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Silicon (Si) is an abundant and differentially distributed element in soils that is believed
to have important biological functions. However, the benefits of Si and its essentiality
in plants are controversial due to differences among species in their ability to take up
this element. Despite this, there is a consensus that the application of Si improves the
water status of plants under abiotic stress conditions. Hence, plants treated with Si
are able to maintain a high stomatal conductance and transpiration rate under salt
stress, suggesting that a reduction in Na+ uptake occurs due to deposition of Si in
the root. In addition, root hydraulic conductivity increases when Si is applied. As a
result, a Si-mediated upregulation of aquaporin (PIP) gene expression is observed in
relation to increased root hydraulic conductivity and water uptake. Aquaporins of the
subclass nodulin 26-like intrinsic proteins are further involved in allowing Si entry into the
cell. Therefore, on the basis of available published results and recent developments, we
propose a model to explain how Si absorption alleviates stress in plants grown under
saline conditions through the conjugated action of different aquaporins.

Keywords: silicon, aquaporins, nutrient uptake, abiotic stress, salinity stress, water relations, water use efficiency

INTRODUCTION

The uptake of mineral nutrients is regulated by transporters in the root plasma membranes. In
general, there is a strong interaction between the uptake of ions and water uptake, since both
are dependent on each other. Therefore, the interactions between water transporters (aquaporins)
and nutrients transporters need to be determined in root cells. Nutrient deprivation or excess
due to changing environmental conditions usually involves fundamental parameters, including
the water relations in plants, in which aquaporins play an important role. One of the first pieces
of evidence regarding water-nutrient connections was found in plants deprived of nitrogen and
phosphorus, in which there was a reversible reduction of cell and root hydraulic conductivity
involving aquaporins (Carvajal et al., 1996). It was also reported that, when a plant is subjected
to nutrient deficiency, alterations in aquaporins slow the movement of water through the plant
(Clarkson et al., 2000; Shaw et al., 2002). The balance of nutrient supply received by roots can
be regulated by aquaporins and ATPase and Ca-ATPase activities (Martínez-Ballesta et al., 2003;
Cabañero et al., 2006). Therefore, it was suggested that aquaporins can play a central role in
nutrient homeostasis, which is likely to comprise (i) support for ion fluxes through provision of
an accompanying water flow and (ii) active re-direction of apoplastic/symplastic water flow within
tissues and the whole plant (Maathuis et al., 2003).

Plant aquaporins belonging to the MIP (membrane intrinsic proteins) family are mainly
homotetrameric transmembrane proteins that facilitate water transport through membranes, but
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they can also form heterotetramers (for review see Martínez-
Ballesta and Carvajal, 2016). The classification of aquaporins into
seven subfamilies is mostly based on phylogenetic distribution,
while their localization in different membranes will be used
for the nomenclature (e.g., PIP, TIP, and NIP). In addition to
facilitating water diffusion, a number of aquaporins have also
been shown to transport other molecules (Gerbeau et al., 1999;
Bienert et al., 2011). During the last decade it was reported
that aquaporins transport specific solutes, like urea (Liu et al.,
2003), ammonia (Bertl and Kaldenhoff, 2007), carbon dioxide
(Uehlein et al., 2003), hydrogen peroxide (Bienert et al., 2007),
lactic acid (Choi and Roberts, 2007), boric acid (Takano et al.,
2006), and silicic acid (Ma et al., 2006). The trafficking and
subcellular relocalization of aquaporins could be the critical
point in the regulation of the transport of mineral nutrients
to the cytoplasm, since aquaporins are translocated from the
endoplasmic reticulum (ER) to the plasma membrane via the
Golgi apparatus (Maurel et al., 2009). However, the molecular and
cellular mechanisms underlying the interactions of aquaporins
and mineral nutrients still need to be investigated.

Silicon (Si), the second most abundant element in the earth’s
crust but its essentiality in plant growth and development
remains debated since plants differ widely in their ability to take
up Si (Sommer et al., 2006). Silicic acid, Si(OH)4, is the only form
known to be absorbed by plants (Ma and Yamaji, 2006). It will
enter plant roots mainly by diffusion via the apoplastic pathway
but requires the presence of specific aquaporins, NIP2s, to enter
the symplastic pathways and be eventually translocated to aerial
organs via the xylem (Guerriero et al., 2016).

