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In eukaryotic organisms, the correct regulation of sister chromatid cohesion, whereby
sister chromatids are paired and held together, is essential for accurate segregation
of the sister chromatids and homologous chromosomes into daughter cells during
mitosis and meiosis, respectively. Sister chromatid cohesion requires a cohesin complex
comprised of structural maintenance of chromosome adenosine triphosphatases and
accessory proteins that regulate the association of the complex with chromosomes or
that are involved in the establishment or release of cohesion. The cohesin complex also
plays important roles in the repair of DNA double-strand breaks, regulation of gene
expression and chromosome condensation. In this review, we summarize progress in
understanding cohesion dynamics in plants, with the aim of uncovering differences at
specific stages. We also highlight dissimilarities between plants and other eukaryotes
with respect to the key players involved in the achievement of cohesion, pointing out
areas that require further study.
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INTRODUCTION

In eukaryotes, DNA faithfully duplicates during the S phase of the cell cycle to produce sister
chromatids. The newly duplicated sister chromatids are then tethered and held together by the
cohesin complex until they segregate into new daughter cells (Uhlmann and Nasmyth, 1998). The
cohesin complex is also involved in the repair of DNA double-strand breaks (DSBs), the regulation
of gene expression and chromosome condensation (Guacci et al., 1997; Sjögren and Nasmyth, 2001;
Onn et al., 2008; Nasmyth and Haering, 2009; Yuan et al., 2011; Lopez-Serra et al., 2013; Mehta
et al., 2013; da Costa-Nunes et al., 2014).

In eukaryotic organisms, the cohesin core complex comprises four structural proteins:
two structural maintenance of chromosome (SMC) adenosine triphosphatases (ATPases),
SMC1 and SMC3; the α-kleisin sister chromatid cohesion protein 1 (SCC1); and the
SCC3 subunit. The interaction of cohesin with chromosomes is regulated by the genes
PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5) and WINGS APART-LIKE (WAPL).
In animal cells, Sororin helps promote the stable association of cohesin with chromatin
(Peters and Nishiyama, 2012). Tripartite rings are formed via the association of the
SMC1-SMC3 heterodimer with SCC1 (Anderson et al., 2002; Haering et al., 2002).
Different models have been proposed to explain the functional interaction of the complex
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with chromatin. The simplest model suggests that the ring
entraps the two sister chromatids (Haering et al., 2008)
(Figure 1). In other models, the interaction between different
cohesin complexes can promote sister chromatid tethering (Eng
et al., 2015). SCC1 also directly or indirectly associates with SCC3,
PDS5, and WAPL (Haering et al., 2002).

Other SMC complexes exist, such as the condensin (SMC2/4)
and SMC5/6 complexes, and their function is required in
different contexts (Hirano, 2006). Condensins are multisubunit
protein complexes that play a crucial role in the structural
and functional organization of chromosomes (Ono et al., 2003).
The majority of eukaryotes, including Drosophila possess two
condensin complexes that participate in gene regulation, DNA
repair and cell fate determination (Ono et al., 2003; Klebanow
et al., 2016), while in Arabidopsis the condensin II complex
is also important for conferring tolerance to excess soil Boron
(Sakamoto et al., 2011). In addition to the SMC2/4 subunits, each
complex may feature three non-SMC subunits, namely CAP-D2,
CAP-G, and CAP-H for condensin I and CAP-D3, CAP-G2,
and CAP-H2 for condensin II (Hirano, 2012). Arabidopsis
CAP-D2 and CAP-D3 are required for pollen fertility and for
preventing the association of centromeric repeats (Schubert et al.,
2013). The eukaryotic SMC5/6 complex is primarily involved
in DNA repair, replication fork stability, and possibly in the
control of DNA topology (Verver et al., 2016). It consists of
two SMC proteins and several non-SMC proteins (Andrews
et al., 2005), which may interact with the ATPase head domain
of SMC5 and SMC6 (Pebernard et al., 2004; Palecek et al.,
2006). In Arabidopsis, the SMC5/SMC6 subunit AtMMS21 has
been shown to regulate maintenance of root stem cells during
embryogenesis and postembryonic stages (Xu et al., 2013). Given
the evolutionary conservation of these complexes, it seems that
their spatial organization and topology are very important to
define their functionality (Gligoris and Löwe, 2016).

In this review, we summarize recent progress in
understanding cohesion dynamics in plants, highlight differences
at specific stages, key points of divergence between plant cohesin
complexes and those from yeast and metazoans, and point out
areas that require further study.

THE CORE COHESIN COMPLEX

In Arabidopsis, cohesion is mediated by the cohesin complex,
consisting of two subunits of the SMC protein family, SMC1 and
SMC3 (Liu et al., 2002). Both SMC1 and SMC3 are present in
the Arabidopsis genome as single-copy genes (Liu et al., 2002).
SMC1 and SMC3 are highly conserved among plant species
and share the same characteristics: an N-terminal ATP binding
domain, two large antiparallel coiled-coil regions separated by
a hinge region, and a C-terminal DA box (Liu et al., 2002). The
homozygous T-DNA knockouts of SMC1 (titan8-1 and titan8-2)
and SMC3 (titan7-1 and titan7-2) show developmental defects in
both embryo and endosperm that result in an early arrest in seed
development (Liu et al., 2002).

