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Pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food and a drought-tolerant
cereal well adapted to Sub-Saharan Africa agro-ecosystems. An important diversity
of pearl millet landraces has been widely conserved by farmers and therefore could
help copping with climate changes and contribute to future food security. Hence,
characterizing its genetic diversity and population structure can contribute to better
assist breeding programs for a sustainable agricultural productivity enhancement.
Toward this goal, a comprehensive panel of 404 accessions were used that correspond
to 12 improved varieties, 306 early flowering and 86 late-flowering cultivated landraces
from Senegal. Twelve highly polymorphic SSR markers were used to study diversity
and population structure. Two genes, PgMADS11 and PgPHYC, were genotyped to
assess their association to flowering phenotypic difference in landraces. Results indicate
a large diversity and untapped potential of Senegalese pearl millet germplasm as well
as a genetic differentiation between early- and late-flowering landraces. Further, a
fine-scale genetic difference of PgPHYC and PgMADS11 (SNP and indel, respectively)
and co-variation of their alleles with flowering time were found among landraces.
These findings highlight new genetic insights of pearl millet useful to define heterotic
populations for breeding, genomic association panel, or crosses for trait-specific
mapping.
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INTRODUCTION

Low agricultural productivity causes food insecurity and
malnutrition in Sub-Saharan Africa (SSA). This is due to climate
variability, increased growth and needs of worldwide population,
water demand, intensive exploitation of natural resources and
environmental degradation. Therefore, better uses of natural
resources could help overcoming some of these constraints and
greatly contribute to improving productivity.

Pearl millet (Pennisetum glaucum (L.) R. Br.) is a major staple
food for many SSA and Asian countries. Pearl millet is highly
allogamous and mainly a rainfed crop, covering a wide range
of different ecological zones and production systems. However,
yield is low and variable, rarely reaching 1000 kg/ha. This is
mainly explained by the limited exploitation of genetic resources
and availability of improved varieties, but also by low soil
fertility, drought, heat and highly variable rainfall (Waddington
et al., 2010). Moreover, production is threatened by downy
mildew disease, striga parasitic weed and predation by insects
(Waddington et al., 2010). Characterization of crops genetic
resources is a prerequisite to build up a breeding program for
sustainable productivity enhancement.

Senegal is one of the top 10 pearl millet producers in the
world (FAOSTAT, 2013), where farmers distinguish two main
types of cultivars based on growth duration. Cultivars, called
Souna, are sensitive to photoperiod, with a short cycle between
65 and 90 days and adapted to low (350–600 mm) rainfall regions.
Cultivars, called Sanio, are a less photoperiod-sensitive type than
Souna, with a long cycle between 120 and 150 days, and are
adapted to high (900–1200 mm) rainfall regions. Nationwide,
Souna type occupies nearly half the area sown to cereals (51%)
while Sanio type, mainly cultivated in the South, represents about
15% of total millet production (ANSD, 2014).

Investigating genetic diversity and patterns of early- and late-
flowering landraces is very important since flowering cycles and
photoperiod sensitivity play a crucial role in the adaptation to
climatic conditions. It is assumed a direct effect of selection for
earliness associated with climate variations (Vigouroux et al.,
2011). Genome scans and genetic association mapping have
identified several genes tightly linked to adaptive traits of pearl
millet in semi-arids areas. A SNP in the Phytochrome C locus
(PgPHYC) and an indel variation in PgMADS11 gene were
associated with flowering time variation, annual rainfall and spike
length of pearl millet (Saïdou et al., 2009; Mariac et al., 2011;
Vigouroux et al., 2011). From framers point of view, distinction
between early- and late-flowering landraces is very clear but it is
not always associated with clear genetic differentiation (Dussert
et al., 2015). Flowering time in pearl millet is derived from a
common domestication event and a strong gene flow between
early- and late-flowering landraces is observed (Dussert et al.,
2015). The level of gene flow would depend on cycle overlapping,
agricultural practices and spatial distribution (Mariac et al.,
2006b; Allinne et al., 2007; Lakis et al., 2012).

