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Halophytes have demonstrated their capability to thrive under extremely saline conditions

and thus considered as one of the best germplasm for saline agriculture. Salinity

is a worldwide problem, and the salt-affected areas are increasing day-by-day

because of scanty rainfall, poor irrigation system, salt ingression, water contamination,

and other environmental factors. The salinity stress tolerance mechanism is a very

complex phenomenon, and some pathways are coordinately linked for imparting salinity

tolerance. Though a number of salt responsive genes have been reported from the

halophytes, there is always a quest for promising stress-responsive genes that can

modulate plant physiology according to the salt stress. Halophytes such as Aeluropus,

Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as

a potential candidate for the salt-responsive genes and promoters. Several known

genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl−, Ca2+, aquaporins),

antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such

as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing

stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt

sensors that lead to the activation of stress tolerance mechanisms which involve multiple

signaling proteins, up- or down-regulation of several genes, and finally the distinctive or

collective effects of stress-responsive genes. In this review, halophytes are discussed

as an excellent platform for salt responsive genes which can be utilized for developing

salinity tolerance in crop plants through genetic engineering.

Keywords: abiotic stress, halophytes, promoter, salinity, salt responsive genes, salt stress, stress tolerance,

transgenic

INTRODUCTION

Salinization is a worldwide problem in which salts gradually accumulate in the soil. In this process,
water-soluble salts are deposited in the soil to an extent that affects crop productivity, microbial
community, and agricultural economics (FAO, 2016). The salinization eventually transforms a
fertile land to barren. The process destroys all vegetation and other organisms living in the soil
and thus it is detrimental to the environmental health. Most of the world’s land is not cultivated,
and over 2% of the total land is affected by salinity (FAO; Land and Plant Nutrition Management
Service). A significant proportion of cultivated land is salt-affected, and out of the current 230
million ha of irrigated land, 45 million ha are salt-affected whereas 32 million are salt-affected to
varying degrees (FAO, 2008).
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Halophytes are salt-resistant or salt-tolerant plants and have
remarkable ability to complete their life cycle in saline condition.
During evolution, they have developed different morphological,
anatomical, and physiological strategies to proliferate in high-
salt environments (Flowers and Colmer, 2008; Grigore et al.,
2014). Halophytes have occasionally been reviewed for their
general physiology (Flowers, 1985), ecophysiology (Ball, 1988),
photosynthesis (Rozema and Van Diggelen, 1991; Lovelock
and Ball, 2002), response to oxidative stress (Jithesh et al.,
2006), flooding tolerance (Colmer and Flowers, 2008), salinity
tolerance (Flowers and Colmer, 2008), and adaptations (Flowers
et al., 2015). Additionally, other researchers have also examined
halophytes under special topics as sustainable cultivation, saline
agriculture, and integrative anatomy (Rozema et al., 2013;
Grigore et al., 2014; Flowers et al., 2015; Xu et al., 2016).

Halophytes that consistently require salt for their growth are
referred to “obligate halophytes” (Braun-Blanquet, 1932), but
some halophytes have the ability to grow on the soil devoid
of salt are called as “facultative halophytes” (Polunin, 1960).
Halophytes are obligate and facultative based upon salt demand
and tolerance for sodium salts. Previously, a study has been
carried out with some selected halophytes to investigate the salt
requirement for growth and development (Grigore et al., 2012).
Researchers concluded that salts are not compulsorily required
for the development of halophytic species but the availability
of water and nutrients are also key limiting factors for growth
in natural saline habitats (Grigore et al., 2012). Further, they
hypothesized that halophytes are mostly distributed in saline
areas to avoid competition with glycophytic species.