Structural maintenance of chromosome 3 is found in both
the cytoplasm and nucleus, bound to the nuclear matrix of

somatic cells and in meiocytes (Lam et al., 2005). Specifically,
it is localized from interphase to anaphase during mitosis, from
premetiotic G2 to anaphase I during meiosis I, and in metaphase
II centromeres during meiosis II (Figure 2). Strikingly, the
protein is also present in the mitotic and meiotic spindle, so
SMC3 may have additional roles in plant cells other than sister
chromatid cohesion (Lam et al., 2005). No reports of Arabidopsis
SMC1 have been published. In tomato, this protein, as well as
SMC3, localizes along the axial elements (AEs), the precursors
of the lateral elements (LEs) of the synaptonemal complex (SC),
the tripartite structure that links homologous chromosomes in
zygotene-pachytene meiocytes; but whether it is present in the
cytoplasm and localizes to the spindle is unclear because studies
were not conducted on whole cell mounts (Lhuissier et al., 2007).

Four orthologs of the kleisin subunit SCC1/radiation sensitive
21 (RAD21) have been detected in Arabidopsis and rice, and
several SCC1/RAD21 genes are present in other plant species
(Golubovskaya et al., 2006). During the first meiotic division, the
mitotic kleisin subunit SCC1 is replaced by RECOMBINATION
8 (REC8), (Klein et al., 1999) which plays a role during meiosis
that SCC1/RAD21 cannot support (Watanabe and Nurse, 1999).
In maize, the ortholog of REC8 is ABSENCE OF FIRST DIVISION
1 (AFD1) (Golubovskaya et al., 2006). AFD1 is essential for
the elongation of AEs and immunolocalization studies revealed
that it localizes to the LEs of the SC. The AFD1 protein is
also required for RAD51 distribution on the chromosomes
and is also important for homologous chromosome pairing
(Golubovskaya et al., 2006). In the rice genome, the putative
REC8 ortholog is thought to be RAD21-4. RNA knock-down of
this gene resulted in multiple aberrations during male meiosis,
which included severe chromosome condensation, precocious
segregation of homologous chromosomes and chromosome
fragmentation (Zhang et al., 2006).

In the Arabidopsis genome, the REC8 ortholog is SYN1/DIF1
(Peirson et al., 1997; Bai et al., 1999; Bhatt et al., 1999; Cai
et al., 2003). T-DNA syn1 mutants are sterile in both male
and female gametophytes, but the protein is dispensable for
somatic development; vegetative growth appears normal in
the mutants (Bai et al., 1999; Bhatt et al., 1999; da Costa-
Nunes et al., 2006). Male meiocytes show severe defects in
sister chromatid cohesion, homologous chromosome pairing,
and chromosome condensation that result in the fragmentation
of chromosomes and formation of polyads (Peirson et al.,
1997; Bai et al., 1999; Bhatt et al., 1999; Cai et al., 2003).
Transmission electron microscopy of chromosomes in syn1
meiocytes show short stretches of SC surrounded by condensed
chromatin in late pachytene, which suggests that SYN1 is
essential for SC formation (Zhao et al., 2006). In the syn1
mutant, the recombination machinery is partially functional
since some recombination spots were seen in chromosomes
(Zhao et al., 2006). Immunolocalization studies showed that
SYN1 first appears on meiotic chromosomes beginning in late
interphase. SYN1 antibody labels the developing chromosome
axes beginning at early leptotene and lines the chromosome axes
of paired chromosomes (Cai et al., 2003). A large portion of
SYN1 dissociates from the chromosome arms during diplotene
and diakinesis and by metaphase I the signal is only associated
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FIGURE 1 | Putative model of a plant cohesin ring. The presumptive Arabidopsis SMC1/SMC3 cohesin complex may tether sister chromatids, and its activity
may be regulated positively by CTF7 and negatively by WAPL. Other regulators are the kleisin SCC1, the subunit SCC3, cohesin regulator PDS5 and SCC2/SCC4.

FIGURE 2 | Schematic representation of plant cohesin dynamics during mitosis and meiosis. Cohesin complexes contribute to meiotic chromosome
dynamics, since they influence on pairing (alignment of homologous chromosomes), synaptonemal complex (SC) formation (intimate association of homologous
chromosomes), and recombination (DNA exchanges, reciprocal or not, between homologous sequences). During prophase I, sister chromatid cohesion and
reciprocal exchanges (crossovers, COs) maintain the homologous chromosomes connected as a bivalent after the SC is disassembled. Afterward, cohesion is
removed in two steps: from chromosome arms during first meiotic division and from centromeres during second meiotic division (top). During mitosis, the complexes
might be involved in replication and segregation of chromatids (bottom).
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with the centromeres. SYN1 signal is not typically detected at
late metaphase I and early anaphase I. Similar to Arabidopsis
SYN1, yeast REC8 dissociates from chromosome arms and by
metaphase I the signal is localized only at centromeres (Klein
et al., 1999; Watanabe and Nurse, 1999).

