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Egyptian broomrape (Phelipanche aegyptiaca) is one of the main threats to tomato
production in Israel. The seed bank of P. aegyptiaca rapidly develops and spreads in
the field. Knowledge about the spatio-temporal distribution of such weeds is required
in advance of emergence, as they emerge late in their life cycle when they have
already caused major crop damage. The aim of this study is to reveal the effects of
two major internal infestation sources: crop rotation and infestation history; and one
external source: proximity to infested tomato fields; on infestation of P. aegyptiaca in
processing tomatoes. Ecoinformatics, spatial analysis and geostatistics were used to
examine these effects. A regional survey was conducted to collect data on field history
from 238 tomato fields between 2000 and 2012, in a major tomato-growing region
in Israel. Multivariate logistic regression in the framework of generalized linear models
(GLM) has demonstrated the importance of all three variables in predicting infestation in
tomato fields. The parameters of the overall model indicated a high specificity between
tomatoes and P. aegyptiaca, which is potentially responsible for aggravating infestation.
In addition, P. aegyptiaca infestation levels were intensively mapped in 43 of the 238
tomato fields in the years 2010–2012. Geostatistical measures showed that 40% of the
fields had clustered infestation spatial patterns with infestation clusters located along the
fields’ borders. Strong linear and negative relationships were found between infestation
level and distance from a neighboring infested field, strengthening the role of infested
tomato fields in P. aegyptiaca spread. An experiment specifically designed for this study
showed that during harvest, P. aegyptiaca seeds are blown from an infested field to a
distance of at least 90 m, and may initiate infestation in neighboring fields. Integrating
current knowledge about the role of agricultural practices on the spread of P. aegyptiaca
with the results of this study enabled us to propose a mechanism for the spread of
P. aegyptiaca. Given the major effect of agricultural practices on infestation levels, it is
assumed that the spread of this weed can be suppressed by implementing sanitation
and using decision support tools for herbicide application.
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INTRODUCTION

The broomrapes are root parasitic plants from the genera
Orobanche and Phelipanche in the Orobanchaceae family
Broomrapes. Several broomrape species have specialized in
attacking and damaging vegetables and field crops such as
sunflower, oilseed rape, carrot, fava bean, and tomato in areas
around the Mediterranean, in central and eastern Europe, and in
Asia (Parker, 2009). In the Mediterranean areas, and specifically
in Israel, the number of infested fields has increased dramatically
during the last decade, causing heavy damage or even total
yield losses in some places. In Israel, Egyptian broomrape
(P. aegyptiaca) is one of the main threats to tomato production.

Control strategies designed for non-parasitic weeds do not
necessarily achieve the required level of control for broomrape
(Fernández-Aparicio et al., 2016). For root parasitic weeds,
chemical control should be applied before shoot emergence
(in the soil subsurface), because they emerge late in their
life cycle when they have already caused major crop damage
(Goldwasser and Kleifeld, 2004; Eizenberg et al., 2013). Therefore,
knowledge of the spatio-temporal distribution of such weeds
is required in advance of emergence. Several temporal models
for predicting the parasitism dynamics based on thermal time
have been proposed for O. cumana (sunflower broomrape)
in sunflowers, P. aegyptiaca in tomatoes, O. minor (small
broomrape) in red clovers, O. crenata (crenate broomrape) in
fava beans and lentils, and P. aegyptiaca in carrots (Eizenberg
et al., 2005, 2012b; Ephrath et al., 2012; Cochavi et al.,
2016; Pérez-de-Luque et al., 2016). Accordingly, chemical
control protocols based on thermal time models have been
developed for sunflowers, processing tomatoes and carrots
(Cochavi et al., 2016; Eizenberg et al., 2012a,b). One of the
main drawbacks of these models was that they proposed a
uniform approach for chemical applications, without taking
into consideration the spatial distribution of the broomrape
infestations, as has previously been shown to be relevant in
parasitic weed control (Gonzalez-Andujar et al., 2001) and
specifically to site-specific parasitic weed management (Eizenberg
et al., 2013).

Seed banks of root parasitic weeds (broomrapes and Striga
sp.) species develop rapidly in fields with suitable hosts, mainly
due to their minute size (0.1–0.3 mm) and extreme longevity
(Bebawi et al., 1984; Lopez-Granados and Garciatorres, 1993).
Understanding the infestation mechanism of new fields and
ways to prevent or minimize seed spread within a field should
therefore be major objectives of parasitic weed management and
tactics (Rubiales et al., 2009; Fernández-Aparicio et al., 2016).
Very few studies have explored the dynamics of broomrape
dissemination in agricultural fields and their associated variables.
Instead farmers, extension workers and researchers, for the
most part, assume that human practices are major significant
factors responsible for the dissemination of broomrape, i.e., that
they are transported by contaminated agricultural vehicles, farm
implements and produce containers (e.g., Yaacoby et al., 2015;
Fernández-Aparicio et al., 2016). Parasite seed distribution is
also thought to be caused by the transportation of contaminated
plant material (such as crop seeds and hay) and the movement