Ecophysiological characteristics are used by Cushman
(2001) to differentiate between obligate, facultative, and
habitat-indifferent halophytes. Habitat-indifferent halophytes
are undistinguished to their habitat, usually, prefer to live
in a salt-free soil but have the ability to cope with the saline
condition (Cushman, 2001). Recently, Grigore and Toma
(2010) proposed a new type of classification of halophytes;
extreme-halophyte (irreversible and reversible) and meso-
halophytes, by integrating anatomy observations with ecological
factors (salinity). Extreme-halophytes are well-adapted extreme
halophytes and growing exclusively in saline environments.
Furthermore, the habitat of these halophytes may be irreversible
or reversible. They concluded that Chenopodiaceae (now
included in the family Amaranthaceae) succulent species
(Salicornia, Suaeda, Halimione, and Petrosimonia) are extreme
halophytes and best adapted to high salinity conditions.
Halophytes such as Atriplex, Bassia, and Camphorosma are not
strictly related to increased salinity, therefore may be classified
as reversible halophytes. There is always a difficulty with the
distinct terminology of halophytes because the definition is still
obscure and Grigore et al. (2010) discussed a short historical
evolution of halophytes definition in chronological order.

Advanced and novel stress-tolerant mechanisms are difficult
to study with the model plant Arabidopsis as some mechanisms
are unique to halophytes. The comparative genomics of
Mesembryanthemum crystallinum and Arabidopsis thaliana
confirmed that some transcripts present in former and later
do not have counterparts (Wang et al., 2004). Some other

halophytes, Suaeda species, and Atriplex species have been
investigated to unravel molecular mechanism of stress tolerance.
Among all, Thellungiella halophila is one of the halophytes
emerging as a model halophyte for the study of abiotic stress
tolerance mechanism (Wang et al., 2004; Amtmann, 2009).
Halophyte Cakile maritima and Suaeda maritima (Megdiche
et al., 2009; Sahu and Shaw, 2009) are considered as model plants
for the transcript profiling and Salicornia brachiata as a potential
halophyte for new and useful salt-tolerant genes (Singh et al.,
2016; Udawat et al., 2016, 2017). In this review, halophytes are
discussed as resources for salt stress tolerance genes, which can
be explored further for developing abiotic stress tolerance crops
for sustainable agriculture.

Salt Tolerance Mechanism in Halophytes: A
Glimpse
Halophytes are well-adapted and thrive under high salinity by
using two strategies, salt tolerance, and salt avoidance. Generally,
halophytes follow three mechanisms of salt tolerance; reduction
of the Na+ influx, compartmentalization, and excretion of
sodium ions (Flowers and Colmer, 2008, 2015). Adaptations
involved in salt avoidance are secretion, shedding, and succulence
(discussed in Waisel, 1972; Rozema, 1995; Aslam et al., 2011;
Shabala et al., 2014). In brief, secretion is a complex mechanism,
and salt-secreting structures (salt hairs or salt glands) are
distributed in halophytes. Some halophytes are capable of
excreting excess salt in the form of a liquid which becomes
crystals in contact with air and may visible on the plant leaf
surface. In some halophytes, shedding of the old leaves which
are grown under high salt concentrations is another strategy to
avoid the salt toxicity. Grigore et al. (2014) discussed the different
aspects of the various adaptive structures of halophytes in an
integrative way at the anatomy level.

The salt tolerance mechanism is coordinately linked
(Figure 1) with signal transduction, ROS generation and
detoxification pathways, osmoregulation or ion homeostasis
through osmoprotectants, and differential expression of salt
responsive genes and transcription factors (Flowers and Colmer,
2008; Rajalakshmi and Parida, 2012; Himabindu et al., 2016;
Khan et al., 2016; Muchate et al., 2016). ROS detoxification
pathways include antioxidative enzymes which play a protective
role in scavenging toxic radicals (Das and Strasser, 2013). Salt
sequestration into cell vacuoles through transporters is another
key mechanism employed by halophytes to maintain a high
cytosolic K+/Na+ ratio and thus control the salt concentrations
in the cytosol (Kronzucker and Britto, 2011; Sreeshan et al.,
2014). Accumulation of osmoprotectants such as proline, glycine
betaine, polyphenols, soluble sugars, and inorganic ions is
a conventional plant defense mechanism routinely used by
halophytes to cope with stresses (Lokhande and Suprasanna,
2012; Patel et al., 2016). At the molecular level, halophytes impart
salt tolerance by regulating stress-responsive genes through
ABA-dependent or ABA-independent regulation mechanism.
Overall, salt tolerance in a halophyte is a complex network that
involves the interactions of multiple physiological responses
directive by several genes and gene products (Figure 1). Overall,
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FIGURE 1 | A generalized schematic representation of salinity stress

tolerance mechanism in a plant.

halophytic salt tolerance defense mechanism includes changes
in ion homeostasis (both influx and efflux), the formation of
osmoprotectants, activation of crosstalk genes, induction of
antioxidants, and the development of salt gland or bladders
(Shabala et al., 2014; Slama et al., 2015; Himabindu et al., 2016).