Although Si is generally considered non-essential for plants,
some species will accumulate between 1 and 5% on a dry weight
basis. Families such as the Poaceae (grasses), most species of
monocotyledons, aquatic macrophytes, and some dicotyledons,
including the Cucurbitaceae (Rogalla and Römheld, 2002;
Piperno, 2006; Schoelynck et al., 2012) have all been shown to
accumulate high concentrations and benefit from Si presence.
However, even in non-accumulating plants, the presence of Si
in nutrient solutions or soils has been reported to be beneficial
against abiotic stress (e.g., NaCl; for a review see Zhu and
Gong, 2014), but the mechanisms of Si action in relation to
water uptake and aquaporins are poorly understood. In this
review, the improvement of plant salinity tolerance by Si through
enhancement of root water uptake, including the regulation of
aquaporin activity and gene expression, is discussed.

Si NUTRITION AND SALINITY STRESS

Si is generally considered non-essential for plant development,
but many authors consider Si a ‘quasi-essential’ element for
higher plants, since plant growth may be stimulated by the supply
of Si and Si-starved plants may display physical abnormalities
(Rafi and Epstein, 1997; Epstein and Bloom, 2005; Ma and Yamaji,
2008). It can enhance growth, yield, and crop quality, particularly
under biotic and abiotic stresses, such as herbivory, leaf microbial
pathogens, UV radiation, gravity, extreme temperatures, lodging,
metal toxicity, nutrient deficiency and toxicity, drought, and

salinity (Epstein, 1994, 1999, 2009; Ma and Takahashi, 2002;
Richmond and Sussman, 2003; Cooke and Leishman, 2011; Van
Bockhaven et al., 2013; Liang et al., 2015).

Salinity stress is an important factor that limits crop
yields and productivity worldwide, affecting approximately 800
million hectares (ha) of arable land (FAO, 2008). Although our
understanding of the role of Si in abiotic stress resistance is still
limited, important advances with regard to salinity stress have
been made (Rengasamy, 2010). In fact, it has been widely reported
that the provision of Si increases salt tolerance and hence biomass
in many important crops grown under different conditions, such
as barley (Liang et al., 2005a), wheat (Tuna et al., 2008; Ali et al.,
2012; Bibordy, 2014), rice (Gong et al., 2006; Mahdieh et al.,
2015), soybean (Lee et al., 2010) sugarcane (Ashraf et al., 2010),
tomato (Romero-Aranda et al., 2006; Muneer et al., 2014; Li et al.,
2015), and cucumber (Khoshgoftarmanesh et al., 2014), among
others.

Na+ and K+ Homeostasis
At high salt concentrations, one of the main salt-tolerance
mechanisms is the maintenance of low intracellular Na+
concentration by the reduction of Na+ influx and/or the increase
of Na+ efflux. Na+ enters roots passively, via non-selective cation
channels and trough other Na+ transporters such as HKT (high-
affinity K+ transporter) family; consequently, Na+ is critical
to maintain intracellular K+ concentration (Blumwald, 2000;
Munns and Tester, 2008; Kronzucker et al., 2013). It has been
shown that Si may alleviate salinity stress by affecting Na+ and
K+ concentrations (Ashraf et al., 2010). They found interactive
effects of NaCl, Si, and genotype, on Na+, K+, and the K+/Na+
ratio (a salt-stress indicator) in sugarcane. In this study, the
addition of Si reduced Na+ uptake and transport to the shoots
and increased the shoot K+ concentration, with a resultant
increase in the K+/Na+ ratio. Similarly, Xu et al. (2015) and
Garg and Bhandari (2016) reported that Si application to salt-
stressed aloe plants, and sensitive and tolerant genotypes of
Cicer arietinum L., significantly decreased the Na+ content in
roots and its translocation to leaves, while improving K+ uptake,
consequently raising the K+/Na+ ratio.