Because there is a critical need for adapting local agriculture
to harsher future conditions, landraces and improved varieties
adaptation will mostly rely on standing genetic variation available
within the cultivated compartment. Recently, phenotyping

(Sy et al., 2015) and genotyping by sequencing (Hu et al., 2015)
studies were carried out on a set of Senegalese pearl millet
landraces. Sampling was restricted to only one agro-ecological
area of Senegal, the Groundnut Basin, and included only nine
so-called intermediate-flowering landraces (flower between 75 to
100 days after sowing). Based on phenology, head architecture
and grain color, these accessions were classified into three
cultivar groups, indicating a morphological diversity between
early flowering landraces (Sy et al., 2015). Using 83,875 single
nucleotide polymorphisms (SNPs) on the same set of accessions
in addition to 252 global accessions, a higher genetic diversity
was observed in Senegal accessions compared to millet accessions
in India, South and Western Africa (Hu et al., 2015). Any local
structure was evidenced, therefore studies of loci that control the
cycle length would be necessary to assess more accurately the
evolution of cultivated millet varieties (Dussert et al., 2015).

Here, a fine scale sampling strategy and genetic
characterization are described that differentiate early- and
late-flowering landraces of Senegalese pearl millet. Using highly
polymorphic SSRs markers, genetic diversity and population
structure of the landraces was assessed. Allelic diversity of
PgPHYC and PgMADS11 genes, both linked with flowering time
variation and rainfall, was further investigated (Saïdou et al.,
2009; Mariac et al., 2011; Vigouroux et al., 2011).

MATERIALS AND METHODS

Plant Materials
Collects were done in 1992 and 1994 in the main areas of
millet production in the Groundnut Basin as previously described
(Sy et al., 2015). Geographical coordinates of these accessions
were partially retrieved (88%) by using village names. Additional
collects were done in 2010 and 2014 to cover pearl millet
production areas, except the city of Dakar and the eastern-
south area where the Niokolo-Koba Wildlife Park is located.
Geographical coordinates of these new accessions were recorded
using a GPS. As our focus is on local landraces, villages near
major roads or markets were avoided. In total, 392 accessions
were collected from 316 villages, i.e., 1.24 accessions per village
on average. A panel of 404 accessions was analyzed including
12 improved varieties bred locally and widely used by farmers,
306 early flowering landraces (252 villages) and 86 late-flowering
landraces (74 villages). Among the 316 villages, 10 villages
were sampled with both early- and late- flowering landraces
(Supplementary Table S1). Cycles were recorded following farmer
interviews.

DNA Extraction and SSR Genotyping
Five seeds per accession were grown in the greenhouse 3–4 weeks
according to sampling date. About 200 mg of leaf sample
from one individual per accession were collected and DNA
extraction was carried out using the previously described
protocol (Mariac et al., 2006a). Twelve highly polymorphic
microsatellites distributed throughout the pearl millet genome
were used (Supplementary Table S2). These markers have been
previously described (Allouis et al., 2001; Qi et al., 2001;
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Budak et al., 2003; Mariac et al., 2006a). PCR reactions were
performed using the Multiplex PCR Kit (Qiagen, Inc) following
the recommended protocol. PCR were conducted using a thermal
cycler TC-Plus (TECHNE): pre-denaturation of 95◦C for 15 min
then 35 cycles consisting of a denaturation step at 94◦C for
30 s, annealing at 55◦C for 90 s, elongation at 72◦C for 60 s
and a final extension at 60◦C for 30 min). Four positive and
four negative controls were repeated on each PCR plate. Samples
were genotyped on an ABI 3130 Prism R© (Applied Biosystems R©)
and read with GenemapperTM software (version 3.7; Applied
Biosystems R©).