of contaminated soil and manure (Goldwasser and Rodenburg,
2013; Fernández-Aparicio et al., 2016). Studies on spatial
distribution and within-field spread of broomrape are quite
limited. Lyra et al. (2016) demonstrated that soil and climatic
variables were key explanatory factors for variations in the
scope of infestation of P. aegyptiaca and P. ramose in large
areas in Greece. In their study, soil pH, the content of organic
matter and total soil humidity were the most decisive variables
for the severity of infestation within a field. A different study
investigated the dynamics of O. crenata parasitism on a relatively
small experimental plot over a period of eight years (Lopez-
Granados and Garciatorres, 1993). They showed that a minor
initial infestation considerably increased after eight consecutive
growing seasons of fava beans. The annual growth rate of
the O. crenata, however, widely varied between years and was
significantly correlated with rainfall and soil temperatures in
certain months. Excluding the first year of the experiment,
O. crenata populations demonstrated spatial autocorrelation,
shifting from relatively clustered to dispersed patterns (Gonzalez-
Andujar et al., 2001). To some extent, the spatial distributions in
subsequent years were positively related, demonstrating patch-
location stability (Oveisi et al., 2010). Nonetheless, no attempt
was made to ascertain what factors were associated with the
patches.

It has been proposed that ecoinformatics approaches, which
are based on large quantities of data, should be used to
address ecological questions in agricultural eco-systems at larger
spatial and temporal scales than are typically feasible within
an experimental framework (Rosenheim et al., 2011). Indeed,
ecoinformatics approaches have been used to reveal the effect of
crop rotation histories on cotton yield (Meisner and Rosenheim,
2014); the effects of local and landscape factors on pest
distribution (Carrière et al., 2012; Parsa et al., 2012); and the effect
of soil and bioclimatic factors on the infestation level of tobacco
by species of Phelipanche (Lyra et al., 2016).

To the best of our knowledge, no studies were published that
examined the effect of crop rotation and infestation histories
on the spread of broomrape species in commercial fields. The
aim of the current study is to reveal the effects of two major
internal infestation sources: crop rotation and infestation history;
and one external source: proximity to infested tomato fields; on
infestation of the root parasitic weed P. aegyptiaca in processing
tomatoes. Ecoinformatics, spatial analysis and geostatistics were
the methods used to examine these effects. A mechanism for
analyzing multi-scale spatial infestation of P. aegyptiaca in
processing tomatoes is proposed.

MATERIALS AND METHODS

Study Period and Area
Five major tomato growing regions in northern Israel were
selected for mapping P. aegyptiaca infestation in tomato fields,
from 2000 to 2012, the Bet-She’an Valley, the Western and
Eastern Yizra’el Valleys, the Zevulun Valley, and the Hula Valley
(Figure 1). The tomato growing season in all of these regions
extends for about 120 days, with variations in planting and
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FIGURE 1 | Study area valleys. Numbers in brackets are the number of
densely sampled tomato fields from 2010 to 2012

harvesting months due mainly to differences in air and soil
temperatures (Table 1).

Surveys of P. aegyptiaca Infestation in
Fields
Two types of surveys of P. aegyptiaca infestation were conducted
across the five regions. Historical data from 2000 to 2012 were
collected from the farmers. The farmers were asked for the
following information: crop rotation, history of P. aegyptiaca
infestation in tomatoes and in other broomrape crop hosts
(year and level); P. aegyptiaca infestation (year and level)
in neighboring tomato fields; chemical and other control
applications; and historical locations of the containers. To enable
the farmers to judge the infestation level, photographs of three
levels (high, medium, and low) of infestation were shown to
the farmers (Eizenberg et al., 2012a). Despite our efforts to
ensure that the data collection was as complete as possible, we
were reliant on the farmers’ records and recollections. Therefore,
the data set compiled from the surveys contained only partial
data, with the historical data collected from the farmers on
broomrape infestation and/or crop rotations comprising a total
of 238 records. The other data types (i.e., chemical and other
control applications, and historical locations of the containers)

TABLE 1 | Typical planting and harvesting months in the five tomato-growing
regions in Northern Israel.

Regions Planting Harvesting

Bet-She’an Valley February June

Western and Eastern Yizra’el Valleys March July

Zevulun and Hula Valleys April August

were available for a much smaller number of tomato fields and
were not used for further analysis.

The second type of survey was conducted in the years 2010–
2012, and consisted of mapping the within-field infestation
distribution in tomato fields. Infestation was sampled in 43
fields, in a systematic rectangle grid pattern with a sampling
density of 42 samples/hectare. Sampling was conducted in every
12th crop row (2 m wide), which was divided into fixed 10 m
intervals. In this way, each sample represented an area of 240 m2

(24 m × 10 m). Based on shoot emergence, each unit sample
(240 m2) was categorized into one of four infestation levels:

(0) No shoots: no infestation.
(1) 1–50 shoots per unit sample (equivalent to <2 shoots per

10 m2): low infestation level.,
(2) 50–200 shoots per unit sample (2–8 shoots 10 m2):

medium infestation level,
(3) More than 200 shoots per unit sample (>8 shoots

10 m2): high infestation level.