Salt Responsive Genes from Halophytes:
An Overview
Halophytes have been studied extensively for their ecological,
physiological, anatomical, and biochemical responses toward
salinity (Flowers and Colmer, 2008; Aslam et al., 2011; Shabala,
2013; Ventura et al., 2015). Furthermore, halophytes were also
explored for saline agriculture and examined as bioenergy
crop (Rozema and Schat, 2013; Sharma et al., 2016). However,
little information is available on well-defined molecular defense
mechanism of halophytes against salt stress (Anjum et al., 2012;
Joshi et al., 2015). Surprisingly, a non-tolerant plant, A. thaliana
is widely explored as a model plant to investigate the molecular
mechanism of salt stress tolerance (Sanders, 2000; Zhu, 2001).
Additionally, this plant is also exploited for the gene mining of
salt stress-responsive genes for the improvement of tolerance in
transgenic crops (Zhu, 2000).

It is a general assumption that halophytes are salt resistant
while glycophytes are sensitive, but there are several species
considered traditionally as glycophytes are resistant or tolerant
to salt and some halophytes may be sensitive to several
environmental stresses. Recently, it is experimentally proven
that halophytes are one of the most appropriate models for
the studying different salt stress tolerance mechanisms (Shabala,
2013; Flowers and Colmer, 2015; Himabindu et al., 2016). A
number of evidences suggest that all plants have almost similar
salt tolerance regulatory mechanisms and there are quantitative

differences rather than qualitative between halophyte and
glycophyte (Anjum et al., 2012; Rai et al., 2012; Bartels and
Dinakar, 2013; Sreeshan et al., 2014; Joshi et al., 2015; Volkov,
2015; Muchate et al., 2016). It may be because of higher
expression of key genes involved in the salt stress tolerance
mechanism, or halophytic proteins are intrinsically more active
than the corresponding glycophytic proteins (Anjum et al., 2012;
Das and Strasser, 2013; Himabindu et al., 2016; Muchate et al.,
2016).

Different genomic and transcriptomics efforts have beenmade
to isolate salt responsive genes from some halophytes followed by
their functional validation through transgenic approaches. The
overexpression of several halophytic genes, under the control of a
non-specific 35SCaMV promoter, have been claimed to enhance
abiotic stress tolerance in the glycophytic recipients (Table 1). A
number of crops have been transformed with halophytic genes
for the improvement of salt tolerance. Most of these genes
encode for Na+/H+ antiporters (vacuolar or plasma membrane),
vacuolar pyrophosphatase, potassium transporters, ion channels,
antioxidants, ROS scavengers, and proteins that involve in
protective function and signal transduction. Additionally, some
novel salt responsive genes were also cloned and characterized
from halophytes like S. brachiata (Udawat et al., 2014, 2017; Singh
et al., 2016).

A close relative of thoroughly explored glycophytic crucifer
A. thaliana, Thellungiella salsuginea, which was earlier classified
as T. halophila is a halophyte, exhibiting a high tolerance to salt
and drought, considered as a potential model for abiotic stress
tolerance studies by some researchers (Amtmann, 2009; Bartels
and Dinakar, 2013). The genome sequence of T. salsuginea
provides evidence about the genetic basis of abiotic stress defense
mechanisms, and comparative genomics identified this plant as
a gene resource for cation transporters, abscisic acid signaling
genes, and other upregulated genes that showing a response
to stressful environments (Wu et al., 2012). Furthermore,
microarray analysis exhibited that only few genes were induced
in Thellungiella compared to Arabidopsis under salt stress (Taji
et al., 2004). Another study reveals that about 154 genes were
differentially regulated in Thellungiella compared to Arabidopsis
under varying stress (Wong et al., 2006).