Arabidopsis has three other kleisin genes, SYN2/AtRAD21.1,
SYN3/AtRAD21.2, and SYN4/AtRAD21.3, which are expressed
throughout the plant (Dong et al., 2001; Jiang et al., 2007). SYN3
plays an important role in the nucleolus of both somatic and
meiotic cells and is also indispensable for megagametogenesis
(Jiang et al., 2007), while SYN2/AtRAD21.1 and SYN4/AtRAD21.3
play roles in DNA repair and may represent mitotic cohesins
(Dong et al., 2001; da Costa-Nunes et al., 2006). Plants
homozygous for mutations in AtRAD21.1 and AtRAD21.3
showed a decrease in sister chromatid alignment in somatic
cells, suggesting that they may represent the mitotic cohesins
(da Costa-Nunes et al., 2006). AtRAD21.1 has been shown to
play a critical role in recovery after DNA damage during seed
imbibition before germination (da Costa-Nunes et al., 2006),
whereas AtRAD21.3 appears to play a role in somatic DNA DSB
repair (da Costa-Nunes et al., 2014).

In contrast to mammals, SCC3 is present as a single-
copy gene in Arabidopsis. The corresponding protein is 1,098
amino acids long and exhibits 21% sequence identity and 40%
sequence similarity to its yeast homolog. The transcript is
expressed strongly in roots, mature leaves, buds, and plantlets
(Cromer et al., 2013). In general, T-DNA insertional mutations
of SCC3 result in embryo lethality; however, a weak allele, scc3-
1, hypothesized to express a truncated protein, confers both
mitotic and meiotic defects and homozygous scc3-1 plants are
dwarf and sterile (Chelysheva et al., 2005). Microscopy analysis
revealed few dividing cells in root tips as compared with the wild
type (WT), and male meiotic chromosomes showed defects in
chromosome condensation, chromosome pairing and synapsis
and presented early sister chromatid separation. During meiosis,
SCC3 appears to localize at the chromosome axes until anaphase
I, but during mitosis it is present throughout the entire cell
cycle. Moreover, SYN1 binds normally to meiotic chromosomes
in scc3-1 plants, but in syn1-1 plants, SCC3 localizes incorrectly
to meiotic chromosome axes (Chelysheva et al., 2005). Whether
the two proteins interact is still unknown.

LOADING OF THE COHESIN COMPLEX

Before DNA replication, SCC2 and SCC4 (also known as the
NIBPL/MAU2 complex) mediate the recruitment of cohesin
to chromosomes in Saccharomyces cerevisiae, Caenorhabditis
elegans, and humans (Ciosk et al., 2000; Gillespie and Hirano,
2004; Watrin et al., 2006; Onn et al., 2008; Nasmyth and Haering,
2009). However, these proteins are not required to maintain
cohesion after the completion of DNA replication. In fact, large-
scale mapping in several organisms such as S. cerevisiae and
Schizosaccharomyces pombe has demonstrated that the cohesin
complex and SCC2 bind non-randomly to chromosomes and
that the respective binding loci may not overlap (Blat and
Kleckner, 1999; Glynn et al., 2004; Lengronne et al., 2004; Weber

et al., 2004; D’Ambrosio et al., 2008; Schmidt et al., 2009).
Cohesin is enriched in regions around centromeres and at sites
of convergent transcription, whereas SCC2 and SCC4 localize
with transfer RNA genes (Glynn et al., 2004; D’Ambrosio et al.,
2008). Cohesin may first associate with SCC2/SCC4, then relocate
to sites of convergent transcription through the action of RNA
polymerases (Lengronne et al., 2004; Hu et al., 2011; Fernius et al.,
2013). The specific function of SCC2/SCC4 during loading of
the cohesin complexes is unclear, but they may activate or prime
the ATPase activity of SMC proteins, somehow allowing cohesin
rings to entrap chromosomes (Haering et al., 2002; Arumugam
et al., 2003; Gruber et al., 2003, 2006; Seitan et al., 2006). This
behavior has been inferred from mutant SMC1 or SMC3 proteins
that cannot hydrolyze ATP. These mutations lead to a phenotype
that resembles that of scc2 or scc4 mutants in which cohesin rings
are formed but fail to associate with chromosomes (Arumugam
et al., 2003). Alternatively, it has been proposed that SCC2/SCC4
subunits might have a role in the remodeling of chromatin to
facilitate the binding of cohesin (Hakimi et al., 2002; Huang et al.,
2004; Ritchie et al., 2008).

