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The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements
have fascinated plant biologists and mathematicians alike. As such, plant morphology
is inherently mathematical in that it describes plant form and architecture with
geometrical and topological techniques. Gaining an understanding of how to modify
plant morphology, through molecular biology and breeding, aided by a mathematical
perspective, is critical to improving agriculture, and the monitoring of ecosystems
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is vital to modeling a future with fewer natural resources. In this white paper, we begin
with an overview in quantifying the form of plants and mathematical models of patterning
in plants. We then explore the fundamental challenges that remain unanswered
concerning plant morphology, from the barriers preventing the prediction of phenotype
from genotype to modeling the movement of leaves in air streams. We end with a
discussion concerning the education of plant morphology synthesizing biological and
mathematical approaches and ways to facilitate research advances through outreach,
cross-disciplinary training, and open science. Unleashing the potential of geometric and
topological approaches in the plant sciences promises to transform our understanding
of both plants and mathematics.

Keywords: plant biology, plant science, morphology, mathematics, topology, modeling

INTRODUCTION

Morphology from the Perspective of
Plant Biology
The study of plant morphology interfaces with all biological
disciplines (Figure 1). Plant morphology can be descriptive
and categorical, as in systematics, which focuses on biological
homologies to discern groups of organisms (Mayr, 1981; Wiens,
2000). In plant ecology, the morphology of communities defines
vegetation types and biomes, including their relationship to the
environment. In turn, plant morphologies are mutually informed
by other fields of study, such as plant physiology, the study of the
functions of plants, plant genetics, the description of inheritance,
and molecular biology, the underlying gene regulation (Kaplan,
2001).

Plant morphology is more than an attribute affecting plant
organization, it is also dynamic. Developmentally, morphology
reveals itself over the lifetime of a plant through varying
rates of cell division, cell expansion, and anisotropic growth
(Esau, 1960; Steeves and Sussex, 1989; Niklas, 1994). Response
to changes in environmental conditions further modulate
the abovementioned parameters. Development is genetically
programmed and driven by biochemical processes that are
responsible for physical forces that change the observed
patterning and growth of organs (Green, 1999; Peaucelle et al.,
2011; Braybrook and Jönsson, 2016). In addition, external
physical forces affect plant development, such as heterogeneous
soil densities altering root growth or flows of air, water, or
gravity modulating the bending of branches and leaves (Moulia
and Fournier, 2009). Inherited modifications of development
over generations results in the evolution of plant morphology
(Niklas, 1997). Development and evolution set the constraints
for how the morphology of a plant arises, regardless of whether
in a systematic, ecological, physiological, or genetic context
(Figure 1).

Plant Morphology from the Perspective
of Mathematics
In 1790, Johann Wolfgang von Goethe pioneered a perspective
that transformed the way mathematicians think about plant
morphology: the idea that the essence of plant morphology

is an underlying repetitive process of transformation (Goethe,
1790; Friedman and Diggle, 2011). The modern challenge
that Goethe’s paradigm presents is to quantitatively describe
transformations resulting from differences in the underlying
genetic, developmental, and environmental cues. From a
mathematical perspective, the challenge is how to define shape
descriptors to compare plant morphology with topological
and geometrical techniques and how to integrate these shape
descriptors into simulations of plant development.

Mathematics to Describe Plant Shape and
Morphology
Several areas of mathematics can be used to extract quantitative
measures of plant shape and morphology. One intuitive
representation of the plant form relies on the use of skeletal
descriptors that reduce the branching morphology of plants to
a set of intersecting lines or curve segments, constituting a
mathematical graph. These skeleton-based mathematical graphs
can be derived from manual measurement (Godin et al.,
1999; Watanabe et al., 2005) or imaging data (Bucksch et al.,
2010; Aiteanu and Klein, 2014). Such skeletal descriptions
can be used to derive quantitative measurements of lengths,
diameters, and angles in tree crowns (Bucksch and Fleck, 2011;
Raumonen et al., 2013; Seidel et al., 2015) and roots, at a
single time point (Fitter, 1987; Danjon et al., 1999; Lobet
et al., 2011; Galkovskyi et al., 2012) or over time to capture
growth dynamics (Symonova et al., 2015). Having a skeletal
description in place allows the definition of orders, in a biological
and mathematical sense, to enable morphological analysis from
a topological perspective (Figure 2A). Topological analyses
can be used to compare shape characteristics independently
of events that transform plant shape geometrically, providing
a framework by which plant morphology can be modeled.
The relationships between orders, such as degree of self-
similarity (Prusinkiewicz, 2004) or self-nestedness (Godin and
Ferraro, 2010) are used to quantitatively summarize patterns
of plant morphology. Persistent homology (Figure 2B), an
extension of Morse theory (Milnor, 1963), transforms a given
plant shape gradually to define self-similarity (MacPherson and
Schweinhart, 2012) and morphological properties (Edelsbrunner
and Harer, 2010; Li et al., 2017) on the basis of topological
event statistics. In the example in Figure 2B, topological
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FIGURE 1 | Plant morphology from the perspective of biology. Adapted from Kaplan (2001). Plant morphology interfaces with all disciplines of plant biology—plant
physiology, plant genetics, plant systematics, and plant ecology—influenced by both developmental and evolutionary forces.

events are represented by the geodesic distance at which
branches are “born” and “die” along the length of the
structure.