Each unit sample was visually scanned and assigned to the
different infestation categories based on estimations. Sampling
was conducted using a mobile GPS-GIS (MobileMapper 10,
Ashtech LLC, with real-time satellite-based augmentation system
[SBAS] typically < 2 m) at the end of the tomato biological cycle
(June to August), when broomrape populations were thriving and
could be easily detected. Figure 2 shows one of the surveyed fields
with the locations of the sampling points, grouped into the four
infestation levels.

The data collected from the whole-field-scale and from the
within-field-scale were structured and stored in geodatabases to
enable effective multi-year data updating, data processing, and
analysis using ArcGIS 10 software (ESRI, Ltd). The two databases
were combined, to enable us to postulate relationships between
data from the two scales and to use their complementarity to
characterize the spread dynamics of P. aegyptiaca.

Statistical Analysis
The influence of two major internal infestation sources:
crop rotation and infestation history; and one external
source: proximity to infested tomato fields, on P. aegyptiaca
infestation was estimated by logistic regression in the
framework of generalized linear models [GLM]. The
explanatory categorical variables are listed in Table 2 with
their categories.

We used logistic regression in the framework of GLM to
relate the explanatory variables to the infestation level. Multi-
model inference based on the Akaike Information Criterion
[AIC] was used to rank the importance of variables (Burnham
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FIGURE 2 | Central points of unit samples in a tomato field (Kishon 1; West
Yizra’el Valley region) grouped into four infestation levels. Each point
represents an area of 240 m2 (24 m × 10 m).

and Anderson, 2002; Saltz, 2011; Blank and Blaustein, 2014).
The AIC is increasingly being used for measuring and ranking
competing models by evaluating the goodness of fit and the
number of used variables in each model. Models with fewer
variables will be favored. The model having the lowest AIC
value represents the best approximating model. The coefficients
associated with each variable and their relative importance
were assessed using a multi-model average. Using categorical
variables, the regression model creates dummy variables for
k-1 categories for each variable, where k is the number
of categories in each variable. The remaining category for
each variable is used as the reference level for the other
categories in that variable. In our case, the categories NoINF
for infestation history, CRnoHosts for crop rotation and
NoNeigh for neighboring field were used as the reference levels.
Based on the dummy variables, estimates are calculated for
the k-1 categories for each variable, and additional estimate
calculated for the intercept, which is a common estimate
for the reference categories. The associated p-values are for
the tests of the indicated category vs. the reference level in
isolation. To determine the predictor estimates, we calculated the
unconditional variance and the confidence intervals (95% CI).
All statistical analyses were carried out with R 3.1.0 (R Core
Development Team).

Spatial Pattern Analysis
Point pattern analysis can be used to detect the spatial
arrangement of infestation and to generate hypotheses as to
the possible underlying factors and/or processes controlling
the observed pattern. The nearest-neighbor distance geostatistic
(Clark and Evans, 1954) was applied, using the average nearest
neighbor [ANN] tool (ArcGIS 10.3.3, ESRI, Ltd.) to detect
whether a point pattern of infestation departed from an assumed
random Poisson point pattern. The ANN tool was applied to
every sampled field (43 fields) using the sampling points with
an infestation level higher than 1. The ANN tool calculated
the distance between the location of each sampling point and
the location of its nearest neighbor’s point; and the average
of all these nearest neighbor distances. If the average distance
was significantly lower than the average for a hypothetical
random distribution, the infestation distribution was considered
clustered. If the average distance was greater than a hypothetical
random distribution, the infestation distribution was considered
dispersed or uniform. Otherwise, it was considered random as the
null hypothesis.

Spatial Analysis
The results of the GLM analysis and infestation spatial patterns
indicated that infested fields are a possible contributor to the
initial appearance of P. aegyptiaca in neighboring fields. To
further explore this conjecture, 11 buffers (1, 10, 20, 30, 40, 50,
70, 90, 110 m) were built from the boundary of the infested field,
designated the focal field, into the neighboring field (Figure 3).
For each buffer, the average infestation level was calculated on

TABLE 2 | Explanatory variables included in the generalized linear models (GLM).

Variable
description

Category
abbreviation

Category description

Infestation
history

NoINF Fields that were not parasitized by P. aegyptiaca
in the past (P. aegyptiaca host free)

INFinTomato Fields that were parasitized by P. aegyptiaca in
the past, in tomato crops

INFinOHost Fields that were parasitized by P. aegyptiaca in
the past in hosts other than tomatoes‡

INFinBoth Fields that were parasitized by P. aegyptiaca in
the past in both tomatoes and in other hosts

Crop rotation CRnoHosts Crop rotation that does not include any
P. aegyptiaca host (P. aegyptiaca host free)

CRwithTomato Crop rotation that includes tomato crops

CRwithOHost Crop rotation that includes P. aegyptiaca hosts
other than tomatoes

CRwithBoth Crop rotation that includes both tomato crops
and other P. aegyptiaca hosts

Neighboring
field

NoNeigh Fields with no proximity to infested neighboring
tomato fields l

NeighINFinTomato Fields with proximity to infested neighboring
tomato fields

‡Hosts other than tomatoes include sunflowers, legume crops like vetch and
chickpea and umbel crops like carrot and parsley.
lNeighboring infested tomato field was defined where it was parasitized by
P. aegyptiaca in the past with medium to high infestation levels.
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FIGURE 3 | Buffers of 10–110 m around an infested tomato field designated
the focal field, and infestation sampling center points in the neighboring
tomato field. Inside each buffer, the mean level of infestation was calculated
from the center points inside it.

the basis of the infestation level of the sampling center points that
fell inside it, using the spatial join module (ArcGIS 10). We then
calculated the regression between the average infestation level
inside each buffer and the buffer distance from the field boundary.
This was done for different tomato field groups, grouped by crop
rotation (with or without tomato), infestation history (were or
were not infested in the past) and infestation level.

