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Walnuts (Juglans of the Juglandaceae) are well-known economically important resource
plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from
tropical to temperate zones and from Asia to Europe and Americas. There are about
21 species in Juglans. Classification of Juglans at section level is problematic, because
the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and
DNA markers severely inhibited the development of related researches. In this study, the
complete chloroplast genomes and two nuclear DNA regions (the internal transcribed
spacer and ubiquitin ligase gene) of 10 representative taxa of Juglans were used for
comparative genomic analyses in order to deepen the understanding on the application
value of genetic information for inferring the phylogenetic relationship of the genus.
The Juglans chloroplast genomes possessed the typical quadripartite structure of
angiosperms, consisting of a pair of inverted repeat regions separated by a large single-
copy region and a small single-copy region. All the 10 chloroplast genomes possessed
112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA,
and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions
revealed that Juglans plants could be classified into three branches: (1) section Juglans,
(2) section Cardiocaryon including J. cinerea which is closer to J. mandshurica, and (3)
section Rhysocaryon. However, three branches with a different phylogenetic topology
were recognized in Juglans using the complete chloroplast genome sequences: (1)
section Juglans, (2) section Cardiocaryon, and (3) section Rhysocaryon plus J. cinerea.
The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy
except J. cinerea (section Trachycaryon). Based on the complete chloroplast genome
sequence data, the divergence time between section Juglans and section Cardiocaryon
was 44.77 Mya, while section Rhysocaryon diverged from other sections in the
genus Juglans was 47.61 Mya. Eleven of the 12 small inversions in the chloroplast
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genomes provided valuable phylogenetic information for classification of walnut plants
at section and species levels. Our results are valuable for future studies on Juglans
genetic diversity and will enhance the understanding on the phylogenetic evolution of
Juglandaceae.

Keywords: Juglans, complete chloroplast genome, small inversion, internal transcribed spacer, ubiquitin ligase
gene, phylogeny

INTRODUCTION

Walnuts (Juglans L.) are well-known economically important
resource trees for the edible nuts, high-quality wood, and
medicinal use. Juglans, one of the eight living genera in the
family Juglandaceae, has about 21 species in the world, with a
distribution from tropical to temperate zones, and from Asia to
Europe and Americas (Lu, 1982; Lu et al., 1999; APG III, 2009;
Pei and Lu, 2011; Suo et al., 2012a; APG IV, 2016).

Juglans plants were classified into four sections according to
morphology of leaf, floral, and fruit characteristics, i.e., section
Rhysocaryon, section Cardiocaryon, section Trachycaryon, and
section Juglans (syn. section Dioscaryon) (Dode, 1909; Manning,
1978; Lu et al., 1999). Manning (1978) and McGranahan
and Leslie (1991) presented complete descriptions of the
morphological variation, ecological distribution, and taxonomic
treatment of the genus Juglans. Manchester (1987) considered
that plants of the genus Juglans could be classified into three
sections, and merged section Trachycaryon (Juglans cinerea) and
section Cardiocaryon together according to the consistency of the
walnut fossil characteristics.

Juglans section Juglans includes the two cultivated walnuts,
J. regia with a distribution from southeastern Europe to China
and the Himalayas, and J. sigillata distributed in Yunnan,
Guizhou, Sichuan and Tibet of Southwest China. The nut of
section Juglans is distinguished from that of related species by
a dehiscent husk thin shell at fruit mature stage and narrow
septum separating the kernel halves, all of which greatly facilitate
kernel extraction (Dode, 1909; Manning, 1978; Lu et al., 1999;
Martinez-Garcia et al., 2016). More than 300 walnut cultivars
are documented under J. regia for producing edible nuts. J. regia
has been cultivated for more than 6800 years (Beer et al., 2008;
Joly and Visset, 2009; Pei and Lu, 2011). Section Trachycaryon,
native to eastern North America, comprises a single species,
J. cinerea L.. Section Rhysocaryon, endemic to North and South
Americas (Stone et al., 2009; Suo et al., 2012a), consists of 16
taxa: J. australis, J. boliviana, J. californica, J. guatemalensis,
J. jamaicensis, J. hindsii, J. hirsute, J. major, J. microcarpa, J. mollis,
J. neotropica, J. nigra, J. olanchana, J. pyriformis, J. steyermarkii,
and J. venezuelensis. Section Cardiocaryon contains three
taxa native to East Asia: J. manshurica, J. cathayensis, and
J. ailantifolia.