Genetic Diversity and Population
Structure Analyses
Genetic diversity, heterozygosities (expected and observed) and
F-statistics were calculated using Genalex 6.5 (Peakall and
Smouse, 2012). For genetic structure, a principal component
analysis (PCA) using the package ade4 (Thioulouse et al., 1997)
implemented in R software (R Development Core Team, 2008)
was first performed. Then, population structure was investigated
using STRUCTURE software 2.3.3 (Pritchard et al., 2000).
Analysis was performed with the admixture model (Falush et al.,
2003) with K ancestral populations ranging from 1 to 6. We
used 500,000 iterations and a burn-in period of 100,000, 10 runs
for each K-value were performed. The values for the number of
clusters (K) were assessed according to Evanno et al. (2005) by
the (D.1K) criterion and the log-likelihood (Ln P (D | K)) plot.
Individuals were assigned to a cluster if their ancestry was higher
than 70%, q ≥ 0.7.

For spatial analysis of genetic variability, a total of 367
geo-referenced accessions including 281 early- and 86 late-
flowering landraces were used. Spatial principal component
analysis (sPCA) was performed using the adegenet package
(Jombart, 2008) with R software. The spatial genetic structure
was assessed using spatial autocorrelation analyses of kinship
coefficients between individuals (Loiselle et al., 1995) following
the standard procedure (Vekemans and Hardy, 2004)
implemented in SPAGeDi version 1.2 (Hardy and Vekemans,
2002). Mean multilocus kinship coefficient values, Fij, i.e.,
genetic similarity between individuals i and j relative to the mean
genetic similarity between random individuals in the sample,
were regressed on both the linear (dij) and the logarithmic
(ln(dij)) spatial distance between individuals. This distance was
calculated as the Euclidian distances using spatial coordinates.
The regression slopes bd and bLd were jointly assessed. Standard
errors for the kinship coefficients were estimated using a
jackknife procedure over all loci. We tested the significance of
the kinship coefficients and the regression slopes bd and bLd
estimates by comparing the observed values to those obtained
after 10,000 random permutations.

PgPHYC and PgMADS11 Genotyping
Polymorphisms in both genes were associated with flowering
time variation (Saïdou et al., 2009; Mariac et al., 2011; Vigouroux
et al., 2011). The panel of accessions was genotyped with PgPHYC
(Acc numbers FN376885–FN377564) (Vigouroux et al., 2011)

and PgMADS11 (Acc numbers FN552468–FN552522) (Mariac
et al., 2011) to test the allelic differences in genotype frequencies
between early- and late-flowering landraces.

For PgPHYC, a polymorphism at the 5′ of the gene was
assessed. A C/G SNP at that position is cleaved by PvuII
restriction enzyme and therefore accessions scored as C/C, G/G
and C/G according to their digestion pattern (Saïdou et al., 2009).

For PgMADS11, an indel polymorphism of 24 bp was assessed
as previously reported (Mariac et al., 2011).

Logistic regressions between genotypes, genetic cluster,
latitude and longitude for each gene were further performed.

RESULTS

Genetic Diversity of Senegalese
Germplasm
The germplasm collected through this study is the most
comprehensive sampling to date of landraces from Senegal
(Figure 1). Genotyping data revealed a total of 101 alleles with
an average of 8.4 alleles per locus (Supplementary Table S2 and
Figures S1–S3). The final data set contained only 1.8% of missing
data. High levels of genetic diversity characterize both groups
(Table 1). Early flowering landraces presented the highest level
of genetic diversity as measured by observed HObs = 0.481 or
expected heterozygosity, HExp = 0.567. In contrast, improved
varieties showed the lowest, with HObs = 0.391. For early
flowering landraces, only one locus (PSMP2249) was found
not to be at Hardy-Weinberg equilibrium (HWE). Two loci
were not at HWE (PSMP2249 and PSMP2246) in late-flowering
landraces. Groups showed low levels of inbreeding with FIS
values of 0.160, 0.128, and 0.258 for early and late landraces
and improved varieties, respectively. Furthermore, early-, late-
flowering landraces and improved varieties present 22, 8 and 1
private alleles, respectively. Low FST differentiation was found
between improved varieties and early flowering landraces (0.004),
between early- and late-flowering landraces (0.052) and between
late-flowering landraces and improved varieties (0.063).