In addition to SCC2/SCC4, other factors are required for
the association of cohesin with chromosomes. For example,
in Xenopus egg extracts, the CDC7/DRF1 kinase (DDK), a
component of pre-replication complexes (pre-RCs), is essential
for loading both SCC2/SCC4 and cohesin onto chromatin
(Gillespie and Hirano, 2004; Takahashi et al., 2004, 2008;
Ström et al., 2007). However, SCC2/SCC4 complexes have not
been found associated with pre-RCs in yeast (Uhlmann and
Nasmyth, 1998). In some instances, the kinetochore, transfer
RNA transcription factors or proteins related to epigenetic
mechanisms also participate in SCC2/SCC4-mediated loading of
cohesin (Nonaka et al., 2002; Weber et al., 2004; D’Ambrosio
et al., 2008). Nonetheless, although SCC2 and SCC4 are essential
for cohesin loading, they are dispensable for cohesin maintenance
and resolution during the S and G2 stages (Ciosk et al., 2000;
Lengronne et al., 2006).

Functional characterization indicated that SCC2/SCC4
is essential for establishing sister chromatid cohesion in
Arabidopsis (Sebastian et al., 2009). T-DNA insertional
mutations in SCC2 and SCC4 lead to defects in embryo and
endosperm development (Sebastian et al., 2009). Additionally,
RNAi knockdown of SCC2 leads to defects during male
and female meiosis, including chromosome clumping,
chromosome fragmentation, loss of chromatid cohesion,
SCC3 mis-distribution and defects in segregation (Sebastian
et al., 2009). The predicted protein sequence of Arabidopsis
SCC2 reveals a putative plant homeodomain (PHD) finger, a
domain involved in chromatin organization and regulation of
gene expression (Sebastian et al., 2009). Cytological analyses
of T-DNA insertional lines Atscc2-2, Atscc2-3, Atscc4-1 and
Atscc4-1 indicates that in these lines 25% of all embryos develop
only up to the heart stage and show loss of bilateral symmetry,
cell over-proliferation in the suspensor, and in the case of
Atscc2-2, over-proliferation of the endosperm (Minina et al.,
2017). In Atscc4-1 and Atssc2-2 analysis of the distribution of
the auxin-response reporter DR5rev::3xVENUS-N7 indicates
that most of the reporter is confined to the basal cells of the
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suspensor, which is the opposite to the wild type, suggesting
the existence of: (a) alterations in the embryogenic potential of
the suspensor in the mutants, and (b) a role for both SCC4 and
SCC2 in embryonic cell fate determination (Minina et al., 2017).
It was also found that SCC4 interacts stably with the N-terminus
of SCC2 in planta and in baker’s yeast, but this interaction
is not required for proper localization of SCC4 to the plant
nucleus in Atscc2-2 (Minina et al., 2017). The authors interpreted
both this finding and the colocalization of SCC4 with mitotic
kleisin RAD21.3/SYN4 during interphase as an indication that
Arabidopsis SCC4 may play a special role in the determination
of sites for cohesin loading on chromatin (Minina et al., 2017).
Taken together all these results indicate that in Arabidopsis the
SCC2 protein plays an important role during meiosis (Sebastian
et al., 2009), while the SCC2/SCC4 complex regulates embryo
and endosperm development with additional functions that are
specific for each subunit (Minina et al., 2017).

COHESION ESTABLISHMENT AND
MAINTENANCE

In yeast, sister chromatid cohesion is established during the
S phase of the cell cycle by the activity of Establishment of
cohesion 1/Chromosome transmission fidelity 7 (Eco1/Ctf7)
acetyltransferase soon after cohesins are recruited to
chromosomes (Skibbens et al., 1999; Tóth et al., 1999; Onn
et al., 2008; Nasmyth and Haering, 2009; Yuan et al., 2011).
Eco1/Ctf7 acetylates lysine residues in the Smc3 subunit, close to
its ATPase domain (K112 and K113). These residues are highly
conserved among eukaryotes and are also acetylated in human
cells by two proteins, establishment of sister chromatid cohesion
N-acetyltransferase 1 (ESCO1) and ESCO2 (Hou and Zou, 2005;
Zhang et al., 2008). Then the acetylated Smc3 protein interacts
stably with Scc1 and counteracts the activity of the Rad61/Wpl1
(Wapl) complex, which is thought to promote the disassociation
of cohesin from chromosomes (Rolef Ben-Shahar et al., 2008;
Unal et al., 2008; Zhang et al., 2008; Rowland et al., 2009; Woo
et al., 2009), possibly by interacting directly with the Ser/Thr
phosphatase PP4, which has been shown to target kleisin Rad21
for dephosphorylation (Birot et al., 2017).