Molecular biological studies supported the sectional
classification of Juglans based on morphological characteristics,
except for section Trachycaryon represented by the single species
J. cinerea. J. cinerea was placed within section Cardiocaryon when
analysis was conducted using nuclear DNA sequence (the internal
transcribed spacer, ITS), but within section Rhysocaryon when

analysis was conducted using cpDNA sequences (NCS and matK)
(Stanford et al., 2000; Aradhya et al., 2007). The phylogenetic
position of J. cinerea is thus still problematic. Haplotype
phylogeography suggested a geographical differentiation prior
to the last glacial advance in eastern populations and separate
postglacial migration paths for eastern and western populations
when the detection was conducted using sequences from eight
chloroplast DNA regions (Laricchia et al., 2015).

As a matter of fact, the plasticity of morphological traits
is frequently observed due to influences from environmental
conditions and different developmental stages. The internal
transcribed spacer (ITS) sequence of nuclear ribosomal DNA
and cpDNA fragments (rbcL, matK, and trnH–psbA) commonly
recommended to use have only limited resolution in identifying
closely related taxa in the Juglandaceae (Xiang et al., 2011; Dong
et al., 2014, 2015; Suo et al., 2015). Thus, the phylogenetic
relationship at section level in Juglans is still a challenging
task, because of lacking morphological and DNA markers
(Gunter et al., 1994; Cosmulescu and Botu, 2012; Ciarmiello
et al., 2013; Suo et al., 2015). It is necessary to explore
more genetic information for phylogenetic reconstruction of
Juglans.

In recent years, the chloroplast genomes have been proven
successfully to be more informative than cpDNA fragments
in revealing phylogeny of land plants (Jansen et al., 2007; He
et al., 2012; Suo et al., 2012b; Dong et al., 2016; Xu et al.,
2017). Hu et al. (2017) used the complete chloroplast genome
information to discuss genetic divergence of five Chinese Juglans
taxa in comparison with the Fagaceae and the Betulaceae,
the families closely related to the Juglandaceae. New nuclear
DNA markers from the ubiquitin–proteasome system related
DNA regions showed higher sensitivity and better resolution in
detecting genetic diversity in genera Juglans and Lagerstroemia
(Suo et al., 2015, 2016). The ubiquitin–proteasome system, which
plays a key role in degradation of proteins, is imperative for
maintaining the cellular homeostasis in eukaryotic cells (Ganoth
et al., 2013; Marin, 2013). Furthermore, it has been reported
that micro-structure mutations, such as small inversions, in
chloroplast genomes may have a potential application value in the
phylogenetic analysis of land plants (Kelchner and Wendel, 1996;
Kim and Lee, 2005; Borsch and Quandt, 2009; Morrison, 2009).

The small size inversions (∼50 bp) are probably to be
generated by intra-molecular recombination events (Ogihara
et al., 1988; Hiratsuka et al., 1989). The possession of the same
inversion is regarded as reliable evidence of shared ancestry
(Jansen and Palmer, 1987; Doyle et al., 1992, 1996; Kim and Lee,
2004). The inverted repeats formed the stem structures and the
small inversions formed the loops.
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In this study, we report nine newly sequenced complete
chloroplast genomes from Juglans (eight species and one
cultivar). In addition, sequences from two nuclear DNA
regions (ITS, and ubiquitin ligase gene), were also used to
help resolving the genetic diversity in Juglans. The aims of
our study are: (1) to upgrade the understanding on the
application value in phylogenetic resolution of Juglans, (2)
to provide more genetic resources for obtaining a better
resolution on the phylogeny of the genus Juglans, and (3)
to deepen the understanding on the genetic and evolutionary
significance from the structural diversity of the chloroplast
genomes.

MATERIALS AND METHODS

Plant Materials and DNA Extraction
Fresh leaves were collected from the trees of J. nigra, J. major,
and J. regia ‘Bokexiang’ growing in the Resources Nursery of
the Forestry Bureau of Luoning County, Henan Province, China;
J. sigillata, J. cathayensis, and J. hindsii from the Arboretum
of the Forestry Academy of Yunnan Province, Kunming City,
Yunnan Province, China; J. mandshurica growing in the Beijing
Botanical Garden of the Chinese Academy of Sciences. J. regia
from the plant of a natural population located in Taihang
mountainous region of Yixian County, Hebei Province, China,
and dried leaves of J. cinerea were taken from voucher specimen,
01816245, Chinese National Herbarium, collected May 5, 2006,
at Sevier County, Tennessee, United States, No. 2274609 from PE
Herbarium (Table 1). The (fresh) leaves from each accession were
immediately dried with silica gel for further DNA extraction.
Total genomic DNAs were extracted from each sample using the

Plant Genomic DNA Kit (DP305) from Tiangen Biotech (Beijing)
Co., Ltd., China.