Population Genetic Structure
Bayesian clustering analyses showed a clear structure between
early- and late-flowering landraces (Figure 2). The value of the
Evanno criterion (1K) was the highest for K = 2 (Supplementary
Figure S1), supporting the evidence of two major clusters. A total
of 89% of the early flowering landraces were assigned to a single
cluster, and 90% of the late-flowering landraces were assigned
to the other cluster. Thirty-four accessions of early- and nine of
late-flowering landraces were misassigned (q < 0.7), but showed
intermediate ancestries. For the 10 villages where both early- and
late-flowering landraces were sampled, all accessions of similar
phenotype were assigned to their respective cluster.

Similar results were found with PCA showing a clear
distinction between early- and late-flowering landraces
(Figure 3). The two first principal components explained,
respectively, 5.2 and 2.8% of the inertia. PSMP2247 and
PSMP2202 showed the highest contribution to the PC1.
Two alleles, PSMP2247-199 and PSMP2202-146, showed
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FIGURE 1 | Geographic positions of the 367 geo-referenced accessions of pearl millet. Early- and late-flowering landraces are represented by blue circles
and red triangles, respectively.

TABLE 1 | Genetic diversity statistics for improved varieties, early- and
late-flowering landraces.

Nb Na HObs HExp FIS

Improved varieties 12 4.4 0.350 0.513 0.258

Early flowering landraces 306 7.7 0.446 0.542 0.160

Late-flowering landraces 86 5.8 0.434 0.494 0.128

Nb, number of accessions; Na, mean number of alleles, HObs, observed
heterozygosity; HExp, expected heterozygosity; FIS, inbreeding coefficient.

high frequencies in late-flowering landraces (0.92 and 0.83,
respectively). However, removing these two loci did not affect
PCA results. Finally, any genetic differentiation was found
between improved and early accessions.

Spatial Analysis of Genetic Variability
Spatial principal component analysis revealed a more cryptic
genetic structure (Figure 4). Global structures, i.e., large spatial
scale, were significant (p-value = 0.0001) with the first principal
component, showing a high autocorrelation (Morran’s I = 0.50).
In contrast, local structures were not significant (p-value= 0.77).
The first axis of the sPCA identified two clusters. Considering
spatial information, early flowering landraces from Southern
Senegal showed a more admixed pattern than observed with

STRUCTURE, while no differences were observed considering
late-flowering landraces. Bayesian and multivariate approaches
confirm genetic assignments for late-flowering landraces from
Central Senegal.

The pattern of isolation by distance (IBD) for early- and
late-flowering landraces was investigated. Low IBD slopes were
obtained for early flowering (bE = −2.41E−05) and late-
flowering (bL =−9.89E−05) landraces (Figure 5). Similar results
were found for logarithmic distances. This suggests no significant
pattern of isolation-by-distance.

PgPHYC and PgMADS11 Allele Diversity
Landraces were genotyped for both PgPHYC and PgMADS11
alleles to assess genetic diversity in relation to flowering
time (Table 2 and Supplementary Figures S4, S5). Only early
landraces carried early flowering allele (G) at the PgPHYC locus
leading to a significant difference in genotypes frequencies
(F-test, p = 0.006). For PgMADS11, a significant difference
in genotypes frequencies (F-test, p = 0.004) was observed
with early flowering landraces having higher frequency of the
allele (363 bp fragment). A significant correlation between
allele G from PgPHYC with latitude (p-value = 0.0348)
was observed. However, significance disappeared when
taking into consideration genetic clustering (q ≤ 0.7). For
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FIGURE 2 | STRUCTURE results for K = 2 based on 404 accessions analyzed with 12 SSRs. Each bar represents an individual. It shows the proportion of
genome belonging to each of the two genetic groups (blue for early flowering accessions and red for late-flowering accessions) identified with STRUCTURE.