Similarly, another halophytic relative of the model plant
Arabidopsis, Lepidium crassifolium showed salt, osmotic and
oxidative stresses tolerance. Random genes were transferred
from L. crassifolium to A. thaliana, and it was observed
that independent transgenic lines enhanced tolerance under
several stress conditions (Rigó et al., 2016). Approximately
15% of functionally unknown genes were additionally expressed
under salt stress compared to the non-stress conditions in M.
crystallinum (Cushman and Bohnert, 2000; Kore-eda et al., 2004).

An extreme halophyte S. brachiata grows luxuriantly on
salt marshes and also frequently encountered with different
environmental stresses. Since, S. brachiata has unique
opportunity to sustain adverse conditions and thus considered
as a rich source of stress responsive genes and promoters (Jha
et al., 2011; Chaturvedi et al., 2012; Singh et al., 2014a; Tiwari
et al., 2014, 2016; Udawat et al., 2016). The salt responsive
genes from S. brachiata have been utilized to develop salt stress
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TABLE 1 | Abiotic stress responsive genes of halophytic origin reported to enhance salt tolerance in glycophytic hosts.

Halophytes Genes Description Recipient plants References

Aeluropus littoralis AlNHX1 Vacuolar Na+/H+ antiporter Nicotiana tabacum Zhang et al., 2008

Atriplex centralasiatica AcBADH Synthesis of glycine betaine Nicotiana tabacum Yin et al., 2002

Atriplex gmelini AgNHX1 Vacuolar Na+/H+ antiporter Oryza sativa Ohta et al., 2002

Atriplex hortensis AhBADH Synthesis of glycine betaine Tomato Jia et al., 2002

Atriplex hortensis AhProT1 Proline transport Arabidopsis Shen et al., 2002

Atriplex nummularia AmCMO Enhanced glycine betaine synthesis Nicotiana tabacum Tabuchi et al., 2005

Avicennia marina AmMDHAR Ascorbate regeneration and ROS scavenging Nicotiana tabacum Kavitha et al., 2010

Halostachys caspica HcNHX1 Vacuolar Na+/H+ antiporter Arabidopsis Guan et al., 2011

Halostachys caspica V-ATPase Vacuolar-H+-pyrophosphatase Arabidopsis Hu et al., 2012

Kalidium foliatum V-ATPase Vacuolar-H+-pyrophosphatase Arabidopsis Yao et al., 2012

Salicornia brachiata SbASR1 Abscisic acid stress ripening-1 Arachis hypogea Tiwari et al., 2015a

Salicornia brachiata SbGSTU Tau class glutathione transferases Nicotiana tabacum Jha et al., 2011

Salicornia brachiata SbMT-2 Metallothionein: ROS scavenger Nicotiana tabacum Chaturvedi et al., 2014

Salicornia brachiata SbNHX1 Vacuolar Na+/H+ antiporter Jatropha curcas Joshi et al., 2013

Salicornia brachiata SbNHX1 Vacuolar Na+/H+ antiporter Ricinus communis Patel et al., 2015

Salicornia brachiata SbNHX1 Vacuolar Na+/H+ antiporter Cuminum cyminum Pandey et al., 2016

Salicornia brachiata SbpAPX Peroxisomal ascorbate peroxidase Nicotiana tabacum Singh et al., 2014a

Salicornia brachiata SbpAPX Peroxisomal ascorbate peroxidase Arachis hypogea Singh et al., 2014b

Salicornia brachiata SbSDR1 Salt and drought responsive gene Nicotiana tabacum Singh et al., 2016

Salicornia brachiata SbSRP Salt responsive protein encoding gene Nicotiana tabacum Udawat et al., 2017

Salicornia brachiata SbUSP Cytosolic universal stress protein Nicotiana tabacum Udawat et al., 2016

Salicornia europaea SeCMO Enhanced glycine betaine synthesis Nicotiana tabacum Wu et al., 2010

Salsola soda SsNHX1 Vacuolar Na+/H+ antiporter Alfalfa Li et al., 2011

Spartina alterniflora SaVHAc1 Vacuolar H + -ATPase subunit c1 Oryza sativa Baisakh et al., 2012

Suaeda corniculata V-ATPase Vacuolar-H+-pyrophosphatase Arabidopsis Liu et al., 2011

Suaeda liaotungensis SlASR1 Abscisic acid stress ripening Arabidopsis Hu et al., 2014