A Field Experiment
An experiment was conducted to detect the dispersal mechanism
of P. aegyptiaca seeds from one field to its neighbor. The
assumption was that the P. aegyptiaca seeds are blown into the
adjacent field during the tomato harvest by the blower of the
combine harvester. During the 2012 harvest period, two highly
infested tomato fields were selected for this experiment, one in
the Bet-She’an Valley (denoted HEden) and the other in the Hula
Valley (HGadash). Plastic cards (16 cm × 16 cm) were smeared
with insect glue and attached to 10 cm high poles and placed at
distances of 20, 50, and 90 m from the fields’ borders in adjacent
bare fields. During that growing season, no P. aegyptiaca hosts
were grown in those fields to ensure that seeds attached to the
cards would be external. The distances were determined on the
basis of the results of the spatial analysis described in the previous
section, which showed a gradual decrease in infestation level with
increasing distances, which leveled off at around 100 m. Three to
five cards were placed along each border of the fields at each of
the three distances. On the western border of HGadash, corn was
grown, and therefore cards could not be placed there properly
for the experiment. Overall, 42 cards were placed around each
of the fields. The HEden field was harvested on June 20–21,
2012, and HGadash was harvested on August 5, 2012. The sticky
cards were put in place immediately before the harvest and
removed immediately after it. As soon as they were removed, the

cards were wrapped with plastic wrap to preserve the seeds that
were attached to it. The cards were examined under a binocular
microscope and the number of attached P. aegyptiaca seeds
was counted. In addition, meteorological data were collected
during harvest, to examine the supplementary effect of wind on
movement of the seeds.

Conceptual Simulation Model of the
Spread of P. aegyptiaca
According to the proposed mechanism, a conceptual simulation
model was developed to illustrate the P. aegyptiaca spread,
which started with P. aegyptiaca introduction into a new tomato
growing region, followed by its spread in the region over a period
of ten years (2010–2020). The model entails a virtual tomato
growing region comprised of nine fields in which a tomato
crop is grown every five years (the crop rotation normally used
in Israel). The model referred to three spread phases, where
each phase is comprised of three consecutive growing seasons
(2010–2012; 2014–2016; 2018–2020). In the model, a tomato crop
was grown in the region for the first time in 2010. That year,
three tomato fields with simulated initial low infestation levels
were introduced. To enable within-field differences in infestation
levels, every field was divided into a net of points in a regular
grid pattern (similar to the grid presented in Figure 2), such
that every point could have an individually assigned infestation
level. Initial infestation was allocated in proximity to the fields’
borders or along cultivation rows, following both the findings
of the spatial pattern analysis of the current study, Yaacoby
et al. (2015) and Fernández-Aparicio et al. (2016). Both of the
latter studies indicated that among other factors, dissemination
of broomrape occurs via contaminated agricultural vehicles
and produce containers. From the second year on, the impact
of neighboring infested fields was added wherever applicable,
according to the results of the current study. In the second
and the third phases, where fields were planted with tomatoes
for the second and the third time, the impact of the internal
infestation source was added. On average, the infestation level of
the points inside each field increased by one every time tomato
was grown for the second and the third time in that field.
The magnitude of one was defined following the calculation of
the average differences in infestation levels between successive
tomato growing seasons of real fields in the historical database.
The average difference between infestation levels between the
second and the first tomato crop was 0.89 (n= 106) and between
the third and the second tomato crop was 0.97 (n = 11). In
addition, the possibility of relative stability in infestation patches
(Oveisi et al., 2010) was taken into account, leading to a gradual
expansion of patches.

RESULTS

Spatio-Temporal Change in Regional
Infestation
Figure 4 presents the distribution of infestation levels in all
tomato fields in the database (n = 238). The tomato fields had
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FIGURE 4 | Distribution of infestation levels in all tomato fields between 2000
and 2012 (n = 238)

an average infestation level of 1.26 ± 0.96. Figure 5 presents the
change in mean infestation level over the years. Because only a
few records were available from 2000 to 2009, we divided the
data in this period into two groups of five years each: 2000–2004
(22 tomato fields) and 2005–2009 (43 tomato fields). A gradual
increase in mean infestation level is evident in Figure 5A. The
infestation level was constantly low (level = 1) in the 2000s,
followed by an increase of 30%–75% at the beginning of the
2010s. The increased infestation over the years was accompanied
by an accelerated rate of high infestation levels in the fields
examined (Figure 5B). While during the 2000s, only 5% of the
fields were highly infested, by 2012 more than 30% of the fields
were highly infested (Figure 5B).