Chloroplast Genome Sequencing and
Assembling
Four Juglans chloroplast genomes of J. regia, J. regia ‘Bokexiang’,
J. sigillata and J. mandshurica were sequenced using the short-
range PCR (Polymerase Chain Reaction) method reported by
Dong et al. (2012, 2013). The PCR protocol was as follows:
preheating at 94◦C for 4.5 min, 34 cycles at 94◦C for 50 s,
annealing at 55◦C for 40 s, and elongation at 72◦C for
1.5 min, followed by a final extension at 72◦C for 8 min. PCR
amplification was performed in an Applied Biosystems VeritiTM
96-Well Thermal Cycler (Model#: 9902, made in Singapore). The
amplified DNA fragments were sent to Shanghai Majorbio Bio-
Pharm Technology Co., Ltd. (Beijing) for Sanger sequencing in
both the forward and reverse directions using a 3730xl DNA
analyzer (Applied Biosystems, Foster City, CA, United States).
The chloroplast DNA sequences were manually confirmed and
assembled using Sequencher (v5.4) software.

Juglans cathayensis, J. cinerea, J. hindsii, J. major, and
J. nigra (Supplementary Table S1) were sequenced using Illumina
HiSeq 4000. Before sequencing, paired-end libraries with 300-
bp insert size were constructed following the manufacturer’s
protocol (Illumina Inc.). 303,763–1,744,889 mapped reads were
obtained from 8,801,265–29,818,482 raw reads (Supplementary
Table S1). The length of sequencing reads was 150 bp. The
four junctions between the inverted repeat region (IRs) and the
small single copy (SSC)/large single copy (LSC) region were
checked by amplification using specific primers, followed by
Sanger sequencing (Dong et al., 2013).

TABLE 1 | Taxa of Juglans used in this study.

GenBank accession numbers

No. Taxon Section Place of collection Chloroplast genome ITS/UBL

1 J. regia Juglans Taihang mountainous region in Yixian County, Hebei
Province, China

MF167464 MF182370/MF279072

2 J. regia ‘Bokexiang’ Juglans Resources Nursery, Forestry Bureau of Luoning
County, Henan Province, China

MF167463 MF182375/MF279073

3 J. sigillata Juglans Arboretum, Forestry Academy of Yunnan Province,
Kunming City, Yunnan Province, China

MF167465 MF182371/KF994009

4 J. cathayensis Cardiocaryon Arboretum, Forestry Academy of Yunnan Province,
Kunming City, Yunnan Province, China

MF167457 MF182373/MF279074

5 J. mandshurica Cardiocaryon Beijing Botanical Garden of the Chinese Academy of
Sciences, China

MF167461 MF182374/KF994012

6 J. hindsii Rhysocaryon Arboretum, Forestry Academy of Yunnan Province,
Kunming City, Yunnan Province, China

MF167459 MF182369/KF589931

7 J. major Rhysocaryon Resources Nursery, Forestry Bureau of Luoning
County, Henan Province, China

MF167460 MF182376/KF589930

8 J. nigra Rhysocaryon Resources Nursery, Forestry Bureau of Luoning
County, Henan Province, China

MF167462 MF182372/KF589927

9 J. cinerea Trachycaryon Voucher specimen (No. 2274609) from Sevier County
of Tennessee, United States in Herbarium of Institute of
Botany, Chinese Academy of Sciences, Beijing, China

MF167458 MF182366/MF182377

ITS, internal transcribed spacer, partial sequence; UBL, ubiquitin ligase gene partial sequence.
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The high-throughput sequencing data were qualitatively
assessed and assembled using SPAdes 3.6.1 (Bankevich et al.,
2012). Using J. regia (KT963008) as a reference sequence,
we selected chloroplast genome contigs using Blast method.
The contigs of the chloroplast genome were assembled using
Sequencher (v5.4) with default parameters and the gaps
between contigs were filled in by amplification with PCR-based
conventional Sanger sequencing using ABI 3730. The specific
primers were designed based on the flanking sequences to bridge
the gaps. After that, all reads were mapped to the spliced
chloroplast genome sequence using Geneious 8.1 (Kearse et al.,
2012) to avoid assembly errors.