Suaeda liaotungensis SlBADH Synthesis of glycine betaine Zea mays Wu et al., 2008

Suaeda liaotungensis SlBADH Synthesis of glycine betaine Nicotiana tabacum Li et al., 2003a

Suaeda liaotungensis SlCMO Enhanced glycine betaine synthesis Nicotiana tabacum Li et al., 2003b

Suaeda liaotungensis SlNAC NAC transcription factor Arabidopsis Yang et al., 2014

Suaeda salsa SsCAX1 Vacuolar H+/Ca2+ Transporter Arabidopsis Han et al., 2012

Suaeda salsa Ss.sAPX Stroma ascorbate peroxidase Arabidopsis Li et al., 2012

Suaeda salsa SsCHLAPX Chloroplastic ascorbate peroxidase Arabidopsis Pang et al., 2011

Suaeda salsa SsGST Glutathione S -transferase Oryza sativa Zhao and Zhang, 2006

Suaeda salsa SsPrxQ Chloroplast-located Peroxiredoxin Q Arabidopsis Jing et al., 2006

Suaeda salsa SsVP Vacuolar-H+-pyrophosphatase Arabidopsis Guo et al., 2006

Tamarix androssowii TaMnSOD Antioxidant: manganese superoxide dismutase Populus Wang et al., 2010

Thellungiella halophila ThNHX1 Vacuolar Na+/H+ antiporter Arabidopsis Wu et al., 2009

Thellungiella halophila ThSOS1 Salt overly sensitive gene Arabidopsis Oh et al., 2009

Thellungiella halophila TsVP H+-PPase gene Gossypium Lv et al., 2008

Thellungiella halophila TsVP H+-PPase gene Nicotiana tabacum Gao et al., 2006

Thellungiella salsuginea TsLEA1 Late embryogenesis abundant (LEA) Arabidopsis Zhang et al., 2012

Thellungiella salsuginea TsTIP1 Tonoplast AQP gene Arabidopsis Wang et al., 2014

tolerant transgenic crops such as jatropha, cumin, castor, and
peanuts (Joshi et al., 2011; Singh et al., 2014b; Patel et al., 2015;
Tiwari et al., 2015a; Jha et al., 2016; Pandey et al., 2016) using
different genetic transformation methods (Singh et al., 2010;
Joshi et al., 2012; Pandey et al., 2013; Tiwari et al., 2015b).
Furthermore, Salicornia also owns unique oligosaccharides
(Mishra et al., 2013), metabolites (Mishra et al., 2015), sulfur-rich

seed-storage proteins (Jha et al., 2012) and thus considered as a
functional food. Transcriptomics of Porteresia coarctata, a wild
relative of rice showing high salinity and submergence tolerance
revealed a total of 152,367 unique transcript sequences (Garg
et al., 2014). A total of 15,158 genes, involved in salinity and
submergence tolerance were identified to unravel key metabolic
pathways. These genes can be explored further to understand
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and engineer salinity and submergence tolerance in rice (Garg
et al., 2014).

Promoters of Salt-Responsive Halophytic
Genes: At a Glance
A strong and well-regulated promoter is required for the
engineering of crop plants to achieve the desired level of
expression of a transgene. A comparative transcriptome analysis
revealed that many stress-related genes constitutively expressed
at higher level in T. halophila compared to their homologs of
A. thaliana (Taji et al., 2004, 2010). This report suggests an
efficient transcriptional regulatory network for stress responsive
genes in halophytes. Recently, cis-regulatory elements of different
stress responsive genes from some halophytes have been studied,
and the presence of various stress-inducible motifs was observed
(Tiwari et al., 2014, 2016). Yin et al. (2002) found that the
promoter of AcBADH gene from Atriplex centralasiatica is
strongly induced by salt stress and possesses two salt-responsive
enhancer regions (located from −1,115 to −890 and −462 to
−230) and one silencer region (located between−890 and−641).