The data also revealed differences between the regions.
Figure 6 shows the change over time and space between 2000
and 2012. In general, in most of the study regions, infestation
levels increased throughout the decade of the 2000s. In the Bet-
She’an Valley, where sufficient data was available from 2000,
the infestation levels increased from low to medium in about
ten years. Interestingly, the infestation in the Hula valley was
significantly lower than that of the other regions (Kruskal–Wallis
test followed by the Steel–Dwass test; p < 0.05), presumably
because processing tomatoes is a new crop in this specific area.

Infestation level is shown only where data was available for at
least ten tomato fields.

Factors Influencing Aggravation and
Spread of Infestation
Table 3 shows the results of the GLM analysis. Overall, eight
models were created. The best model included all three variables
and had a much lower AIC than the other models. The three best
models included both internal and external infestation sources.
Single variable models indicate that the variable that had the
greatest impact is the infestation history (internal source); the
second is proximity to an infested tomato field (external source);
and the third is crop rotation (internal source).

FIGURE 5 | Mean infestation level (A) and percentage of fields with high
infestation levels (level 3) (B) for the years 2000–2012. Because only a few
records were available from 2000 to 2009, we divided the data in this period
into two groups of 5 years: 2000–2004 (22 tomato fields) and 2005–2009 (43
tomato fields).

Table 4 shows the estimated coefficients and the variance
of each category across all fitted GLM models. All categories
had an importance of one but their estimates varied. According
to the model, in comparison to a history of no infestation
(NoINF – reference level for the categorical variables), tomato
fields with a history of infestation would have a considerably
higher infestation regardless of the P. aegyptiaca host. It is
exemplified by two extreme cases: A predicted infestation
level of 0.74 (i.e., the estimate of the intercept) would be
calculated for a tomato field with no hosts in its crop rotation
(a category which also entails no infestation history) and which
is not adjacent to an infested tomato field. In comparison, a
predicted infestation level of 2.7 (0.74+0.31+0.53+1.12) would
be calculated for a tomato field with a history of infestation in
tomatoes (INFinTomato), with crop rotation of both tomatoes
and other hosts (CRwithBoth) and has an infested neighboring
tomato field (NeighINFinTomato). The estimate of infestation
in tomatoes is higher than the estimate of the infestation in
hosts other than tomatoes alone (Table 4). Interestingly, there are
contradicting trends in crop rotation that included P. aegyptiaca
hosts. In comparison to a crop rotation that did not include hosts,
a crop rotation with tomato and with other hosts had higher
and lower predicted infestation, respectively. These estimates
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FIGURE 6 | Map of mean infestation level in the various valleys in the study area over different periods of time between 2000 and 2012. Infestation level is shown
only where data was available to at least ten tomato fields.

correspond to the average infestation levels of tomato fields in
each category (2.18 and 0.93, Table 4). The estimate of the
infestation level for a field in proximity to an infested tomato field
was higher by 0.31 than that of a field that was not adjacent to
an infested tomato field; this difference is much lower than the
estimate of infestation history. This corroborates the hypothesis
that the external source has less of an influence on infestation
than does an internal source.

Infestation Spatial Patterns in the
Within-Field Scale
Based on within-field density sampling in 43 fields, three spatial
patterns of infestation levels were found: random, dispersed and
clustered. By visual interpretation of the spatial distributions

found in the fields, the clustered patterns were further subdivided
into small clusters, elongated clusters and two-block clusters

TABLE 3 | Summary of the GLM analysis examining the predictors of infestation.

Model AICc

Infestation history Crop rotation Neighboring field 180.97

Infestation history Neighboring field 204.84

Crop rotation Neighboring field 241.05

Infestation history Crop rotation 279.45

Infestation history 311.80

Neighboring field 321.86

Crop rotation 452.79

Intercept 570.02
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TABLE 4 | Parameter estimates weight-averaged across all fitted GLM models, predicting infestation level in tomato fields and the average infestation level of tomato
fields for each category.

Category abbreviation‡ Estimate 95% CI Uncon-ditional
variance

Average infestation level of tomato
fields for each category in the

database (±SD)Lower Upper

INFinTomato 1.12∗ 0.64 1.60 0.06 2.40 ± 0.84

INFinOHost 0.81∗ 0.28 1.34 0.07 1.44 ± 0.93

INFinBoth 1.23∗ 0.06 2.39 0.35 2.5 ± 0.71

CRwithTomato 0.53 –0.18 1.23 0.13 2.18 ± 1.08

CRwithOHost –0.45 –1.04 0.15 0.09 0.93 ± 0.73

CRwithBoth 0.53 –0.08 1.15 0.10 2.00 ± 0.94

NeighINFinTomato 0.31 –0.14 0.75 0.05 2.17 ± 0.87

Intercept 0.74 0.30 1.18 0.05

NoINF Reference level for infestation history 0.80 ± 0.72

CRnoHosts Reference level for crop rotation 0.88 ± 0.75

NoNeigh Reference level for neighboring field 1.05 ± 1.17

‡Detailed descriptions of the variables are given in Table 2; ∗ estimate is different than 0, α < 0.05