In the 1980s, David Kendall defined an elegant statistical
framework to compare shapes (Kendall, 1984). His idea was
to compare the outline of shapes in a transformation-invariant
fashion. This concept infused rapidly as morphometrics into
biology (Bookstein, 1997) and is increasingly carried out using
machine vision techniques (Wilf et al., 2016). Kendall’s idea
inspired the development of methods such as elliptical Fourier
descriptors (Kuhl and Giardina, 1982) and new trends employing
the Laplace Beltrami operator (Reuter et al., 2009), both relying
on the spectral decompositions of shapes (Chitwood et al.,
2012; Laga et al., 2014; Rellán-Álvarez et al., 2015). Beyond
the organ level, such morphometric descriptors were used to
analyze cellular expansion rates of rapidly deforming primordia
into mature organ morphologies (Rolland-Lagan et al., 2003;
Remmler and Rolland-Lagan, 2012; Das Gupta and Nath,
2015).

From a geometric perspective, developmental processes
construct surfaces in a three-dimensional space. Yet, the
embedding of developing plant morphologies into a three-
dimensional space imposes constraints on plant forms.
Awareness of such constraints has led to new interpretations
of plant morphology (Prusinkiewicz and de Reuille, 2010;
Bucksch et al., 2014b) that might provide avenues to
explain symmetry and asymmetry in plant organs (e.g.,
Martinez et al., 2016) or the occurrence of plasticity as a
morphological response to environmental changes (e.g.,

Royer et al., 2009; Palacio-López et al., 2015; Chitwood et al.,
2016).

Mathematics to Simulate Plant Morphology
Computer simulations use principles from graph theory, such as
graph rewriting, to model plant morphology over developmental
time by successively augmenting a graph with vertices and edges
as plant development unfolds. These rules unravel the differences
between observed plant morphologies across plant species
(Kurth, 1994; Prusinkiewicz et al., 2001; Barthélémy and Caraglio,
2007) and are capable of modeling fractal descriptions that reflect
the repetitive and modular appearance of branching structures
(Horn, 1971; Hallé, 1971, 1986). Recent developments in
functional-structural modeling abstract the genetic mechanisms
driving the developmental program of tree crown morphology
into a computational framework (Runions et al., 2007; Palubicki
et al., 2009; Palubicki, 2013). Similarly, functional-structural
modeling techniques are utilized in root biology to simulate the
efficiency of nutrient and water uptake following developmental
programs (Nielsen et al., 1994; Dunbabin et al., 2013).

Alan Turing, a pioneering figure in 20th-century science, had a
longstanding interest in phyllotactic patterns. Turing’s approach
to the problem was twofold: first, a detailed geometrical analysis
of the patterns (Turing, 1992), and second, an application of
his theory of morphogenesis through local activation and long-
range inhibition (Turing, 1952), which defined the first reaction-
diffusion system for morphological modeling. Combining
physical experiments with computer simulations, Douady and
Coudert (1996) subsequently modeled a diffusible chemical signal

Frontiers in Plant Science | www.frontiersin.org 3 June 2017 | Volume 8 | Article 900

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00900 June 20, 2017 Time: 18:25 # 4

Bucksch et al. Plant Morphological Modeling

FIGURE 2 | Plant morphology from the perspective of mathematics. (A) The
topological complexity of plants requires a mathematical framework to
describe and simulate plant morphology. Shown is the top of a maize crown
root 42 days after planting. Color represents root diameter, revealing topology
and different orders of root architecture. Image by Jennifer T. Yang and
provided by JPL (Pennsylvania State University). (B) Persistent homology
deforms a given plant morphology using functions to define self-similarity in a
structure. In this example, a geodesic distance function is traversed to the
ground level of a tree (that is, the shortest curved distance of each voxel to the
base of the tree), as visualized in blue in successive images. The branching
structure, as defined across scales of the geodesic distance function is
recorded as an H0 (zero-order homology) barcode, which in persistent
homology refers to connected components. As the branching structure is
traversed by the function, connected components are “born” and “die” as
terminal branches emerge and fuse together. Each of these components is
indicated as a bar in the H0 barcode, and the correspondence of the barcode
to different points in the function is indicated by vertical lines, in pink. Images
provided by ML (Danforth Plant Science Center).

produced by a developing primordium that would inhibit the
initiation of nearby primordia, successfully recapitulating known
phyllotactic patterns in the shoot apical meristem (Bernasconi,
1994; Meinhardt, 2004; Jönsson et al., 2005; Nikolaev et al., 2007;

Hohm et al., 2010; Fujita et al., 2011), the number of floral organs
(Kitazawa and Fujimoto, 2015), the regular spacing of root hairs
(Meinhardt and Gierer, 1974), and the establishment of specific
vascular patterns (Meinhardt, 1976).