FIGURE 3 | PCA results obtained for 12 improved, 306 early- and 86
late-flowering landraces accessions.

PgMADS11, data reveal a significant correlation with longitude
(p-value < 0.001) even when considering genetic clustering in
the mode.

DISCUSSION

Large and Untapped Diversity in
Senegalese Germplasm
In this study, a relatively high genetic diversity (HExp: 0.516)
of pearl millet germplasm of Senegal is reported. Previous

studies have reported a higher (HExp: 0.69) (Stich et al., 2010)
and a lower (HExp = 0.49) genetic diversity in Niger pearl
millet (Mariac et al., 2006a). These differences are due to the
number of SSRs used. In the meanwhile, a similar number of
alleles per locus (6 alleles per locus for Senegal vs. 6.2 alleles
per locus for Niger) was observed. Comparing heterozygosity
levels, observation showed a higher coefficient (FIS = 0.30)
in Niger germplasm than in Senegal germplasm (FIS = 0.18).
However, these results are consistent with data from others
studies carried out on accessions across SSA regions and India
(Oumar et al., 2008; Dussert et al., 2015; Hu et al., 2015). Pearl
millet shows a high genetic diversity that can be explained by
its strong outcrossing rate (75%) and the still on-going gene
flow with its wild relative (Mariac et al., 2006a; Lewis, 2010).
This high genetic diversity is in line with its high phenotyping
diversity observed in Senegal (Sy et al., 2015) as in Western
Africa (Pucher et al., 2015). Together, these findings highlight
the untapped potential of Senegalese pearl millet germplasm for
breeding.

Genetic proximity between early flowering varieties and
improved varieties highlight a history of breeding programs
and agricultural practices. In Senegal, few breeding programs
have been undertaken on pearl millet but all focused on
reducing the flowering cycle and were “population” varieties
whose parental seeds were collected from local landraces. In
addition, farmers still grow improved varieties jointly with
landraces in their field, increasing gene flow and thus genetic
proximity.

Genetic Structure of Early- and
Late-Flowering Landraces
Bayesian results clearly help identifying genetic structure
associated with early- and late-flowering landraces. This genetic
structure was partly explained by the geographic distribution
of landraces as shown through the sPCA analysis, making it
difficult to entirely disentangle spatial and genetic structure. More
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FIGURE 4 | Comparison of genetic assignment between Structure and SPCA results for early- and late-flowering landraces. The top row represents
values for early flowering landraces: (A) with q-values obtained with Structure analysis, and (B) lagged scores from the sPCA. The bottom row represents values for
late-flowering landraces (C) with q-values obtained with Structure analysis and (D) lagged scores from sPCA. Values are depicted in grayscale.

FIGURE 5 | Isolation by distance pattern for early- (blue dots) and late-flowering (red triangles) landraces as measured by the mean multilocus
Loiselle’s kinship genetic distance, plotted against geographical distance (km). Upper and lower 95% confidence limits are indicated by colored dotted
lines. Each point represents averaged Loiselle’s kinship for each class distance.
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TABLE 2 | Genotypes counts for improved varieties, early- and
late-flowering landraces with q-values ≤ 0.7.

PgPHYC alleles PgMADS11 alleles

C/C C/G G/G 363/363 363/387 387/387

Improved
varieties

8 3 1 1 2 9

Early flowering
landraces

239 21 0 18 65 185

Late-flowering
landraces

79 0 0 2 16 62

contrast in admixture patterns might have been obtained with a
higher number of SSR markers. However, this was compensated
by our sampling effort and we were able to reveal a clear structure
in Senegal landraces where other studies failed with a higher
number of markers (Hu et al., 2015).