Vertebrates express an additional essential cohesion regulator
called Sororin (Rankin et al., 2005). This protein associates
with cohesin via acetylation and antagonizes WAPL by binding
to PDS5 (Nishiyama et al., 2010). PDS5 also promotes SMC3
acetylation (Vaur et al., 2012; Chan et al., 2013). Hence, it
integrates an anti-establishment action (by WAPL) with its
requirement for cohesion maintenance during the cell cycle
progression (Schmitz et al., 2007; Nishiyama et al., 2010). The
Arabidopsis genome contains five putative PDS5 homologs that
share similarity with fungal and mammal sequences (Mercier
et al., 2001; Pradillo et al., 2015). Compromised expression
of several PDS5 genes leads to a significant reduction in
seed production (Pradillo et al., 2015). Depletion of PDS5
proteins alters only slightly meiotic division but alters DNA
repair by homologous recombination (HR) (Pradillo et al.,
2015).

The establishment of cohesion occurs concomitantly with
DNA replication (Uhlmann and Nasmyth, 1998). In addition
to Eco1 acetyltransferase, other proteins, related to DNA
replication, contribute to the establishment of the SCC. In
yeast, Eco1/Ctf7 interacts with DNA replication factors such as
proliferating cell nuclear antigen (PCNA, a DNA polymerase
processivity factor) (Moldovan et al., 2006), replication factor C
(a component of the clamp loader replication factor C) (Mayer
et al., 2001), the DNA helix itself (Mayer et al., 2004), and various
clamp loader subunits (Petronczki et al., 2004). Inactivation or
mutations in Eco1/Ctf7 lead to defects such as chromosome
mis-organization, mis-distribution of the cohesin complex and
activation of cell cycle checkpoints (Skibbens et al., 1999; Tóth
et al., 1999; Milutinovich et al., 2007). Deletions or mutations
in Rad61/Wpl1, Pds5, Smc3 and Scc3 may suppress the effect
of deletions in Eco1/Ctf7, which suggests a degree of functional
redundancy in the activity of Eco1/Ctf7 or that other factors can
modify cohesin to counteract the activity of Eco1/Ctf7 during the
establishment of cohesion (Warren et al., 2004; Rolef Ben-Shahar
et al., 2008; Rowland et al., 2009; Sutani et al., 2009; Chen et al.,
2012).

Experimental evidence indicates that Arabidopsis
ECO1/CTF7 can functionally replace its yeast ortholog (Jiang
et al., 2010; Bolaños-Villegas et al., 2013; Singh et al., 2013).
Arabidopsis CTF7 lacks an N-terminal extension common in
other organisms but features a PCNA-interacting protein (PIP)
box, a C2H2 zinc finger motif and an acetyltransferase domain
(Jiang et al., 2010). Similar to other species, Arabidopsis CTF7
appears to have a dosage-dependent function. Heterozygous ctf7
plants exhibit defects in the development of female gametophytes,
with no obvious defects in microsporogenesis. Vegetative growth
is normal in these plants, but siliques contain fewer seeds than
in WT plants and many show embryonic developmental defects.
Inactivation of Arabidopsis CTF7 typically results in embryo
lethality; however, homozygous ctf7 mutant plants, which are
completely sterile, can be obtained at very low frequencies.
These plants show a more drastic phenotype: they are dwarf and
feature fewer epidermal cells per area. Also, cell cycle progression
is defective (Bolaños-Villegas et al., 2013). Furthermore, ctf7
mutant plants exhibit a severe loss of sister chromatid cohesion
during mitosis and meiosis as well as significantly reduced
localization of cohesin onto chromosomes (Bolaños-Villegas
et al., 2013). The absence of ECO1/CTF7 impairs cytosine
methylation, especially CG methylation (Bolaños-Villegas and
Jauh, 2015). In addition, genes involved in HR are upregulated,
which suggests defects in DNA repair (Bolaños-Villegas et al.,
2013). Similar phenotypes were observed in plants transformed
with a dexamethasone-inducible CTF7-RNAi construct. Finally,
overexpression of the CTF7 genomic sequence leads to ovule
arrest at female gametophyte 1 stage (Liu and Makaroff, 2015).

Extensive studies in different species have shown that WAPL
controls mitotic sister chromatid cohesion and takes part in the
removal of cohesin (Kueng et al., 2006). In Drosophila, WAPL
has an important role in the organization of heterochromatin
(Vernì et al., 2000). The WAPL genomic sequence features a
conserved C-terminus that may be a determinant of cohesin and
a divergent N-terminal domain that in humans contains a PDS5
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binding domain (Chatterjee et al., 2013; Ouyang et al., 2013).
Although the effect of inactivation of WAPL during mitosis has
been studied in several organisms (Cunningham et al., 2012;
Chatterjee et al., 2013; Ouyang et al., 2013), much less is known
about its role during meiosis.