EMERGING QUESTIONS AND BARRIERS
IN THE MATHEMATICAL ANALYSIS OF
PLANT MORPHOLOGY

A true synthesis of plant morphology, which comprehensively
models observed biological phenomena and incorporates a
mathematical perspective, remains elusive. In this section, we
highlight current focuses in the study of plant morphology,
including the technical limits of acquiring morphological data,
phenotype prediction, responses of plants to the environment,
models across biological scales, and the integration of complex
phenomena, such as fluid dynamics, into plant morphological
models.

Technological Limits to Acquiring Plant
Morphological Data
There are several technological limits to acquiring plant
morphological data that must be overcome to move this field
forward. One such limitation is the acquisition of quantitative
plant images. Many acquisition systems do not provide
morphological data with measurable units. Approaches that rely
on the reflection of waves from the plant surface can provide
quantitative measurements for morphological analyses. Time of
flight scanners, such as terrestrial laser scanning, overcome unit-
less measurement systems by recording the round-trip time of
hundreds of thousands of laser beams sent at different angles
from the scanner to the first plant surface within the line of sight
(Vosselman and Maas, 2010) (Figure 3). Leveraging the speed of
light allows calculation of the distance between a point on the
plant surface and the laser scanner.

Laser scanning and the complementary, yet unitless, approach
of stereovision both produce surface samples or point clouds as
output. However, both approaches face algorithmic challenges
encountered when plant parts occlude each other, since both
rely on the reflection of waves from the plant surface (Bucksch,
2014). Radar provides another non-invasive technique to study
individual tree and forest structures over wide areas. Radar
pulses can either penetrate or reflect from foliage, depending
on the selected wavelength (Kaasalainen et al., 2015). Most
radar applications occur in forestry and are being operated from
satellites or airplanes. Although more compact and agile systems
are being developed for precision forestry above- and below-
ground (Feng et al., 2016), their resolution is too low to acquire
the detail in morphology needed to apply hierarchy or similarity
oriented mathematical analysis strategies.

Image acquisition that resolves occlusions by penetrating plant
tissue is possible with X-ray (Kumi et al., 2015) and magnetic
resonance imaging (MRI; van Dusschoten et al., 2016). While
both technologies resolve occlusions and can even penetrate
soil, their limitation is the requirement of a closed imaging
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FIGURE 3 | Terrestrial laser scanning creates a point cloud reconstruction of a Finnish forest. (A) Structure of a boreal forest site in Finland as seen with airborne
(ALS) and terrestrial (TLS) laser scanning point clouds. The red (ground) and green (above-ground) points are obtained from National Land Survey of Finland national
ALS point clouds that cover hundreds of thousands of square kilometers with about 1 point per square meter resolution. The blue and magenta point clouds are
results of two individual TLS measurements and have over 20 million points each within an area of about 500 m2. TLS point density varies with range but can be
thousands of points per square meter up to tens of meters away from the scanner position. (B) An excerpt from a single TLS point cloud (blue). The TLS point cloud
is so dense that individual tree point clouds (orange) and parts from them (yellow) can be selected for detailed analysis. (C) A detail from a single TLS point cloud.
Individual branches (yellow) 20 m above ground can be inspected from the point cloud with centimeter level resolution to estimate their length and thickness. Images
provided by EP (Finnish Geospatial Research Institute in the National Land Survey of Finland). ALS data was obtained from the National Land Survey of Finland
Topographic Database, 08/2012 (National Land Survey of Finland open data license, version 1.0).

volume. Thus, although useful for a wide array of purposes, MRI
and X-ray are potentially destructive if applied to mature plant
organs such as roots in the field or tree crowns that are larger
than the imaging volume (Fiorani et al., 2012). Interior plant