The SlBADH gene promoter fragment (−300 bp only) from
Suaeda liaotungensis showed about 6.3-fold expression under salt
stress (400 mmol/l NaCl) compared to control (non-stressed)
condition (Zhang et al., 2008). The TsVP1 gene promoter from
halophyte T. halophila contained 130 bp specific cis-acting
element and showed a higher expression of GUS in transgenic
Arabidopsis under salt stress (Sun et al., 2010). Similarly, an 897
bp promoter region of SlPEAMT gene (S. liaotungensis) showed
an 18.6-fold increase in the GUS activity under NaCl stress (200
mmol/l) treatment (Li et al., 2016). These results suggest that even
a small fragment of promoter can also contain essential cis-acting
elements to regulate gene expression under stress. The promoters
of CMO genes from S. liaotungensis and Salicornia europaea also
possessed basic elements and demonstrated to be salt inducible
(Li et al., 2007; Wu et al., 2011). Schaeffer et al. (1995) identified
enhancer and silencer regions involved in the transcriptional
activation of salt-responsive expression of CAM (Crassulacean
Acid Metabolism) genes in the halophyteM. crystallinum.

An age-dependent, abiotic-stress-inducible, organ-specific,
and tissue-specific promoter,AlSAPwas reported fromAeluropus
littoralis (Saad et al., 2011). Furthermore, gusA exhibited same
expression level under the control of AlSAP gene promoter
in transgenic rice as AlSAP transcript in A. littoralis (Ben-
Saad et al., 2015). They also concluded that the regulatory
regions of two orthologs AlSAP and OsSAP9 (from rice) have
a different specificity of regulation and stress induction in rice.
Sun et al. (2010) found a 130 bp specific cis-acting element in
the promoter region of vacuolar H+-pyrophosphatase from a
halophyte T. halophila (TsVP1) which enhances the expression of
GUS in transgenic Arabidopsis under salt stress. The CBL1 gene
promoter isolated from Ammopiptanthus mongolicust controlled
the expression of the reporter gene under abiotic and biotic
stress conditions (Guo et al., 2010). A model, proposed for
transcriptional regulation of the SbpAPX gene (from S. brachiata)
showed the presence of enhancer and repressor binding sites
in the cis-regulatory elements along with stress-inducible motifs

(Tiwari et al., 2014). Similarly, the SbGSTU promoter showed
the presence of a number of abiotic stress responsive cis-
regulatory motifs which regulate the expression of GSTU gene
in S. brachiata (Tiwari et al., 2016). Therefore, based on different
reports, halophytic promoters emerge as a promising candidate
for engineering abiotic stress tolerance in crops for high-level
expression of transgenes.

Salt Tolerant Genes from Halophytes and
Glycophytes: A Comparative Analysis
Among different strategies; Na+ efflux, compartmentalization
of Na+ in vacuoles and prevention of Na+ influx are
the most common, governed by antiporters and regulated
by a multigene family (Rajendran et al., 2009; Kronzucker
and Britto, 2011). A number of antiporters isolated from
both glycophytes and halophytes are functionally characterized
(Kronzucker and Britto, 2011; Sreeshan et al., 2014). The
overexpression of glycophytic transporters encoding genes
(NHX, SOS, HKT, ATPase, etc.), under the control of non-
specific CaMV35S promoter, showed tolerance in the range of
150–250 mM NaCl, however their halophytic homologs may
provide tolerance up to 400mM NaCl (reviewed in Kronzucker
and Britto, 2011; Sreeshan et al., 2014; Volkov, 2015). In several
previous studies, the effects of overexpression of halophytic
genes were commonly observed under salt stress treatments,
however, negligible differences were observed between wild-
type plants and the transgenic lines under control (unstressed)
conditions (Jha et al., 2011; Joshi et al., 2012; Volkov, 2015;
Tiwari et al., 2015a; Singh et al., 2016; Udawat et al., 2016,
2017).