Effects on Nutritional Balance
It is important to point out that one of the main deleterious
effects of salinity is an imbalance in essential nutrients. Recent
studies on the plant ionome have shown that salinity causes
modifications of the tissue levels of macronutrients like N, Ca,
P, S, and Mg, and micronutrients such as Zn, Mn, Fe, and B.
Hellal et al. (2012) reported increased N, P, and Ca concentrations
in the shoots and seeds of fava bean grown under salt stress
when Si was supplied. Similarly, Si enhanced the P, Ca, and Mg
contents in leaves and roots of aloe and tomato plants (Li et al.,
2015; Xu et al., 2015), and maintained higher P and Fe contents
in salt-stressed canola plants (Farshidi et al., 2012). Application
of Si significantly increased the Ca concentration in shoots of
cucumber plants exposed to salinity, while it had no effect on
the shoot Ca concentration of plants grown under non-saline
conditions (Khoshgoftarmanesh et al., 2014). By contrast, the
supply of Si decreased the S content in Zinnia elegans exposed
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to salinity stress. However, the salinity-induced reduction of
micronutrients such as Zn, Mn, Fe, and B was alleviated by Si
addition (Manivannan et al., 2015). In previous reports, NaCl
stress was found to increase Cu levels in several plant species
(Wang and Han, 2007), but in the study by Manivannan et al.
(2015), the level of Cu was not affected. These studies provided
evidence that Si might induce salt tolerance in many crops,
not only via inhibition of Na+ uptake and translocation, and
improvement of the plant K+ content, but also by affecting the
plant status of some other essential nutrients in order to maintain
normal physiological conditions. A summary of the relationships
between Si and different inorganic ions in plants grown under
salinity stress is shown in Table 1.

Protection from Oxidative Damage
Plants produce low levels of reactive oxygen species (ROS), which
form part of the chemical communication in cells. However,
salinity also inhibits plant growth via an overproduction of
ROS that can damage macromolecules essential for plant
growth and development, such as DNA or lipid membranes.
It has been demonstrated recently that Si mitigates oxidative
stress by stimulation of antioxidants, both enzymatic and
non-enzymatic (Savvas and Ntatsi, 2015), such as superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APx),
peroxidases (POD), glutathione (GSH), and ascorbate (AA).
Many authors have reported the beneficial effects of Si with
regard to amelioration of salt-induced oxidative stress. Li et al.
(2016) showed that the provision of Si in Hoagland’s solution

TABLE 1 | Summary of the relationship between Si and different inorganic ions in
plants subjected to salt stress.

Inorganic
ions

Relation Plant species Reference

Na Antagonism Saccharum officinarum
Aloe vera
Cicer arietinum

Ashraf et al., 2010
Xu et al., 2015
Garg and Bhandari, 2016

K Synergism Saccharum officinarum
Aloe vera
Cicer arietinum

Ashraf et al., 2010
Xu et al., 2015
Garg and Bhandari, 2016

N Synergism Vicia faba Hellal et al., 2012

P Synergism Vicia faba
Aloe vera
Solanum lycopersicum

Hellal et al., 2012
Xu et al., 2015
Li et al., 2015

Ca Synergism Vicia faba
Aloe vera
Solanum lycopersicum
Cucumis sativus

Hellal et al., 2012
Xu et al., 2015
Li et al., 2015
Khoshgoftarmanesh et al.,
2014

Mg Synergism Vicia faba
Ale vera

Hellal et al., 2012
Xu et al., 2015

S Antagonism Zinnia elegans Manivannan et al., 2015

Zn Synergism Zinnia elegans Manivannan et al., 2015

Mn Synergism Zinnia elegans Manivannan et al., 2015

Fe Synergism Zinnia elegans
Brassica napus

Manivannan et al., 2015
Farshidi et al., 2012

B Synergism Zinnia elegans Manivannan et al., 2015

Cu No relation Zinnia elegans Manivannan et al., 2015

at 1, 2, 4, or 6 mM increased the POD activity of Glycyrrhiza
uralensis seedlings grown under salt stress, after 20 days of
treatment. In this study, SOD activity was intensified only at
4 mM Si and the malondialdehyde (MDA) concentration was
significantly decreased at all Si levels, compared with the saline
control (50 mM NaCl). Garg and Bhandari (2016) showed
that the oxidative markers O2