anatomy can be imaged destructively using confocal microscopy
and laser ablation (Figure 4) or nano- or micro-CT tomography
techniques, that are limited to small pot volumes, to investigate
the first days of plant growth.
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FIGURE 4 | Imaging techniques to capture plant morphology. (A) Confocal sections of an Arabidopsis root. The upper panel shows a new lateral root primordium at
an early stage of development (highlighted in yellow). At regular intervals new roots branch from the primary root. The lower panel shows the primary root meristem
and the stem cell niche (highlighted in yellow) from which all cells derive. Scale bars: 100 µm. Images provided by AM (Heidelberg University). (B) Computational
tomographic (CT) x-ray sections through a reconstructed maize ear (left and middle) and kernel (right). Images provided by CT (Donald Danforth Plant Science
Center). (C) Laser ablation tomography (LAT) image of a nodal root from a mature, field-grown maize plant, with color segmentation showing definition of cortical
cells, aerenchyma lacunae, and metaxylem vessels. Image by Jennifer T. Yang and provided by JPL (Pennsylvania State University).
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The Genetic Basis of Plant Morphology
One of the outstanding challenges in plant biology is to link the
inheritance and activity of genes with observed phenotypes. This
is particularly challenging for the study of plant morphology,
as both the genetic landscape and morphospaces are complex:
modeling each of these phenomena alone is difficult, let alone
trying to model morphology as a result of genetic phenomena
(Benfey and Mitchell-Olds, 2008; Lynch and Brown, 2012;
Chitwood and Topp, 2015). Although classic examples exist
in which plant morphology is radically altered by the effects
of a few genes (Doebley, 2004; Clark et al., 2006; Kimura
et al., 2008), many morphological traits have a polygenic basis
(Langlade et al., 2005; Tian et al., 2011; Chitwood et al.,
2013).

Quantitative trait locus (QTL) analyses can identify the
polygenic basis for morphological traits that span scales from
the cellular to the whole organ level. At the cellular level, root
cortex cell number (Ron et al., 2013), the cellular basis of carpel
size (Frary et al., 2000), and epidermal cell area and number
(Tisné et al., 2008) have been analyzed. The genetic basis of
cellular morphology ultimately affects organ morphology, and
quantitative genetic bases for fruit shape (Paran and van der
Knaap, 2007; Monforte et al., 2014), root morphology (Zhu et al.,
2005; Clark et al., 2011; Topp et al., 2013; Zurek et al., 2015),
shoot apical meristem shape (Leiboff et al., 2015; Thompson et al.,
2015), leaf shape (Langlade et al., 2005; Ku et al., 2010; Tian et al.,
2011; Chitwood et al., 2014a,b; Zhang et al., 2014; Truong et al.,
2015), and tree branching (Kenis and Keulemans, 2007; Segura
et al., 2009) have been described.

Natural variation in cell, tissue, or organ morphology
ultimately impacts plant physiology, and vice versa. For example,
formation of root cortical aerenchyma was linked to better plant
growth under conditions of suboptimal availability of water and
nutrients (Zhu et al., 2010; Postma and Lynch, 2011; Lynch,
2013), possibly because aerenchyma reduces the metabolic costs
of soil exploration. Maize genotypes with greater root cortical
cell size or reduced root cortical cell file number reach greater
depths to increase water capture under drought conditions,
possibly because those cellular traits reduce metabolic costs of
root growth and maintenance (Chimungu et al., 2015). The
control of root angle that results in greater water capture in
rice as water tables recede was linked to the control of auxin
distribution (Uga et al., 2013). Similarly, in shoots, natural
variation can be exploited to find genetic loci that control shoot
morphology, e.g., leaf erectness (Ku et al., 2010; Feng et al.,
2011).

High-throughput phenotyping techniques are increasingly
used to reveal the genetic basis of natural variation (Tester
and Langridge, 2010). In doing so, phenotyping techniques
complement classic approaches of reverse genetics and often lead
to novel insights, even in a well-studied species like Arabidopsis
thaliana. Phenotyping techniques have revealed a genetic basis
for dynamic processes such as root growth (Slovak et al., 2014)
and traits that determine plant height (Yang et al., 2014).
Similarly, high-resolution sampling of root gravitropism has
led to an unprecedented understanding of the dynamics of the

genetic basis of plasticity (Miller et al., 2007; Brooks et al., 2010;
Spalding and Miller, 2013).

The Environmental Basis of Plant
Morphology
Phenotypic plasticity is defined as the ability of one genotype
to produce different phenotypes based on environmental
differences (Bradshaw, 1965; DeWitt and Scheiner, 2004) and
adds to the phenotypic complexity created by genetics and
development. Trait variation in response to the environment
has been analyzed classically using ‘reaction norms,’ where the
phenotypic value of a certain trait is plotted for two different
environments (Woltereck, 1909). If the trait is not plastic, the
slope of the line connecting the points will be zero; if the reaction
norm varies across the environment the trait is plastic and the
slope of the reaction norm line will be a measure of the plasticity.
As most of the responses of plants to their environment are non-
linear, more insight into phenotypic plasticity can be obtained
by analyzing dose-response curves or dose-response surfaces
(Mitscherlich, 1909; Poorter et al., 2010).

Seminal work by Clausen et al. (1941) demonstrated using
several clonal species in a series of reciprocal transplants that,
although heredity exerts the most measureable effects on plant
morphology, environment is also a major source of phenotypic
variability. Research continues to explore the range of phenotypic
variation expressed by a given genotype in the context of different
environments, which has important implications for many fields,
including conservation, evolution, and agriculture (Nicotra et al.,
2010; DeWitt, 2016). Many studies examine phenotypes across
latitudinal or altitudinal gradients, or other environmental clines,
to characterize the range of possible variation and its relationship
to the process of local adaptation (Cordell et al., 1998; Díaz et al.,
2016).