At a local scale, more contrasted admixture patterns were
observed. In Central Senegal, clear differentiation between early-
and late-flowering landraces was found. In contrast, more
admixed patterns were observed in the Southern Senegal. The
results might be related to the agricultural practices of the
farmers, such as spatial cropping and seed circulation (Mariac
et al., 2006b; Lakis et al., 2012; Kouakou et al., 2013).

Our data indicated two distinct genetic clusters in Senegalese
pearl millet germplasm. In addition, comparing early- and late-
flowering landraces, we found a slight genetic differentiation
between the two groups of 0.052, which is of the same magnitude
(0.053) found in Niger (Lakis et al., 2012). A single domestication
event led to early- and late-flowering landraces, partly explaining
the limited genetic differentiation observed at a regional scale
(Dussert et al., 2015).

Flowering Traits Diversity
Photoperiod-sensitivity of pearl millet landraces and thus
variation of flowering cycle constitute a key response for
adaptation to future climate conditions (Sultan et al., 2013).
Indeed, pearl millet landraces from Niger show reduced flowering
cycle associated with drought episodes from 1976 to 2003
(Vigouroux et al., 2011). This reduction was correlated with
changes in allele frequencies for PgPHYC. Correlation between
allele frequencies and rainfall were also found with PgMADS11
(Saïdou et al., 2009; Mariac et al., 2011). Our data showed
significant genetic differences for both genes with early flowering
landraces enriched in precocity alleles.

Flowering time has been correlated with latitude, early
flowering landraces being grown in northern latitude where
environmental conditions are more arid (Haussmann et al.,
2006; Pucher et al., 2015). In our study, the latitude effect
was confounded with spatial genetic structure for PgPHYC.
On the other hand, a correlation with longitude was found
for PgMADS11. Further investigation would be needed to fully
address this correlation. In any case, the use of flowering genes
PgPHYC and PgMADS11 in marker assisted-selection programs
presents some interest.

Challenges for Adaptation of Pearl Millet
and Breeding Strategies
Sub-Saharan Africa recorded long dry spells in the 1970s
and 1980s that led to breeding for short cycles improved
varieties. Indeed, pearl millet breeding programs were
predominantly built on restricted genetic resources of early
flowering landraces. Strong differentiation between early- and
late-flowering landraces from Senegal suggests the existence
of an important gene pool that has not been exploited yet.
The high genetic diversity could explain the wider range of
pearl millet adaptation to dry areas and this potential may
further contribute to breeding programs in response to the
specific needs or target areas (Kouressy et al., 2004). For
instance, a key strategy to cope against climate changes within
SSA agrosystems is to tap into diversity of flowering time
(Haussmann et al., 2012; Sultan et al., 2013) and resilience (Prieto
et al., 2015).

Analyses of allelic variation of PgPHYC and PgMADS11
indicate fine-scale genetic difference (SNP and indel,
respectively) among individuals and/or genotypes. Knowing
that responses to photoperiod and rainfall were genetically
associated with both genes, implication could be their use to
detect/track climate adaptive changes to environment variations.
For example, earliness of flowering and latitude correlation
observed in early landraces support assumption that a direct
effect of selection for that trait which is associated with climate
variations such as photoperiod and rainfall. Both traits are key
targets in selection for millet genotypes to be cultivated in rainfed
areas.

CONCLUSION

The genetic diversity and population structure of Senegalese
pearl millet landraces were assessed using a large panel of
accessions and a limited number of SSRs markers. Results
highlight a high genetic diversity and an untapped potential of
the germplasm. However, two clusters were clearly distinguished
as revealed by differentiation between early- and late-flowering
landraces. Further, genetic difference and allelic co-variation in
flowering genes PgPHYC and PgMADS11 were found among
individuals. These findings give new insights into Senegalese
pearl millet germplasm and are promising for developing new
cultivars and heterotic groups that can be used to breed synthetic
and hybrid varieties with higher degrees of heterozygosity
in order to intensify yield production under harsh semiarids
environments.
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