(Figure 7). Most of the fields had dispersed and clustered
patterns, while only three fields had random patterns (Figure 8).
The relative frequency distribution of the field patterns according
to mean infestation levels revealed that most of the fields with a
low infestation level (88%) had a clustered pattern. By contrast,
most of the fields with a medium infestation level (69%) and all
the fields with a high infestation level (100%) had a dispersed
pattern. Focusing on the fields with a clustered pattern (n = 17)
exposed two main shapes of clustering: small round or elliptical
shapes (Figure 7C, n = 7) and elongated shapes (Figure 7D,
n = 8). Additionally, in most of these fields (n = 15), clusters of
high infestation levels were adjacent to the borders of the fields.
Each of the two remaining fields had two distinct blocks: one with
high infestation and the other with no infestation or a low level of
infestation (Figure 7). Examination of their crop rotation history
revealed that the highly infested areas had tomatoes in their crop
rotation and the other areas had no tomatoes in the crop rotation.

Effect of Neighboring Infested Tomato
Field
Further spatial analysis was conducted to examine the effect of
an infested neighboring field. Based on the intensive sampling in
tomato fields conducted in the years 2010–2012, the change in
infestation level over the distance (0–110 m) from the borders of
a neighboring infested field was calculated for fields categorized
by their infestation levels or their infestation history (Figure 9).
Strong linear relationships were found for fields with either a
low infestation level (14 fields; R2

= 0.84, p < 0.05, n = 9
pairs of distances – infestation levels) or free of P. aegyptiaca
(6 fields; R2

= 0.91, p < 0.05). The majority of these fields
had a clustered pattern of medium to high infestation levels
with elongated shapes along the fields’ borders (e.g., Figure 7D).
Fields with either medium to high infestation levels or fields that
suffered from infestation in the past had high and relatively stable
infestation levels at all distances. These results correspond to the
dispersed pattern that characterized fields with medium to high
infestation levels (Figure 8).

FIGURE 7 | Examples of infestation spatial patterns in sampled tomato fields;
(A) dispersed pattern; (B) random pattern; (C) clustered pattern with small
clusters; (D) clustered pattern with elongated clusters; (E) cluster pattern with
two distinct blocks.

To estimate the magnitude of the effect that a neighboring
infested field has on the infestation of the focal field’s borders,
relative infestation levels were calculated for each distance from
the border, by dividing the infestation level at each distance by
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FIGURE 8 | Relative frequency distribution of infestation spatial patterns
according to mean infestation levels.

the overall mean infestation level of the focal field (Figure 10).
For both groups, relative infestation adjacent to the infested
neighboring field was higher by 50% than the mean infestation
level of the whole field. In addition, the relative infestation
decreased linearly to approximately 25% less than the mean
infestation level at 110 m away from the field’s borders. The
linear regression slopes (0.005) suggest that in both cases, the
infestation level decreases by 5% for every 10 m from the
borders.

Spread of P. aegyptiaca Seeds between
Fields
Figure 11 presents the number of P. aegyptiaca seeds found on
the sticky cards placed at different distances and directions from
the infested field’s borders. Seeds were found at all distances,
but their number decreased exponentially from 20 to 90 m
as the distance from the field’s borders increased. This trend
characterized both fields at the four cardinal points of the
compass. At both harvest times, the major wind directions
were western and northwestern. Although P. aegyptiaca seeds
were found in all directions, more were found on the east
side of the field with the sticky cards (not significant). These
results indicate that during harvest, the harvester can actively
blow P. aegyptiaca seeds to a distance of at least 90 m from
the harvested fields’ borders, with the wind supplementing the
effect.

Spatio-Temporal P. aegyptiaca Spread in
a Virtual Tomato Growing Region
A foundation for defining a mechanism for the spread of
P. aegyptiaca in tomato fields was set by combining the data scales
and analysis methodologies used to study factors influencing the
spread of P. aegyptiaca, together with knowledge from other
studies. The various results indicate that both external and
internal infestation sources are involved. External sources are
many (Goldwasser and Rodenburg, 2013; Yaacoby et al., 2015;
Fernández-Aparicio et al., 2016) and are responsible for the

FIGURE 9 | Infestation level at sampling points versus distance from borders
of infested neighboring field according to infestation level and infestation
history.

initial infestation. The internal source is the seed bank in the
field, which is responsible for the spread in a field. Based on
the proposed mechanism, a conceptual model was developed to
illustrate the spread. The model started with the introduction
of P. aegyptiaca into a new tomato growing region, followed
by its spread in the region over a period of ten years. The
results of the simulation are presented in three major phases,
assuming crop rotation with a tomato crop every 5 years
(Figure 12). Each phase comprises a period of three growing
seasons (years):

(1) 2010–2012: Fields are planted with tomatoes for the first
time;

(2) 2014–2016: Fields are planted with tomatoes for the
second time;

(3) 2018–2020: Fields are planted with tomatoes for the
third time.