The Arabidopsis genome contains two WAPL genes that
appear to have a significant role in the removal of cohesin in
the prophase (De et al., 2014). Arabidopsis plants homozygous
for either of the wapl mutations have no obvious phenotype,
but double homozygous plants show reduced fertility and severe
defects in male meiosis, including defective organization of
heterochromatin regions during prophase I, altered pairing of
homologous chromosomes and delayed cohesin release during
the first meiotic division. Assembly of the meiotic spindle is also
severely impaired in double mutants. These problems may lead
to the formation of chromosome bridges, broken chromosomes,
uneven segregation of chromosomes and aneuploid gametes
(De et al., 2014). In contrast, cohesin complexes appear to be
removed normally in somatic cells (De et al., 2014). Hence,
Arabidopsis WAPL genes may play a critical role during meiosis,
and mechanisms involved in the removal of cohesin during
prophase may vary between mitosis and meiosis in plants.
Additionally, inactivation of the two Arabidopsis WAPL genes
can suppress the lethal phenotype produced by the lack of CTF7
(De et al., 2016) and allows for normal vegetative growth and
production of a reduced number of viable seeds (De et al.,
2016). Immunolocalization of SYN1 in meiocytes confirmed
that the release of cohesin during diakinesis is recovered in
wapl1 wapl2 ctf7 triple homozygous mutant plants (De et al.,
2016). However, comet assay experiments in vegetative tissues
revealed that both WAPL1/2 and ECO1/CTF7 are important for
the repair of DNA DSBs during the cell cycle in Arabidopsis
(De et al., 2016). In addition, flow cytometry revealed a
high level of aneuploidy in vegetative tissues of the triple
mutant (De et al., 2016). All these results demonstrate that
WAPL1/2 is important for the timely release of cohesion
during meiosis and that inactivation of WAPL1/2 most-likely
abrogates the requirement for SMC3 acetylation by CTF7
during mitosis (De et al., 2016). These plants are still able
to develop and reproduce, which suggests the presence of an
alternative cohesion pathway that awaits proper identification
and functional characterization.

The Arabidopsis SMC-like gene SWITCH (SWI1), also known
as DYAD, also plays a role in meiotic chromosome structure,
maintenance and cohesion. The name is due to its function as a
master controller of the switch from mitosis to meiosis (Mercier
et al., 2001; Schubert, 2009). The corresponding mutant exhibits
10 univalents (instead of 5 bivalents) at the end of prophase I.
Subsequently, chromatids lose their cohesion and their appear
individually at metaphase I (Mercier et al., 2001, 2003). SWI1 is a
plant-specific gene that has been characterized in several species.
The maize homolog is AMEIOTIC1 (AM1). In am1 mutants
premeiotic cells undergo mitosis instead of meiosis and meiotic-
specific cohesins are not installed on chromosomes (Pawlowski
et al., 2009). In rice, OsAM1 is required for meiotic progression
and the mutant fails to load OsREC8 on chromosome axes (Che
et al., 2011).

Cohesion establishment and maintenance is also controlled
by several posttranslational modifications. In addition to
the acetylation mentioned previously, phosphorylation
and SUMOylation play an essential role during cohesion
establishment. Indeed, cohesin SUMOylation is indispensable
for the entrapment of sister chromatids (Almedawar et al.,
2012). In this sense, SUMO accumulates at DNA damage sites in
S/G2-phase human cells in a cohesin-dependent manner. This
modification affects SCC1 and promotes DNA repair by sister
chromatid exchange by antagonizing WAPL (Wu et al., 2012).

COHESIN DISSOCIATION

During cell division, cohesin needs to be removed for segregation
of sister chromatids. The dissociation of cohesin is tightly
regulated and takes place during two phases that involve
different factors (Sumara et al., 2000; Waizenegger et al., 2000;
Peters and Nishiyama, 2012). During the mitotic prophase
and prometaphase stages, most cohesins are removed from
chromosome arms, but those at the centromere stay. However,
shortly before the onset of mitotic anaphase, all remaining
chromosome-bound cohesin (mainly at centromeres) is removed
when SCC1 is cleaved by Separase (Uhlmann et al., 1999; Sumara
et al., 2000; Tomonaga et al., 2000; Waizenegger et al., 2000;
Losada et al., 2002).

In vertebrates, Sororin is targeted for phosphorylation by
cyclin-dependent kinase 1 (CDK1)/Cyclin B, which facilitates the
action of PDS5–WAPL. This complex takes part in the release
of cohesin from the chromosome arms (Schmitz et al., 2007;
Nishiyama et al., 2010). The fraction of cohesin that remains at
centromeres is protected by Shugoshin 1 protein (SGO1), which
mediates the recruitment of Phosphatase 2A to protect cohesin
against phosphorylation and hinder its release (Kitajima et al.,
2004; Tang et al., 2006; Rivera and Losada, 2009). Other proteins
such as Haspin (a histone H3 kinase) and Prohibitin 2 have been
found involved in the protection of cohesion at centromeres (Dai
et al., 2006).