Genome Annotation
Chloroplast genome annotation was performed using the Dual
Organellar Genome Annotator (DOGMA) (Wyman et al., 2004).
BLASTX and BLASTN searches were employed to accurately
annotate the protein-encoding genes and to identify the locations
of the ribosomal RNA (rRNA) and transfer RNA (tRNA) genes.
Gene annotation information from other closely related plant
species was also utilized for sure when the boundaries of the
exons or introns could not be precisely determined because of the
limited power of BLAST in chloroplast genome annotation. The
chloroplast genome map was drawn using Genome Vx software
(Conant and Wolfe, 2008). The nine chloroplast genomes newly
sequenced in this study were deposited in GenBank (accession
numbers MF167457-MF167465).

PCR Amplification of the Two Nuclear
DNA Regions
The ITS sequences were amplified using the primer pair, ITS-u1
and ITS-u4, and following the PCR amplification conditions as
reported by Cheng et al. (2016). The DNA sequence from the
ubiquitin ligase gene region (UBE3) was amplified using the
primer pair, H_UBE3_23f and H_UBE3_838r, and following the
PCR amplification conditions as reported by Suo et al. (2015).
The eleven ITS sequences and one ubiquitin ligase gene sequence
were deposited in GenBank (accession numbers MF182366-
MF182377). The ubiquitin ligase gene sequences of other samples
used for comparative analysis in this study were downloaded
from GenBank (accession numbers: KF994007-KF994018) (Suo
et al., 2015). The DNA sequences of outgroups were also
deposited in GenBank (Pterocarya stenoptera, MF182367 for ITS,
KF994018 for UBE3; Cyclocarya paliurus, MF182368 for ITS,
KF994017 for UBE3).

Sequence Divergence Analysis
The chloroplast genome sequences were aligned using MAFFT
(Katoh and Standley, 2013) and were manually adjusted using
Se-Al 2.0 (Rambaut, 1996). Variable and parsimony-informative
base sites across the complete chloroplast genomes, the large
single copy (LSC), small single copy (SSC), and inverted repeat
(IR) regions of the chloroplast genomes were calculated using
MEGA 6.0 software (Tamura et al., 2013). Sliding window
analysis was conducted to generate nucleotide diversity (Pi)
of the chloroplast genome using DnaSP (DNA Sequences

Polymorphism version 5.10.01) software (Librado and Rozas,
2009). The step size was set to 200 bp, with a 600-bp window
length. Repeating sequences were scanned over the complete
chloroplast DNA sequences, species by species, using the REPuter
program. Probable inversion regions associated with the repeated
sequences were evaluated by detailed alignment and sequence
similarity searches (Kurtz et al., 2001; Kim and Lee, 2005).

Phylogenetic Analysis
Maximum parsimony (MP) analyses were performed using PAUP
v4b10 (Swofford, 2003). All characters were equally weighted,
gaps were treated as missing, and character states were treated
as unordered. Heuristic search was performed with MULPARS
option, tree bisection-reconnection (TBR) branch swapping, and
random stepwise addition with 1,000 replications. The Maximum
likelihood (ML) analyses were conducted using RAxML 8.0
(Stamatakis, 2006). For ML analyses, the best-fit model, general
time reversible (GTR)+G was used in all analysis as suggested
with 1,000 bootstrap replicates.

Bayesian inference (BI) was conducted with Mrbayes v3.2
(Ronquist et al., 2012). The Markov chain Monte Carlo (MCMC)
analysis was run for 2 × 5,000,000 generations. Trees were
sampled at every 1,000 generations with the first 25% discarded
as burn-in. The remaining trees were used to build a 50%
majority-rule consensus tree. The stationarity was regarded to be
reached when the average standard deviation of split frequencies
remained below 0.01.

Estimation of Divergence Times
The BEAST v2.3.3 package (Bouckaert et al., 2014) was used
to analyze the chloroplast genome dataset for assessment
of Juglans divergence times using a relaxed molecular clock
method (Drummond et al., 2006). We selected chloroplast
genome dataset for divergence time analysis. For calibration, two
constraints were used: (1) The age for the most recent common
ancestor of the Juglandaceae was set to 79.9 Mya (71.2–96.4)
and assigned a normal distribution (Xiang et al., 2014); (2) the
Juglans crown group was set to age of 45 Mya (Manchester, 1987;
Aradhya et al., 2007). We used an uncorrelated log-normal clock,
a Yule tree prior, and a randomly generated starting tree. The data
was assigned a GTR + I + G model of substitution. Runs were
conducted for 500 million generations with parameters sampled
every 5,000 steps. Tracer v.1.6 (Rambaut et al., 2014) was used
to check convergence and stationarity, to determine the number
of generations discarded as burn-in, and to confirm that effective
sample size (ESS) values were over 200.