Below-ground, plants encounter diverse sources of
environmental variability, including water availability, soil
chemistry, and physical properties like soil hardness and
movement. These factors vary between individual plants (Razak
et al., 2013) and within an individual root system, where plants
respond at spatio-temporal levels to very different granularity
(Drew, 1975; Robbins and Dinneny, 2015). Plasticity at a micro-
environmental scale has been linked to developmental and
molecular mechanisms (Bao et al., 2014). The scientific challenge
here is to integrate these effects at a whole root system level and
use different scales of information to understand the optimal
acquisition in resource limited conditions (Rellán-Álvarez et al.,
2016) (Figure 5).

Integrating Models from Different Levels
of Organization
Since it is extremely difficult to examine complex interdependent
processes occurring at multiple spatio-temporal scales,
mathematical modeling can be used as a complementary
tool with which to disentangle component processes and
investigate how their coupling may lead to emergent patterns
at a systems level (Hamant et al., 2008; Band and King, 2012;
Band et al., 2012; Jensen and Fozard, 2015). To be practical, a
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FIGURE 5 | The environmental basis of plant morphology. Root system architecture of Arabidopsis Col-0 plants expressing ProUBQ10:LUC2o growing in (A) control
and (B) water-deficient conditions using the GLO-Roots system (Rellán-Álvarez et al., 2015). Images provided by RR-Á (Laboratorio Nacional de Genómica para la
Biodiversidad, CINVESTAV) are a composite of a video originally published (Rellán-Álvarez et al., 2015).

multiscale model should generate well-constrained predictions
despite significant parameter uncertainty (Gutenkunst et al.,
2007; Hofhuis et al., 2016). It is desirable that a multiscale model
has certain modularity in its design such that individual modules
are responsible for modeling specific spatial aspects of the system
(Baldazzi et al., 2012). Imaging techniques can validate multiscale
models (e.g., Willis et al., 2016) such that simulations can reliably
guide experimental studies.

To illustrate the challenges of multi-scale modeling,
we highlight an example that encompasses molecular and
cellular scales. At the molecular scale, models can treat some
biomolecules as diffusive, but others, such as membrane-bound
receptors, can be spatially restricted (Battogtokh and Tyson,
2016). Separately, at the cellular scale, mathematical models
describe dynamics of cell networks where the mechanical
pressures exerted on the cell walls are important factors for cell
growth and division (Jensen and Fozard, 2015) (Figure 6A).
In models describing plant development in a two-dimensional
cross-section geometry, cells are often modeled as polygons
defined by walls between neighboring cells. The spatial position
of a vertex, where the cell walls of three neighboring cells
coalesce, is a convenient variable for mathematical modeling of
the dynamics of cellular networks (Prusinkiewicz and Runions,
2012). A multiscale model can then be assembled by combining
the molecular and cellular models. Mutations and deletions of the
genes encoding the biomolecules can be modeled by changing
parameters. By inspecting the effects of such modifications
on the dynamics of the cellular networks, the relationship
between genotypes and phenotypes can be predicted. For
example, Fujita et al. (2011) model integrates the dynamics of

cell growth and division with the spatio-temporal dynamics of
the proteins involved in stem cell regulation and simulates shoot
apical meristem development in wild type and mutant plants
(Figure 6B).

Modeling the Impact of Morphology on
Plant Function
Quantitative measures of plant morphology are critical to
understand function. Vogel (1989) was the first to provide
quantitative data that showed how shape changes in leaves reduce
drag or friction in air or water flows. He found that single
broad leaves reconfigure at high flow velocities into cone shapes
to reduce flutter and drag (Figures 7A,B). More recent work
discovered that the cone shape is significantly more stable than
other reconfigurations such as U-shapes (Miller et al., 2012).
Subsequent experimental studies on broad leaves, compound
leaves, and flowers also support rapid repositioning in response
to strong currents as a general mechanism to reduce drag
(Niklas, 1992; Ennos, 1997; Etnier and Vogel, 2000; Vogel, 2006)
(Figure 7C). It is a combination of morphology and anatomy,
and the resultant material properties, which lead to these optimal
geometric re-configurations of shape.