The bi-orientation of chromosomes at metaphase is possible
because cohesin is preserved at centromeres. Before metaphase,
the anaphase-promoting complex (APC/C) remains inactive
and Separase is inhibited by Securin and Cyclin B (Stemmann
et al., 2001; Toyoda et al., 2002; Musacchio and Salmon, 2007).
This pathway is regulated by the spindle assembly checkpoint
(SAC). At the onset of anaphase, the SAC is disrupted and
APC/C becomes active and targets Securin and Cyclin B for
ubiquitylation and destruction (Uhlmann et al., 1999; Hauf et al.,
2001; Musacchio and Salmon, 2007). Free from its inhibitors,
Separase is released and activated (Nasmyth, 2000). At the
same time, SGO1 is released from the centromere and SCC1
is phosphorylated. Separase then proceeds to cleave SCC1 and
remove cohesin from sister chromatids (Nasmyth, 2000; Hauf
et al., 2001). Finally, SMC3 is deacetylated by the histone lysine
deacetylase 1 for reuse in the next cycle (Rivera and Losada,
2010).

During meiosis, cleavage along chromosome arms is pivotal
for disjunction of homologous chromosomes at anaphase I, but
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it must not occur at centromeres, because cohesion of sister
chromatids is indispensable for their correct bi-orientation at
metaphase II (Bai et al., 1999). REC8, and other meiotic-specific
factors such as SMC1β (SMC1) or Stromal Antigen 3 (SCC3)
work in concert to protect centromeric cohesion during anaphase
I and interkinesis (Dong et al., 2001; Prieto et al., 2001; Revenkova
et al., 2001).

In Arabidopsis, the protection of meiotic centromeric
cohesion depends on several proteins including SGO1 and SGO2,
which are required at anaphase I, and PATRONUS 1 (PANS1),
which is required at interkinesis and meiosis II and is presumably
targeted by the APC/C complex (Cromer et al., 2013; Zamariola
et al., 2013). In sgo1 sgo2 double mutant plants, immunolabeling
for REC8/SYN1 suggested that this protein is not present at
metaphase II (Cromer et al., 2013). The pans1 mutant features
up to 10 single chromatids at each metaphase II plate and no
REC8/SYN1 signal at metaphase II in chromatids (Cromer et al.,
2013). PANS1 may protect REC8 or may inhibit cohesin release
by WAPL inactivation (Cromer et al., 2013; Zamariola et al.,
2013).

The predicted Arabidopsis Separase protein (extra
spindle pole bodies 1, ESP1) is significantly longer than the
corresponding proteins from yeast, worm, and fly, but is
similar to the mammalian protein (Liu and Makaroff, 2006).
ESP1 proteins from different organisms show high similarity
in the C-terminus, which features a C-50 peptidase domain
(Liu and Makaroff, 2006). The ESP1 peptidase domain shares
approximately 20% sequence identity with the mammalian
enzyme. However, the Arabidopsis ESP1 peptidase domain is
considerably longer than those found in other organisms (700
vs. ∼400–470 amino acids) (Liu and Makaroff, 2006). Moreover,
this domain consists of a predicted 2Fe-2S-Ferredoxin domain
that is not present in other organisms. ESP1 in Arabidopsis
contains an EF-hand/calcium-binding domain, which is also
present in budding yeast, where it is important for initiation or
maintenance of its association with the spindle (Jensen et al.,
2001; Liu and Makaroff, 2006). The calcium-binding domain
may have the same function in plants, but this has not yet
been proven. Analysis of T-DNA insertional mutants suggests
that ESP1 is an essential gene in that no homozygous plants
from two different alleles could be obtained (Liu and Makaroff,
2006). Moreover 25% of the seeds from heterozygous plants
for the T-DNA insertions showed enlarged endosperm nuclei
and nucleoli, a failure of the endosperm to cellularize, and
embryo arrest at the globular stage, indicating that the protein is
essential for embryo development (Liu and Makaroff, 2006). The
radially swollen 4 (rsw4) mutant is a temperature-sensitive line
that contains a mis-sense mutation in ESP1 (Wu et al., 2010);
replicated chromosomes fail to disjoin in roots. In addition, the
roots of rsw4 accumulate high levels of the mitotic-specific Cyclin
B1 and show disorganized cortical microtubules. However, how
inactivation of ESP1 specifically affects Cyclin B1 remains to be
determined (Liu and Makaroff, 2006).

The role of ESP1 in Arabidopsis mitosis and meiosis has
also been investigated by means of an RNAi construct driven
by the 35S and meiotic-specific DMC1 promoters (Yang et al.,
2009). The inability to recover RNAi plants containing the

35S promoter suggested that ESP1 is an essential gene during
mitosis. RNAi plants containing the DMC1 promoter showed
entangled and stretched chromosomes during anaphases I and II
(Yang et al., 2009). In addition, chromosome bridges and DNA
fragmentation were observed, which suggested that ESP1 is an
essential gene for HR as well as chromosome segregation during
both meiotic divisions (Liu and Makaroff, 2006; Yang et al.,
2009). SYN1 and SMC3 signals persisted along the chromosome
arms and the centromeres throughout meiosis in DMC1-ESP1-
RNAi plants. ESP1 RNAi knockdown during meiosis induced
non-homologous association of centromeres, disruption of the
radial microtubule system after telophase II, and disruption of the
nuclear cytoplasm, which resulted in multinucleate microspores
(Yang et al., 2009). Thus, ESP1 appears to function beyond the
removal of cohesin in plant cells. Despite the importance of ESP1,
little is known about the mechanism of its regulation in plants
(Yang et al., 2009). Analysis of plant genomes has failed to identify
a putative plant homolog of Securin, and no experimental work
has been conducted on the activation of the Separase pathway.