The First Phase
In 2010 (the first year of the first phase) three fields were planted
with tomatoes for the first time in a specific region. P. aegyptiaca
was introduced into the fields, apparently by contaminated
machinery and containers (Yaacoby et al., 2015; Fernández-
Aparicio et al., 2016) which had been used in an adjacent
infested region, resulting in an average low infestation level,
with clustered spatial patterns (small round or elongated shapes
along rows). During the tomato harvest, some P. aegyptiaca
seeds were blown into neighboring fields. In 2011 and 2012,
new fields were planted with tomatoes for the first time.
P. aegyptiaca was introduced by contaminated machinery. In
addition, because these new fields have a common border
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FIGURE 10 | Relative infestation level at sampling points versus distance from
borders of infested neighboring field in fields with a low infestation level and in
Phelipanche aegyptiaca-free fields

with fields infested in 2011, they contained P. aegyptiaca seeds
that had been blown in from the infested neighboring fields
during harvest. Similar to the 2010 fields, the tomato fields
in 2011 and 2012 had an average low infestation level with
clustered spatial patterns (mainly elongated shapes along the
fields’ borders).

The Second Phase
In 2014–2016, tomatoes were grown for the second time. Since
all the fields had internal seed banks as sources of infestation,
they suffered from medium to high infestations, with random
or dispersed patterns. The rapid aggravation that was presented
in the simulation is in keeping with the significant effect that
was found for crop rotation and infestation history, even with
only one tomato crop in the infestation spread. Infested at
medium to high levels, these fields became a major infestation
source for their neighboring fields. Accordingly, at the end of
this period, almost all the fields in the region had internal seed
banks. Some had large seed banks because of their history,
and some had small seed banks that originated from adjacent
fields.

The Third Phase
In 2018–2020, tomatoes will be grown for the third time. At
the end of 11 years, some fields will have three tomato crops
in their crop rotation. All of these fields would have internal
seed banks, and all would probably suffer from medium to high
infestation levels with dispersed patterns. Moreover, neighboring
fields would contain significant seed banks and if tomatoes were
to be grown on them, they would probably be infested.

FIGURE 11 | Number of P. aegyptiaca seeds that were attached to sticky
cards at different distances (A) and at the four cardinal points of the
compass (B).

DISCUSSION

Weeds in arable lands have varied spatial patterns. Autotrophic
plants emerge and can be detected when optimal conditions,
e.g., soil temperature and water content exist. In contrast to the
conditions required for the germination of autotrophic plants,
root parasitic weeds germinate and attach to their host roots
only after they are exposed to a specific germination stimulant
that is exuded from the host’s roots. In most cases, root parasites
emerge late in their life cycle, when they have already caused crop
damage (Joel et al., 2011). If the root parasitic weed P. aegyptiaca
is to be controlled, knowledge about its spatial and temporal
distribution is required, so as to enable the implementation of
control measures before the crop is damaged. In the current
study, factors affecting the spatial spread of P. aegyptiaca in
tomato fields were studied using ecoinformatics, spatial analysis
and geostatistics based on a large database.

In the first stage, each data scale analyzed with the
methodology relevant to that scale either provided new insights
or validated a commonly held notion about the spread.

Historical data collected from farmers at the field scale
quantitatively verified the major adverse effect of the seed bank
in the field on infestation in the subsequent tomato crop. The
common assumption among farmers, extension workers and
researchers was that the source of the seed bank was irrelevant, i.e.
infestation would be worse in the subsequent tomato crop even if
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FIGURE 12 | Proposed P. aegyptiaca spread process in tomato fields.

the infestation occurred in P. aegyptiaca hosts other than tomato.
However, historical data of tens of fields surveyed in this study
strongly suggests that aggravation will most probably occur only
if the source of the seed bank is P. aegyptiaca plants that were
grown on tomatoes. This phenomenon is possibly associated with
the host specificity of the parasite. Two observations made during
the course of this study supported this hypothesis regarding
the high specificity of the local P. aegyptiaca for tomatoes.
One of the intensively sampled fields was heavily infested by
P. aegyptiaca in 2010, but in the subsequent year (2011) when
carrot was grown, no infestation was observed. Moreover, in
2012, when tomato was grown again in the same field for
experimental purposes, heavy infestation was observed (data not
shown). Similarly, in another intensively sampled field where
vetch (Vicia sativa) had been planted prior to tomato, different
spatial parasitism patterns were observed in the two crops
(data not shown). Additionally, Román (2013) hypothesized that
different fractions of a P. aegyptiaca population would parasitize
different crops due to high specificity between the host and
the parasite. Our results, which are based on field data, suggest
that the specificity could be associated with the concentration
of each individual stimulant in a group of stimulants rather
than to the concentration of a particular individual stimulant,
as was reported by Fernandez-Aparicio et al. (2011). Specificity
can also be a result of compatibility/incompatibility between the
host and the parasite. However, in the test cases described above,
both vetch and tomatoes were parasitized by P. aegyptiaca. The
distribution patterns of P. aegyptiaca seeds that parasitized vetch
and tomato might have been different due to different responses
to the germination stimulants and strigolactones.