From a functional perspective, it is highly plausible that leaf
shape and surface-material properties alter the boundary layer of
a fluid/gas over the leaf surface or enhance passive movement that
can potentially augment gas and heat exchange. For example, it
has been proposed that the broad leaves of some trees flutter for
the purpose of convective and evaporative heat transfer (Thom,
1968; Grant, 1983). Any movement of the leaf relative to the
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FIGURE 6 | Integration of tissue growth and reaction-diffusion models. (A) Vertex model of cellular layers (Prusinkiewicz and Lindenmayer, 1990). K, Ela, and El0 are
the spring constant, current length, and rest length for wall a. KP is a constant and SA is the size of cell A. 1t is time step. Shown is a simulation of cell network
growth. (B) Reaction diffusion model of the shoot apical meristem for WUSCHEL and CLAVATA interactions (Fujita et al., 2011). u = WUS, v = CLV, i = cell index, 8 is
a sigmoid function. E, B, AS, Ad, C, D, um, Du, Dv are positive constants. Shown are the distributions of WUS and CLV levels within a dynamic cell network. Images
provided by DB (Virginia Tech).

movement of the air or water may decrease the boundary layer
and increase gas exchange, evaporation, and heat dissipation
(Roden and Pearcy, 1993). Each of these parameters may be
altered by the plant to improve the overall function of the leaf
(Vogel, 2012).

The growth of the plant continuously modifies plant topology
and geometry, which in turn changes the balance between
organ demand and production. At the organismal scale, the
3D spatial distribution of plant organs is the main interface
between the plant and its environment. For example, the 3D
arrangement of branches impacts light interception and provides
the support for different forms of fluxes (water, sugars) and
signals (mechanical constraints, hormones) that control plant
functioning and growth (Godin and Sinoquet, 2005).

MILESTONES IN EDUCATION AND
OUTREACH TO ACCELERATE THE
INFUSION OF MATH INTO THE PLANT
SCIENCES

Mathematics and plant biology need to interact more closely to
accelerate scientific progress. Opportunities to interact possibly
involve cross-disciplinary training, workshops, meetings, and
funding opportunities. In this section, we outline perspectives
for enhancing the crossover between mathematics and plant
biology.

Education
Mathematics has been likened to “biology’s next microscope,”
because of the insights into an otherwise invisible world
it has to offer. Conversely, biology has been described as
“mathematics’ next physics,” stimulating novel mathematical
approaches because of the hitherto unrealized phenomena that
biology studies (Cohen, 2004). The scale of the needed interplay
between mathematics and plant biology is enormous and may
lead to new science disciplines at the interface of both: ranging
from the cellular, tissue, organismal, and community levels to
the global; touching upon genetic, transcriptional, proteomic,
metabolite, and morphological data; studying the dynamic
interactions of plants with the environment or the evolution
of new forms over geologic time; and spanning quantification,
statistics, and mechanistic mathematical models.

Research is becoming increasingly interdisciplinary, and
undergraduate, graduate, and post-graduate groups are actively
trying to bridge the gap between mathematics and biology
skillsets. While many graduate programs have specialization
tracks under the umbrella of mathematics or biology-specific
programs, increasingly departments are forming specially
designed graduate groups for mathematical/quantitative
biology1,2 to strengthen the interface between both disciplines.

1BioQuant at University of Heidelberg, http://www.bioquant.uni-heidelberg.de
(retrieved February 28, 2017)
2Quantitative Biosciences at Georgia Tech in Atlanta, http://qbios.gatech.edu
(retrieved February 28, 2017)
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FIGURE 7 | Modeling the interaction between plant morphology and fluid dynamics. (A) 3D immersed boundary simulations of flow past a flexible rectangular sheet
(left) and disk with a cut from the center to edge (right). Both structures are attached to a flexible petiole, and the flow is from left to right. The contours show the
magnitude of vorticity (the rotation in the air). The circular disk reconfigures into a cone shape, similar to many broad leaves. (B) Reconfiguration of tulip poplar leaves
in 3 m/s (left) and 15 m/s flow (right). The leaves typically flutter at lower wind speeds and reconfigure into stable cones at high wind speeds. (C) A cluster of redbud
leaves in wind moving from right to left. The wind speed is increased from 3 m/s (left) to 6 m/s (middle) and 12 m/s (right). Note that the entire cluster reconfigures
into a cone shape. This is different from the case of tulip poplars and maples where each leaf individually reconfigures into a conic shape. Images provided by LM
(University of North Carolina, Chapel Hill, NC, United States).

This will necessitate team-teaching across disciplines to train the
next generation of mathematical/computational plant scientists.

Public Outreach: Citizen Science and the
Maker Movement
Citizen science, which is a method to make the general public
aware of scientific problems and employ their help in solving
them3, is an ideal platform to initiate a synthesis between
plant biology and mathematics because of the relatively
low cost and accessibility of each field. Arguably, using
citizen science to collect plant morphological diversity has
already been achieved, but has yet to be fully realized. In
total, it is estimated that the herbaria of the world possess
greater than 207 million voucher specimens4, representing
the diverse lineages of land plants collected over their
respective biogeographies over a timespan of centuries.