ROLE OF COHESIN IN REPAIR OF DSBs

Cohesin is important for postreplicative repair of DSBs in both
mitosis and meiosis (Klein et al., 1999; Cortés-Ledesma and
Aguilera, 2006). The essential function of cohesin in DNA
repair is to allow a DSB on one sister to be repaired using the
undamaged sister as a template. Thus, it brings the two sister
chromatids into close proximity to facilitate the repair by HR. In
budding yeast, cohesin is removed from the chromatin at DSB
sites to promote DSB resection and repair (McAleenan et al.,
2013).

As discussed above, SYN2/AtRAD21.1 and SYN4/AtRAD21.3
have been shown to play roles in DNA repair (da Costa-Nunes
et al., 2006, 2014). Further, results from the characterization of
ctf7 and wapl1 wapl2 ctf7 single and triple mutants suggested
that the failure to establish and regulate cohesion leads to
the expression of genes involved in HR and the establishment
of cohesion, including ATM, BRCA1, RAD51, PARP2, SMC5,
SMC6B, and TOPOII-α in vegetative tissues (Bolaños-Villegas
et al., 2013; De et al., 2016). The basis for these changes in gene
expression is not well understood and whether alternate error-
prone DNA repair mechanisms such as non-homologous end
joining (NHEJ) are activated is unclear. In this context, it is worth
mentioning that in human cells the cohesin complex contributes
to the protection of distinct double-strand ends in the NHEJ
DNA repair pathway, helping to avoid genome rearrangements
in S/G2 phases (Gelot et al., 2016). It has been also demonstrated
that the interaction between BREAST CANCER 2 (BRCA2) and
cohesin via PDS5 is important for HR (Brough et al., 2012).
In Arabidopsis, PDS5 genes are overexpressed upon exposure
to γ-rays. Furthermore, the absence of PDS5 proteins causes
hypersensitivity to DNA damaging agents and severely reduced
HR, which is probably related to reduced expression of SMC6
genes (Pradillo et al., 2015). The Arabidopsis SMC5/SMC6
complex meliorates sister chromatid alignment after DNA
damage, allowing DNA repair by HR (Mengiste et al., 1999;
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Watanabe et al., 2009). Conversely, the reduced repair efficiency
by HR in smc6b mutants may facilitate gene editing (Qi et al.,
2013). It has been proposed that cohesin and SMC5/SMC6 have
partially overlapping functions and can complement one another
if necessary (Tapia-Alveal et al., 2014).

Beyond its function in DNA segregation and repair, cohesin
influences other important biological processes such as the
regulation of gene expression, duplication of centrosomes and
spindle polar bodies, and chromosome condensation (Mehta
et al., 2013). In meiosis, cohesin complexes are also important
for repairing DSBs. Unlike mitosis, during meiosis the formation
of DSBs is programmed and most of them are repaired using
non-sister chromatids as templates. Meiotic cohesin complexes
also influence chromosome organization to ensure proper
chromosome pairing, synapsis, and recombination (Bardhan,
2010; Zamariola et al., 2014). They also have a role in centromere
coupling, a mechanism by which non-homologous centromeres
pair during prophase I in HR-defective mutants (Tsubouchi
and Roeder, 2005) and in bouquet formation, the clustering of
telomeres anchored to the nuclear envelope at early meiotic stages
(Golubovskaya et al., 2006; Storlazzi et al., 2008).

CONCLUSION

The establishment of chromatid cohesion is crucial for ensuring
accurate chromosome dynamics throughout the cell cycle.
In plant cells, it is also essential for the development of
embryos and seeds and the ability of plants to deal with
DNA damage caused by ionizing radiation and faulty DNA
replication. During meiosis, cohesin forms a platform for the
assembly of the SC, plays an essential role in the exchange
between homologous chromosomes and ensures their correct
segregation at anaphase I. The regulation of meiotic and
mitotic processes has a far-reaching effect on the survival and
propagation of a species. Also, for agricultural applications,

the study and characterization of genes involved in the
establishment of cohesion has potential to enhance the long-term
survival, reproduction and adaptation of crops under adverse
environmental conditions, including increased UV radiation
and the presence of genotoxic agents in soil and water. In
addition, cohesin manipulation could be an useful tool to
generate clonal seeds by apomixis, a type of asexual reproduction
that avoids meiosis. Further work is needed to continue the
characterization of plant cohesin complexes, the mechanics of
its regulation and to explore its potential application for plant
breeding.
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