The results from the historical data demonstrated the
importance of the internal infestation source and the conditions
for within-field P. aegyptiaca spread in tomato fields. In
comparison, the results from the geostatistics and spatial analysis
indicate that external sources are responsible for the initial
infestation in a field or in a region. The clustered spatial pattern
of infestation, which was observed in 40% of the intensively
sampled fields, and the fact that the clusters were found adjacent
to the fields’ borders, indicates that the initial source of infestation
is external. Various external sources of infestation have been
suggested in the past, e.g., non-sanitized machinery, containers
and compost; water runoff; and infested tomato seedlings
(Goldwasser and Rodenburg, 2013). The ecoinformatics analysis
together with the spatial patterns analysis raises the possibility
that infested neighboring fields play a major role in the spread
of P. aegyptiaca between fields. Additionally, a high correlation
was found between infestation level and distance from infested
neighboring tomato fields, in fields with no internal infestation
source (Figures 9, 10). In light of these results, we conducted an
experiment designed to test the above premise; the experiment
demonstrated that during harvest, seeds can be blown to a
distance of at least 90 m (Figure 11) and initiate infestation
in new fields that have no internal seed bank. The experiment,
however, did not include “non-harvest control” i.e., cards were
not placed in proximity to infested tomato fields in times
when no harvest took place to explore the possibility of merely
passive wind-assisted seed movement. Our interpretation about
the major role the harvest operation has on P. aegyptiaca seed
dispersal may be supported by the results of Berner et al. (1994)
and van Delft et al. (1997). They both indicated that distribution
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of seeds of the parasitic plant S. hermonthica by wind was not
extensive. In their studies, the maximum distance that seeds
were caught was 8–12 m away from highly infested fields.
Additionally, P. aegyptiaca shoots range between 10 and 20 cm
in height, allowing seed dispersal to only a few meters (Winkler,
2009).

The simulation model results showed how P. aegyptiaca
would probably spread in a new tomato-growing region. The
model showed that if tomatoes become a major crop and are
intensively grown in a new region, P. aegyptiaca would spread
to all the fields in that region within a single decade. These
dynamics are predicted under the assumptions that the crop
rotation includes a tomato crop that is planted every 5 years,
and that un-sanitized machinery, containers or compost are
used. When the simulation results for infestation spread are
compared with the actual spread that took place in the Bet-
She’an Valley during the period from 2000 to 2010 (10 years),
the comparison reveals that the simulation assumptions suffered
only from an over-estimation. On one hand, in both Bet-
She’an Valley and the simulation, the regional infestation level
increased from low to medium over the ten-year periods. On
the other hand, after ten years, the infestation levels were
1.52 ± 1.03 (32 fields) and 2.2 ± 0.45 (eight fields) in the
Bet-She’an valley and in the virtual region, respectively. The
average difference of 0.65 was statistically significant (Kruskal–
Wallis test followed by the Steel–Dwass test; p < 0.05), and
probably derives from the high intensity of the tomato crop
in the very small virtual region, which does not represent real
conditions. Nonetheless, the simulation accurately reflects the
spread process and mechanism that are proposed, based on the
study’s results.

Ways to Minimize the Spread and
Improve Control Measures
The results of this study emphasize the major effect of the agro-
techniques adopted by farmers on the spread of P. aegyptiaca
infestation. Goldwasser and Rodenburg (2013) have proposed
several methods to prevent P. aegyptiaca spreading from internal
and external sources. The main point that they put forward
was the necessity of preventing seed delivery from external
sources, so as to maintain a low seed bank. Sanitation can be
a key factor in minimizing the spread rate. However, sanitation
cannot prevent the movement of seeds from neighboring fields
during harvest. A decision support system (DSS), known as
PICKIT, proposed early treatments with sulfosulfuron to prevent
the damage caused by P. aegyptiaca, together with treatments
to prevent late parasitism and seed ripening of the parasite,
via a foliar application of the herbicide Imazapic. This late
treatment sterilizes the P. aegyptiaca inflorescences, and should
be applied to prevent internal or external infestation (Eizenberg
et al., 2012a). Another way to minimize the movement of seeds
during harvest is to develop appropriate design adjustments
to the combine harvester. Finally, based on the results of this

study, the adverse impact of herbicides may be reduced if a site
specific parasitic weed management is adopted in combination
with thermal time models. For example, if a field adjacent to a
neighboring field that was parasitized in the past is planted for
the first time with a tomato crop, herbicides should be applied at
the right time (according to the thermal model) merely along the
common border with the infested field. Additionally, the history
of the fields can be used to define rationale within-field infestation
sampling to map the infestation pattern that could then be used
to direct the application of site-specific herbicides. For example,
fields with a history of infestation in tomatoes may require a
few samples to characterize their infestation spatial pattern, while
fields with a history of infestation in other hosts may require
a much denser sampling grid. Fields with tomato crops for the
first time would require dense sampling grids along a common
border with an infested tomato field, and reduced sampling
points towards the center of the field. Indeed, within-field
sampling necessitates quick and low-cost infestation sampling
techniques. In conclusion, this study showed the undesirable
effects of crop rotation, infestation history and proximity to
infested tomato fields on the spread of broomrape species
in a commercial scale. The study combined ecoinformatics,
spatial analysis, geostatistics, and designated field experiment
to quantify these effects and to assist with defining the spread
mechanism of the P. aegyptiaca between growing regions and
fields.
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