3For example, see the White Paper on Citizen Science for Europe, http://www.
socientize.eu/sites/default/files/white-paper_0.pdf (retrieved May 29, 2016)
4List of herbaria, https://en.wikipedia.org/wiki/List_of_herbaria (retrieved May 29,
2016)

Digital documentation of the millions of vouchers held by
the world’s botanic gardens is actively underway, allowing
for researchers and citizens alike to access and study for
themselves the wealth of plant diversity across the globe
and centuries (Smith et al., 2003; Corney et al., 2012; Ryan,
2013).

The developmental changes in plants responding to
environmental variability and microclimatic changes over
the course of a growing season can be analyzed by studying
phenology. Citizen science projects such as the USA National
Phenology Network5 or Earthwatch6 and associated programs
such as My Tree Tracker7 document populations and individual
plants over seasons and years, providing a distributed,
decentralized network of scientific measurements to study
the effects of climate change on plants.

5https://www.usanpn.org/# (retrieved May 29, 2016)
6http://earthwatch.org/scientific-research/special-initiatives/urban-resiliency
(retrieved May 29, 2016)
7http://www.mytreetracker.org/cwis438/websites/MyTreeTracker/About.php?
WebSiteID=23 (retrieved May 29, 2016)

Frontiers in Plant Science | www.frontiersin.org 10 June 2017 | Volume 8 | Article 900

http://www.socientize.eu/sites/default/files/white-paper_0.pdf
http://www.socientize.eu/sites/default/files/white-paper_0.pdf
https://en.wikipedia.org/wiki/List_of_herbaria
https://www.usanpn.org/#
http://earthwatch.org/scientific-research/special-initiatives/urban-resiliency
http://www.mytreetracker.org/cwis438/websites/MyTreeTracker/About.php?WebSiteID=23
http://www.mytreetracker.org/cwis438/websites/MyTreeTracker/About.php?WebSiteID=23
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00900 June 20, 2017 Time: 18:25 # 11

Bucksch et al. Plant Morphological Modeling

FIGURE 8 | Milestones to accelerate the infusion of math into the plant sciences. Group photo of the authors from the National Institute for Mathematical and
Biological Synthesis (NIMBioS) meeting on plant morphological models (University of Tennessee, Knoxville, September 2–4, 2015) that inspired this manuscript.
Workshops such as these, bringing mathematicians and plant biologists together, will be necessary to create a new synthesis of plant morphology.

Citizen science is also enabled by low-cost, specialized
equipment. Whether programming a camera to automatically
take pictures at specific times or automating a watering
schedule for a garden, the maker movement—a do-it-
yourself cultural phenomenon that intersects with hacker
culture—focuses on building custom, programmable
hardware, whether via electronics, robotics, 3D-printing,
or time-honored skills such as metal- and woodworking.
The focus on programming is especially relevant for
integrating mathematical approaches with plant science
experiments. The low-cost of single-board computers
like Raspberry Pi, HummingBoard, or CubieBoard is a
promising example of how to engage citizen scientists into
the scientific process and enable technology solutions to specific
questions.

Workshops and Funding Opportunities
Simply bringing mathematicians and plant biologists together
to interact, to learn about new tools, approaches, and
opportunities in each discipline is a major opportunity for
further integration of these two disciplines and strengthen
new disciplines at the interface of both. This white paper itself
is a testament to the power of bringing mathematicians and
biologists together, resulting from a National Institute for
Mathematical and Biological Synthesis (NIMBioS) workshop
titled “Morphological Plant Modeling: Unleashing Geometric
and Topologic Potential within the Plant Sciences,” held
at the University of Tennessee, Knoxville, September 2–
4, 20158 (Figure 8). Other mathematical institutes such
as the Mathematical Biology Institute (MBI) at Ohio
State University9, the Statistical and Applied Mathematical
Sciences Institute (SAMSI) in Research Triangle Park10,
the Institute for Mathematics and Its Applications at

8http://www.nimbios.org/workshops/WS_plantmorph (retrieved May 29, 2016)
9https://mbi.osu.edu/ (retrieved May 29, 2016)
10http://www.samsi.info/ (retrieved May 29, 2016)

University of Minnesota11, and the Centre for Plant
Integrative Biology at the University of Nottingham12 have
also hosted workshops for mathematical and quantitative
biologists from the undergraduate student to the faculty
level.

There are efforts to unite biologists and mathematics
through initiatives brought forth from The National Science
Foundation, including Mathematical Biology Programs13

and the Joint DMS/NIGMS Initiative to Support Research at
the Interface of the Biological and Mathematical Sciences14

(DMS/NIGMS). Outside of the Mathematics and Life Sciences
Divisions, the Division of Physics houses a program on the
Physics of Living Systems. Societies such as The Society
for Mathematical Biology and the Society for Industrial
and Applied Mathematics (SIAM) Life Science Activity
Group15 are focused on the dissemination of research at the
intersection of math and biology, creating many opportunities
to present research and provide funding. We emphasize the
importance that funding opportunities have had and will
continue to have in the advancement of plant morphological
modeling.