−, H2O2, and MDA were more
abundant in Cicer arietinum genotypes subjected to long-term
salinity, but their levels declined when 4 mM Si was supplied.
Additionally, SOD, CAT, guaiacol peroxidase (GPOX), APx,
monodehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), and AA were increased in salt-stressed plants
of both genotypes by Si supplementation. Likewise, Li et al.
(2015) reported increased MDA and H2O2 concentrations and
decreases in SOD and CAT activities in salt-stressed tomato
seedlings grown under sand culture; however, Si application
reversed all these stress-induced changes. In contrast, Bibordy
(2016) found that SOD and CAT activities were suppressed by
the supply of Si (2 or 4 g L−1) to canola plants grown under
saline conditions. Although differing plant responses to salt stress
have been demonstrated, Si supplementation, generally, seems
to lead to a decline in ROS production and an increase in
ROS scavenging enzymes and antioxidant compounds. Hence, at
the cellular level, Si might ameliorate salinity-induced oxidative
stress due to more efficient use of ROS-scavenging metabolic
pathways, which may increase membrane integrity. This also
might be related with a better Na+-K+ cellular status and an
improvement of the plant ionome.

Photosynthesis and Osmoregulation
Salt stress decreases the physiological cell activities involved
in photosynthesis (Garg and Bhandari, 2016), mostly due to
osmotic stress, nutritional imbalance, and/or nutritional toxicity
combined with later oxidative stress. However, recent evidence
indicates that Si influences photosynthesis through effects on
water uptake and transport. Mateos-Naranjo et al. (2013) showed
that the negative effect of high salinity on gas exchange, water-
use efficiency (WUE), pigment concentrations (Chla and Chlb),
and PSII efficiency, was reversed by Si supply for the halophytic
grass Spartina densiflora. On the other hand, Abbas et al. (2015)
reported that Si application enhanced the stomatal conductance,
transpiration rate, number of stomata, and stomatal size in
salt-sensitive and salt-tolerant okra plants. A complementary
protective mechanism of plants growing under saline conditions
is the synthesis and accumulation of different osmolytes and
compatible solutes. Although this is dependent on the plant
species, Si has been found to enhance the contents of proline
(Tuna et al., 2008; Soylemezoglu et al., 2009; Siddiqui et al., 2014),
soluble protein (Li et al., 2015), polyamines (Wang S. et al., 2015;
Yin et al., 2016), glycine betaine, total free amino acids, soluble
sugars, and phenolic compounds (Abbas et al., 2015).

In summary, the potential correlation between the application
of Si and benefits for plants under saline conditions are:
(i) maintenance of the status of essential nutrients, by
reduction of Na+ content and improvement of K+ content, (ii)
greater efficiency of ROS-scavenging metabolic pathways and
(iii) increase of gas exchange. All these mechanism are related to
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water relations and water-use efficiency as it will be reviewed as
follows.

EFFECT OF Si ON WATER UPTAKE AND
TRANSPORT

In accumulating species, Si has been assigned an unspecific
function in crop protection, since it seems to be involved in
structural and dynamic aspects of plant responses that help
diminish the deleterious effect (Epstein, 2001). In fact, it is
generally agreed that the positive effects of Si are more manifest
under conditions of stress. For example, Yeo et al. (1999)
indicated that Si could decrease Na uptake by plants under
salinity stress. Studies with toxic metals such as Al indicated that
silicified tissues may give protection against these metals through
co-deposition of Al with Si in some monocotyledons (Sangster
et al., 2001).

