al., 2014). Further Yamaguchi et al. (2014) reported
that CYP79D16, but not CYP79A68, catalyzed the conversion
of L-phenylalanine into E-phenylacetaldoxime. The second step
in CNglcs biosynthesis is mediated by CYP71s (Sánchez-Pérez
et al., 2008), such as CYP71AN24 and CYP71AP13 (Yamaguchi
et al., 2014). In general, the expression of the two CYP71
encoding genes was transiently down-regulated shortly before
dormancy release and subsequently increased again (Figure 8A).
This is in accordance with the results for the CYP79s. Further
CYP71AN24, but not CYP71AP13, catalyzed the conversion
of E-phenylacetaldoxime into mandelonitrile (Yamaguchi et al.,
2014). Hence, future studies have to reveal the functional
properties and substrate specificities of CYP79s and CYP71s in
sweet cherry to resolve the biosynthesis of prunasin in sweet
cherry.

As previously mentioned, the degradation of CNglcs is
initiated by β-glycosidases, in Prunus species called amygdalin
hydrolase (AH) and prunasin hdyrolase (PH). Ah1 and Ph5

(Zhou et al., 2002) were examined in this study (Table 4) as
they were the most similar characterized hydrolases between
P. serotina and P. dulcis (Sánchez-Pérez et al., 2012). As shown
in Figure 8B, both genes display transcriptional activity solely
after dormancy release. In the case of Ph5, this fits well with
the decrease of prunasin levels at around the same time point,
indicating its degradation.

L-3-Cyanoalanine synthase (CAS) activity serves as an
indicator for HCN release because of its essential involvement in
HCN detoxification (Floss et al., 1965). After a transient peak,
CAS transcription decreased and rised again during dormancy
release and during flower development (Figure 8E).

Involvement of Oxidative Stress
Regulating Factors in Sweet Cherry Bud
Dormancy Release as Monitored by
qRT-PCR Analysis
Pathways involved in oxidative stress regulation have previously
been shown to be active during dormancy release in several
different perennials (Horvath, 2009; Cooke et al., 2012). In our
study, catalase expression decreased slightly and then increased
again just before dormancy was released (Figure 8C). Several
studies found catalase activity to be affected by both natural
and artificially induced bud break (Nir et al., 1986; Pérez and
Lira, 2005; Amberger, 2013). Catalases are known to catalyze
the conversion of H2O2 to water and oxygen (Chelikani et al.,
2004). Thus, the inhibition of catalase gene transcription and
enzyme activity by, e.g., HCN released from the cyanogenic
glucoside hydrolysis could result in increased hydrogen peroxide
levels. In this study, the subsequent up-regulation of the catalase
gene after dormancy release might decrease H2O2 levels again,
which is consistent with a steady decrease in H2O2 content after
dormancy release found in flower buds of P. pyrifolia (Japanese
pear) (Kuroda et al., 2002).

In addition to catalase, a range of peroxidases are able to
reduce H2O2 to water and have been shown to be induced in
response to oxidative stress during dormancy release in grape
buds (Veitch, 2004; Keilin et al., 2007). The peroxidase gene
examined in our study (Figure 8C) was most highly expressed
at bud dormancy release, indicating that peroxidase functions
mainly during the transition from dormancy to flowering in
sweet cherry, which is similar to results acquired in Japanese
pear (Bai et al., 2013). Differently regulated peroxidases during
transition of dormancy release were observed in prior studies.
For instance, in buds of Chinese cherry (P. pseudocerasus
Lindl.), different peroxidase encoding genes were either down-
regulated before, during and after dormancy release under
natural conditions (Zhu et al., 2015). This suggests a pattern of
alternating activities among a set of peroxidases that regulate
oxidative stress during bud dormancy release. Peroxidases were
found to be up-regulated in buds of peach and leafy spurge
(Euphorbia esula L.) (Jia et al., 2006; Leida et al., 2010) and
down-regulated in grapevine in regard to dormancy release
(Pacey-Miller et al., 2003). The examined peroxidase gene
in our study was down-regulated before dormancy release,
which coincides with our observation of a decreased catalase
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expression, potentially giving rise to a transient increase in ROS.
Subsequently enhanced expression of peroxidase and catalase
encoding genes during and after bud dormancy release might
then cooperatively reduce oxidative stress.

Involvement of Ethylene Regulation in
Sweet Cherry Bud Dormancy Release as
Monitored by qRT-PCR Analysis
Transcript analysis of three key genes encoding enzyme
involved in ethylene biosynthesis, namely S-adenosyl-methionine
(SAM) synthetase, 1-aminocyclopropane-1-carboxylic acid
(ACC) synthase and ACC oxidase were conducted and
demonstrated that ACC synthase and ACC oxidase were
initially expressed shortly before dormancy release (Figure 8D).
Those results suggest that ethylene biosynthesis was initiated
before dormancy release in sweet cherry. In grapevine,
the effect of different temperatures and sampling dates
on bud break and ACC content was studied, seeing that
under low temperatures, bud break was associated with
the promotion of ethylene biosynthesis (El-Shereif et al.,
2005). Heat shock experiments demonstrated that ACC and
ethylene accumulated toward dormancy release in grapevine
(Tohbe et al., 1998). Transcription of the gene encoding
ACC synthase was induced in flower buds in Japanese pear
(Bai et al., 2013). Exogenous application of ACC has been
reported to enhance dormancy release. The same effect was
not observed upon exposure to ethylene (Iwasaki, 1980). Since
hydrogen cyanide is formed in stoichiometric amounts with
ethylene in the ACC oxidase catalyzed conversion of ACC,
hydrogen cyanide is thought to be responsible for bud break
in grapevine.

CONCLUSION

Based on the results presented in this paper, two possible
mechanisms for the involvement of CNglcs in bud break and
flower development are proposed: (1) Turnover of CNglcs to
their corresponding amides, acids and anitriles can recover
reduced nitrogen and carbon dioxide, which may be utilized
during these metabolically demanding physiological changes;
(2) Prunasin and a number of endogenous turn-over products
as well as formation of hydrogen cyanide from prunasin act
as regulators of flower bud dormancy release and flowering
time.
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FIGURE S1 | Prunasin (A), prunasin amide (B), prunasin acid (C), prunasin
anitrile (D), amygdalin (E), prunasin pentoside (F), prunasin anitrile pentoside (G)
and β-D-glucose-1-benzoate (H) in flower parts (pistils, petals, and sepals) from
five almond cultivars with different flowering times (earliest to latest: Achaak,
Desmayo, S3067, Lauranne and Penta) at the flowering time day. Bars indicate
standard deviation.
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