Open Science
Ultimately, mathematicians, computational scientists, and plant
biology must unite at the level of jointly collecting data,
analyzing it, and doing science together. Open and timely
data sharing to benchmark code is a first step to unite these
disciplines along with building professional interfaces to bridge

11https://www.ima.umn.edu/ (retrieved May 29, 2016)
12https://www.cpib.ac.uk/outreach/cpib-summer-school/ (retrieved May 29,
2016)
13https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5690 (retrieved May 29,
2016)
14http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5300&org=DMS
(retrieved May 29, 2016)
15https://www.siam.org/activity/life-sciences/ (retrieved May 29, 2016)
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between the disciplines (Bucksch et al., 2017; Pradal et al.,
2017).

A number of platforms provide open, public access to
datasets, figures, and code that can be shared, including
Dryad16, Dataverse17, and Figshare18. Beyond the ability
to share data is the question of open data formats and
accessibility. For example, in remote sensing research it is
unfortunately common that proprietary data formats are
used, which prevents their use without specific software.
This severely limits the utility and community building
aspects of plant morphological research. Beyond datasets,
making code openly available, citable, and user-friendly is
a means to share methods to analyze data. Places to easily
share code include web-based version controlled platforms
like Bitbucket19 or Github20 and software repositories like
Sourceforge21. Furthermore, numerous academic Journals (e.g.,
Nature Methods, Applications in Plant Sciences, and Plant
Methods) already accept publications that focus on methods
and software to accelerate new scientific discovery (Pradal et al.,
2013).

Meta-analysis datasets provide curated resources where
numerous published and unpublished datasets related to a
specific problem (or many problems) can be accessed by
researchers22. The crucial element is that data is somehow
reflective of universal plant morphological features, bridging the
gap between programming languages and biology, as seen in the
Root System Markup Language (Lobet et al., 2015) and OpenAlea
(Pradal et al., 2008, 2015). Bisque is a versatile platform to store,
organize, and analyze image data, providing simultaneously open
access to data and analyses as well as the requisite computation
(Kvilekval et al., 2010). CyVerse23 (formerly iPlant) is a similar
platform, on which academic users get 100 GB storage for free
and can create analysis pipelines that can be shared and reused
(Goff et al., 2011). For example, DIRT24 is an automatic, high
throughput computing platform (Bucksch et al., 2014a; Das
et al., 2015) that the public can use hosted on CyVerse using
the Texas Advanced Computing Center25 (TACC) resources at
UT Austin that robustly extracts root traits from digital images.
The reproducibility of these complex computational experiments
can be improved using scientific workflows that capture and
automate the exact methodology followed by scientists (Cohen-
Boulakia et al., 2017). We emphasize here the importance of
adopting open science policies at the individual investigator and
journal level to continue strengthening the interface between
plant and mathematically driven sciences.

16http://datadryad.org/ (retrieved May 29, 2016)
17http://dataverse.org/ (retrieved May 29, 2016)
18https://figshare.com/ (retrieved May 29, 2016)
19https://bitbucket.org/ (retrieved May 29, 2016)
20https://github.com/ (retrieved May 29, 2016)
21https://sourceforge.net/ (retrieved May 29, 2016)
22BAAD: a Biomass And Allometry Database for woody plants, https://github.
com/dfalster/baad (retrieved May 29, 2016)
23http://www.cyverse.org/ (retrieved August 20, 2016)
24http://dirt.iplantcollaborative.org/ (retrieved August 20, 2016)
25https://www.tacc.utexas.edu/ (retrieved August 20, 2016)

CONCLUSION: UNLEASHING
GEOMETRIC AND TOPOLOGICAL
POTENTIAL WITHIN THE PLANT
SCIENCES

Plant morphology is a mystery from a molecular and
quantification point of view. Hence, it fascinates both
mathematical and plant biology researchers alike. As such,
plant morphology holds the secret by which predetermined
variations of organizational patterns emerge as a result of
evolutionary, developmental, and environmental responses.

The persistent challenge at the intersection of plant
biology and mathematical sciences might be the integration
of measurements across different scales of the plant. We have to
meet this challenge to derive and validate mathematical models
that describe plants beyond the visual observable. Only then
we will be able to modify plant morphology through molecular
biology and breeding as means to develop needed agricultural
outputs and sustainable environments for everybody.

Cross-disciplinary training of scientists, citizen science, and
open science are inevitable first steps to develop the interface
between mathematical-driven and plant biology-driven sciences.
The result of these steps will be new disciplines, that will add to
the spectrum of researchers in plant biology. Hence, to unleash
the potential of geometric and topological approaches in the
plant sciences, we need an interface familiar with both plants
and mathematical approaches to meet the challenges posed by
a future with uncertain natural resources as a consequence of
climate change.
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