Accumulation of Si could occur actively (Liang et al., 2005a;
Rains et al., 2006) or passively, the latter depending on the
transpiration rate as described formerly (Takahashi et al., 1990).
However, there are some plants that are excluders (Henriet et al.,
2006; Carey and Fulweiler, 2014). The Si/Ca ratio has been
reported to be indicative of the Si uptake mechanism (Carey
and Fulweiler, 2014): ratios exceeding 1 indicate active uptake,
ratios of 0.5–1 suggest passive uptake, and ratios below 0.5
could show exclusion. Also, another indicator proposed is the
relationship between the Si availability around the root and the
Si concentration inside the plant (Carey and Fulweiler, 2014).
However, these indicators could change under saline conditions
that alter Ca uptake and transpiration.

Recent studies have clearly established that Si uptake in
plants is dependent on an influx channel-type transport, the Lsi1
channel, responsible for Si movement from the external solution
into the internal cells. The first Si transporter was identified in
rice (Ma et al., 2006), and subsequent studies have shown that this
transporter was present in all Si-accumulating species including
monocots such as barley, wheat, and maize (Yamaji et al., 2008,
2012; Chiba et al., 2009; Mitani et al., 2009; Montpetit et al.,
2012) – and dicots, such as cucumber, pumpkin and soybean
(Mitani-Ueno et al., 2011; Deshmukh et al., 2013; Wang H.S.
et al., 2015). In addition, another transporter found in rice (Ma
et al., 2007) and in a few other species, termed Lsi2, acts as
an active efflux transporter carrying Si to the xylem (Ma and
Yamaji, 2015). It is important in the long-distance transport of
Si through the plant. Much less is known about the nature and
properties of Lsi2s and they have only been described so far in
monocotyledons and horsetail (Vivancos et al., 2016). Although,
in general, Lsi1 and Lsi2 are localized in the plasma membrane,
the distribution differs among species; in fact, in rice they are
found in the exodermis and endodermis in the mature regions
of the main and lateral roots (Ma et al., 2006), while in other
monocotyledons such as maize and barley they are localized in
epidermal, hypodermal, and cortical cells (Chiba et al., 2009;
Mitani et al., 2009). In dicots, the pumpkin CmLsi1 is found in
all root cells (Mitani et al., 2011) and the cucumber, CsLsi1 has
been recently localized in endodermal and cortical cells in root

tips and in root hairs (Sun et al., 2017). Therefore, the localization
of Si transporters in the roots could be an important factor that
determines how Si influences water uptake and, therefore, the
sensitivity of the plant to salinity.

Silicon has been described as a protective element against
abiotic stress like salinity, on the basis of its induction of changes
in lignin and suberin processing and deposition, which reduces
the rates of water loss and evapotranspiration (Cruz et al.,
1992; Sonobe et al., 2009; Amin et al., 2016). Along the same
lines, Si has been reported to increase lignification in sorghum,
thereby increasing xylem resistance to water loss (Hattori et al.,
2005). Some studies have also suggested that Si could induce a
thicker cuticle in leaves of rice and sorghum, reducing stomatal
conductance and decreasing water loss through the epidermal
layer and thus maintaining the water potential in leaves (Matoh
et al., 1991; Hattori et al., 2005). Furthermore, Si has been
reported to improve the regulation of stomatal opening, although
the mechanism behind this has not been resolved (Gao et al.,
2006). Also, Gao et al. (2004) found that Si increased the
water use efficiency in maize due to induction of root hydraulic
conductance.

Other results have shown that Si improved the response to
abiotic stress when water availability was reduced. In sorghum
plants for instance, when Si was applied to the nutrient solution,
there was an increase of water uptake and water flow from roots
to leaves, together with an increase of stomatal conductance
(Sonobe et al., 2009). Hattori et al. (2008) indicated that Si
application enhanced root hydraulic conductance, and Sonobe
et al. (2009) suggested that the improvement of this parameter
could occur in a radial direction in the root (by modification
of osmotic characteristics or expression of aquaporins) rather
than axially (via modification of the number or diameter of
xylem vessels). Therefore, the influence of Si on transpiration
and its role in the physiology of the stomata are controversial
(Agarie et al., 1998; Gao et al., 2006). It is clear that, under
water deficiency, if Si only reduced transpiration, an increase
in water use efficiency followed by protection against wilting
would occur (Gao et al., 2004). However, if transpiration is
increased, accompanied by higher root hydraulic conductance
(Sonobe et al., 2009), the water use efficiency will also increase.
The role of Si in water relations thus seems to be associated with
the maintenance of water use efficiency, but at the moment there
is not enough evidence to propose a model that clarifies this
response. Therefore, future studies should focus on this matter.