The glycophytic NHX gene from A. thaliana was widely
explored for developing salt tolerance in many crops including
tomato, brassica, maize, wheat, etc. (Zhang et al., 2001; Xue et al.,
2004; Yin et al., 2004). Even, other glycophytic NHX1 genes such
as BnNHX1 (Brassica napus), GhNHX1 (Gossypium hirsutum),
and HbNHX1 (Hordeum brevisubulatum) have demonstrated to
produce salt tolerance in the model plant tobacco (Wang et al.,
2004; Wu et al., 2004; Lü et al., 2005). Thus, the NHX1 gene
from halophyte and glycophyte both showed the salt tolerance
activity, but there is a difference regarding salt tolerant intensity.
The antiporter AgNHX1 (from halophyte Atriplex gmelini)
showed 75% amino-acid sequence similarity with AtNHX1 (A.
thaliana) and a higher salinity tolerance inOryza sativa (Hamada
et al., 2001; Ohta et al., 2002). Transgenic plants overexpressing
AgNHX1 (A. gmelini), SaNHX1 (Spartina anglica) or SsNHX1
(Suaeda salsa) gene show tolerance up to 300–400 mM NaCl
compared to glycophytic counterparts (Ohta et al., 2002; Zhao
et al., 2006; Lan et al., 2011). The overexpression of SbNHX1
gene showed 200mM salt tolerance in the model plant transgenic
tobacco, but only 100 mM NaCl tolerance was observed in the
transgenic jatropha and castor plants (Joshi et al., 2013; Patel
et al., 2015).

Similar to NHX gene family, the overexpression of other
halophytic genes such as SbpAPX, SbUSP, and SbGSTU showed
better salinity tolerance (200–300 mM NaCl) in the transgenic
plants compared to their glycophytic homologs (Jha et al., 2011;
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Singh et al., 2014a,b; Udawat et al., 2016). The transgenic
Arabidopsis plants, overexpressing the TIP1 gene from the
halophyte T. salsuginea exhibited better salt tolerance compared
to the same gene from glycophyte Panax ginseng (Peng et al.,
2007). Similarly, APX and GST from rice showed lower tolerance
up to 150–200 mM compared to the same genes (200–300
mM NaCl) from halophyte S. brachiata in the transgenic plants
(Lu et al., 2007; Jha et al., 2011; Sharma et al., 2014; Singh
et al., 2014a). Recently, it was reported that over-expression
of a stress-associated protein gene (AlSAP) from A. littoralis
improves different abiotic stress tolerance in tobacco, wheat,
and rice (Ben-Saad et al., 2015). They also demonstrated that
AlSAP transcripts are induced by multiple abiotic stresses, but
the ortholog gene of riceOsSAP9 is preferentially induced by cold
and heat treatments.

A comparative transcript expression analysis revealed a higher
expression of antiporter SOS1 gene in Thellungiella species
compared to Arabidopsis (Oh et al., 2010). Similarly, several
genes such as SOS2, NHX1, and HKT1 involved in Na+

excretion, compartmentation, and diffusion were also expressed
at higher levels in Thellungiella compared to Arabidopsis (Taji
et al., 2010). To compare the Na+ hypersensitivity response,
Arabidopsis lines overexpressing either AtHKT1 (A. thaliana)
or TsHKT1 (T. salsuginea) were analyzed and delayed root
growth was observed inAtHKT1 compared with those expressing
TsHKT1 (Ali et al., 2012). The shoot sensitivity was observed
in transgenic lines expressing AtHKT1. They also demonstrated
a strong salt-dependent up-regulation of TsHKT1 but a strong
repression of AtHKT1 expression under salt stress (Ali et al.,
2012).

Based on different reports, it may be concluded that
halophytic genes are one of the promising candidates to be
explored further for producing transgenic plants with a higher
level of salt tolerance as compared to glycophytic counterpart
genes. Further, halophytes also serve as valuable resources to
discover novel abiotic stress responsive genes for improving

stress tolerance of crop plants for sustainable agriculture in the
saline affected areas.

PERSPECTIVE AND CONCLUSION

Halophytes are more tolerant to abiotic stress because of high
differential regulation of the same basic set of stress-responsive
genes present among all plants. Furthermore, halophytes
exhibited higher expression of a large number of stress-inducible
genes under the non-stress condition, suggesting constitutive
expression of genes in halophytes. Since different halophytes
use different mechanisms to respond the salt stress, a single
species cannot be considered as a model species. However, the
emergence of a halophyte species as a model plant for the
molecular elucidation of corresponding abiotic stress tolerance
will enlighten our understanding of the salinity tolerance
mechanisms. Identification and isolation of novel salt responsive
genes and promoters from different halophytes can be explored
for the genetic engineering of crop plants for abiotic stress
tolerance using transgenic approach.
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