The link between water stress and Si has been well studied
in tomato where Romero-Aranda et al. (2006) showed that Si
enhanced drought resistance in tomato plants as a result of an
increase in leaf water content. Shi et al. (2016) showed that the
effects of Si not only increased root hydraulic conductance in
tomato, but also maintained membrane integrity and protected
it against oxidative damage by an increase of the antioxidant
metabolism. Furthermore, several studies on Si and drought
stress in different species, including sorghum, maize, and tomato,
concluded that Si alleviated the effect of the stress (Agarie et al.,
1998; Hattori et al., 2008; Sonobe et al., 2009; Shi et al., 2016).
However, although insights into its mechanism of action have
not been provided yet, the fact that all reported results concluded
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FIGURE 1 | Under salinity stress, Si has been reported to improve stomatal functioning and enhance root hydraulic conductance. The physiological mechanism
could involve hydraulic signaling through aquaporin expression, leading to higher water-use efficiency.

that water relations are improved, supports the notion that
aquaporins and hydraulic signals are involved (Figure 1).

AQUAPORINS AND Si

Aquaporins belong to the major intrinsic protein (MIP) family
and allow the transport of water and small solutes through
biological membranes (Chrispeels and Maurel, 1994; Kruse et al.,
2006). In plants, they are classified into different subfamilies:
the plasma membrane intrinsic proteins (PIPs), the tonoplast
intrinsic proteins (TIPs), the nodulin26-like intrinsic proteins
(NIPs), the small basic intrinsic proteins (SIPs), the uncategorized
intrinsic proteins (XIPs), the GIPs, and the hybrid intrinsic
proteins (HIPs) (Danielson and Johanson, 2008), according to
their subcellular localization, function, sequence length, and
substrate selectivity (for review, see Maurel et al., 2015).

Aquaporins have been reported to transport distinct types
of substrates, such as ammonia, antimony, arsenite, boron,
carbon dioxide, formamide, glycerol, hydrogen peroxide, lactic
acid, silicon, and urea (Bienert and Chaumont, 2011; Hove and
Bhave, 2011). The substrate selectivity regarding the transported
molecule is determined by two factors: the NPA motifs,
responsible for proton exclusion, and the aromatic/arginine
(ar/R) region, that functions as the main filter in the pore (Wu
and Beitz, 2007). Because of this, MIPs facilitate the transport of

the widest range of solutes, including several metalloids. Different
isoforms belong to the NIP subfamily: the NIP1 subgroup, that is
more permeable to water and glycerol, the NIP2 subgroup, that
transports metalloids and is the only aquaporin subgroup able to
transport Si (Mitani-Ueno et al., 2011), and the NIP3 subgroup,
that is notable for its biological function in boric-acid transport.
All subgroups are permeable to formamide (Dean et al., 1999;
Wallace and Roberts, 2005).

It has been reported that Si plays an important role in the
mechanisms that enable plants to cope with biotic and abiotic
stresses (Vivancos et al., 2016). However, the capacity to transport
Si depends on the plant genotype. A mechanism combining efflux
(Lsi2) and influx (Lsi1) Si transporters has been reported to
regulate Si accumulation in different cell compartments and plant
organs and tissues (Deshmukh et al., 2015). Lsi1, a NIP2 homolog
aquaporin and Si-influx transporter, was first identified in rice
(Ma et al., 2006), and is conserved among different plant species.
Also in rice, NIP2;2 (Lsi6) was classified as a Si transporter which
enables silicic acid to pass from the xylem to leaves (Yamaji et al.,
2008). Furthermore, NIP2 aquaporins have been identified only
in plants where Si has a beneficial role in plant nutrition.

A peculiarity of NIPs that transport Si is their expression
profile, in which they are situated on the distal side of the root
endodermis plasma membrane (Ma et al., 2006; Chiba et al., 2009;
Mitani et al., 2009; Yamaji and Ma, 2009). This allows cooperation
with other Si transporters, such as the active Lsi2 efflux
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FIGURE 2 | Aquaporin regulation by Si under salt stress in the root endodermis. Silicic acid enters the plant roots by water flow via the apoplastic and symplastic
pathways: the symplastic pathway involves the action of aquaporins, mainly NIPs (Lsi1) localized on the distal membrane side of the efflux transporter Lsi2. NIPs
allow Si accumulation in the transpiration stream, impeding Na+ accumulation. In addition, Si increases the expression of the root PIP aquaporin subfamily and
therefore enhances root hydraulic conductance under salinity, optimizing water transport in the cell. This, together with a decreased osmotic potential of the root sap
due to Si-dependent osmolyte accumulation, allows for an increase in water uptake under stress. Coordination between PIPs and TIPs is responsible for the water
balance during osmotic adjustment.

transporters, situated on the proximal side of the membrane. It
has been postulated that this cell polar localization of NIPs takes
place when these aquaporins have a direct role in Si uptake and
translocation (Pommerrenig et al., 2015). Therefore, localization
of Si transporters on different sides of the cell membrane may
allow optimization of the directional Si flux. Deshmukh et al.
(2015) determined that the ability to transport Si was determined
by a GSGR amino-acid motif in the selectivity filter of the NIP
subfamily, and when this amino-acid group was confined within
a specific distance from the NPA domains. This may explain the
lack of Si accumulation in some plant species such as tomato
(Deshmukh et al., 2015), where an inadequate amino-acid
distance between the NPA motifs is observed (Deshmukh et al.,
2015). Also, a larger constriction size in the pore of NIP2
proteins, relative to other NIP subgroups, is responsible for
Si transport. Furthermore, in graminaceous plants, NIP2:1
orthologs have been described as Si transporters involved in its
distribution and reallocation within these plants (Chiba et al.,
2009; Mitani et al., 2009). In horsetail (Equisetum arvense), one of
the species in the plant kingdom that accumulates high amounts

of Si, Si channels of the NIP subfamily were identified. These
results point out the complexity of Si uptake and distribution in
the whole plant, since the ability to take up Si does not depend
solely on the aquaporins, but also on the presence of active
transporters (Deshmukh and Bélanger, 2016).

A dual role of aquaporins under salt stress, in the presence
of Si, can be described. On the one hand, members of the
PIP subfamily may act as regulators of plant water balance,
and, on the other hand, the NIP subfamily can participate in
Si uptake and cell levels. However, the mechanisms by which
Si alleviates salinity stress via aquaporin regulation need a
deeper investigation. It has been reported that Si is able to
reduce Na+ and Cl− uptake and translocation to the shoot
in barley (Liang et al., 2005b), alfalfa (Wang and Han, 2007),
wheat (Tuna et al., 2008), soybean (Lee et al., 2010), and
rice (Gong et al., 2006; Shi et al., 2013) under salinity. In
rice, a typical Si-accumulating species, inhibition of Na+ and
Cl− accumulation by Si may not involve a reduction of the
transpiration stream, since Gong et al. (2006) found that stomatal
conductance and transpiration were increased. Silicon formed
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a physical barrier in the endodermal and exodermal Casparian
bands, reducing the translocation of these ions. But, whether
a similar mechanism occurs in other Si accumulators must be
elucidated. In tomato, a Si-excluder, the levels of Na+ and Cl−
were maintained in the plant in the presence of Si, despite the
reduction of the adverse effects produced by salinity (Romero-
Aranda et al., 2006). The ameliorative effect of Si on NaCl
stress has been related to osmotic stress alleviation, with the
involvement of aquaporins as regulators of plant water status,
rather than a palliative effect on ion toxicity (Liu et al., 2015).
Therefore similar beneficial effects appear to be observed in both
Si-accumulating and non-accumulating plants.

In Sorghum bicolor L., Si regulated the expression of the
PIP aquaporins, under short-term salt-stress exposure, which
restored the root hydraulic conductance, Lp, lost due to salinity.
This allowed the plants to maintain their water content and rate
of photosynthesis. Silicon alleviated the osmotic effect of salinity
without the appearance of symptoms of Na+ toxicity in the
plants (Liu et al., 2014; 2015). In addition, it has been observed
that salt stress may reduce Lp through the inactivation of
aquaporins by H2O2 (Boursiac et al., 2008). Silicon may enhance
Lp by decreasing H2O2, which affects not only expression, but
also PIP activity (Liu et al., 2015). Since H2O2 promotes the
internalization of PIPs from the plasma membrane under salinity
(Boursiac et al., 2008), an influence of Si on PIPs trafficking
cannot be discounted.

It has been reported that Si may promote the development of
suberized structures in the root endodermis and exodermis (Fleck
et al., 2015). Apoplastic Na+ transport would be thus reduced,
preventing the accumulation of this ion in the plant shoot
(Krishnamurthy et al., 2011). This may lead to a reestablishment
of the expression of PIPs, in order to maintain the water flux
through the symplastic route.

Zhu et al. (2015) observed the effect of Si on two cucumber
(Cucumis sativus L.) cultivars under salinity. In their work,
Si increased the expression of the root PIP2 subfamily and
decreased the osmotic potential by an increase in the root sugar
content, which favored water uptake. The authors concluded that
osmotic adjustment by the plants, to acquire water under salt
stress, was a mechanism initiated after Si addition that developed
differentially in the two cucumber genotypes.

Members of the NIP subfamily may influence plant responses
to salinity through controlled Si uptake and transport. For two
varieties of rice, the expression of the OsLsi1 gene, a NIP2
homolog, increased under salt stress, but was higher in the
tolerant cultivar compared to the sensitive cultivar, inducing
greater Si uptake in the former (Senadheera et al., 2009). In this
case, the authors described Si accumulation via the transpiration
stream as a mechanism to reduce NaCl transport to the aerial
parts of the plant. However, the response of OsLsi1 expression
to the addition of Si alone was the opposite of that which was
observed with salinity alone, and so the study of the combination
of these two factors in species with high water demand is critical
(Senadheera et al., 2009).

Reduction of water uptake and transport induced by salinity
stress appears to be alleviated by Si as a function of aquaporin
activity. Indeed, NIP aquaporins promotes Si entrance into

the cell, which increases the expression of root PIP aquaporin
subfamily. This effect enhances root hydraulic conductance
enabling an optimal water transport and reduction of Na+
accumulation (Figure 2). On the other hand, this possible mode
of action is not found to be directly associated with other
secondary effects such as osmotical adjustment (Pei et al., 2010;
Ming et al., 2012; Liu et al., 2014) or oxidative-stress amelioration
(Shi et al., 2016). Therefore, the direct role of Si on the regulation
of aquaporin functionality needs further validation.

CONCLUDING REMARKS

The evidence that Si promotes salinity tolerance via enhancement
of root hydraulic conductance and water uptake, thereby
contributing to increased water use efficiency, underlines the
importance of studying Si uptake mechanisms and their
regulation. Furthermore, if the beneficial effects of Si, in both
monocotyledons and dicotyledons, are linked to the passage of
water through membranes, future studies should concentrate
on the influence of Si on aquaporin expression, particularly
under abiotic stress conditions. Recent findings suggest that
water relations involving aquaporins are the key point in the
amelioration of the adverse effects of salinity stress. Considering
that Si transport is also mediated by aquaporins (NIP2), this
suggests that stimulation of the Si uptake system in plants
could lead to a new approach to PIP aquaporin up-regulation,
which in turn will reduce Na+ conglomeration in membranes
and increase water uptake and transport. However, to further
elucidate Si accumulation and understand its critical role at the
whole plant level, molecular and physiological characterization
of Si-transporting aquaporins in different plant species is
required. The importance of the NIP2 aquaporins subgroup as
Si transporters in plants highlights that aquaporins could be
the subject of biotechnological intervention to produce salinity
tolerant plants and cultivars biofortified with Si.
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