RESULTS

Chloroplast Genome Features
The Juglans complete chloroplast genomes ranged from 159,714
(J. hopeiensis, GenBank accession no. KX671977) to 160,537 base
pairs (bp) (J. regia voucher JREG20151001, GenBank accession
no. KT870116) in length. All the chloroplast genomes possessed
the typical quadripartite structure of angiosperms, consisting
of a pair of the inverted repeat region (IRs: 26,023–26,039 bp)
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separated by a large single-copy region (LSC: 89,307–89,917 bp)
and a small single-copy region (SSC: 18,352–18,429 bp) (Figure 1
and Table 2). All the 10 chloroplast genomes possessed
112 unique genes arranged in the same order, including 78
protein-coding, 30 tRNA, and 4 rRNA genes. GC content in
each chloroplast genome is identically 36.1% (Supplementary
Table S2).

Genome Sequence Divergence
The distribution of each single nucleotide polymorphic site
(SNP) among the 10 Juglans chloroplast genomes is shown in
Supplementary Table S3. There were 721 SNPs in LSC region, 268
in SSC region, and 30 in each of the IR regions.

At section level, the largest sequence divergence occurred
between Juglans sections Cardiocaryon and Rhysocaryon,
with the largest nucleotide substitution number (512 to
575) and the largest sequence distance (0.0032 to 0.0036).
The smallest sequence divergence at section level was
observed between sections Juglans and Cardiocaryon,
with the lowest nucleotide substitution number (465 to
471) and the lowest sequence distance (0.0029 to 0.0030).
The sequence divergence between sections Juglans and
Rhysocaryon was observed to be intermediate, with the
nucleotide substitution number ranged from 492 to 545,
and the sequence distance ranged from 0.0031 to 0.0034
(Table 3).

FIGURE 1 | Gene map of Juglans chloroplast genome. The genes inside and outside of the circle are transcribed in the clockwise and counterclockwise directions,
respectively. Genes belonging to different functional groups are shown in different colors. The thick lines indicate the extent of the inverted repeats (IRa and IRb) that
separate the genomes into small single-copy (SSC) and large single-copy (LSC) regions.
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The lowest within-section-divergence was observed in section
Juglans, with the lowest nucleotide substitutions of 4 to 7, and
the lowest sequence distance of zero. The largest within-section-
divergence was found in section Rhysocaryon, with the largest
nucleotide substitutions of 143 to 182, and the largest sequence
distance of 0.0009 to 0.0011. The intermediate within-section-
divergence was observed in section Cardiocaryon (Table 3).

At taxon level, the largest sequence divergence was observed
between J. cinerea and J. hopeiensis, with the highest nucleotide
substitution number (575) and the highest sequence distance
(0.0036). The lowest divergence was between J. cinerea and
J. nigra of section Rhysocaryon, with the lowest nucleotide
substitution number (113) and the lowest sequence distance
(0.0007) (Table 3). J. hopeiensis is classified in section
Cardiocaryon and is closer to J. mandshurica.

Six hyper-variable regions (Pi > 0.01) were uncovered among
the sampled Juglans taxa. They are three intergenic spacers (rpoB-
trnC, trnT-psbD, and psbE-petL) from the LSC region, and two
gene regions (ycf1b and ycf1a) and one intron of ndhA from SSC
region (Figure 2).

Small Inversions
It has been reported that each small inversion is commonly
associated with a hairpin secondary structure in the chloroplast
genomes (Kim and Lee, 2005). In this study, a total of 12 small
inversions were uncovered based on the sequence alignment
of the 10 complete chloroplast genomes representing the four
sections of the genus Juglans, of which nine small inversions were
located in LSC region, two in IR region, and one in SSC region.
Eleven of the 12 small inversions were seen in intergenic spacers,
and one of them was in ycf1 gene region of the chloroplast
genomes (Table 4).

Each of the small inversions from trnK-rps16 or trnD-trnY
only occurred in section Juglans. The two small inversions from
trnT-trnD, psbA-ycf3 and petA-psbJ only occurred in section
Cardiocaryon. The small inversion from trnE-trnT occurred
within section Rhysocaryon and section Trachycaryon (including
a single species J. cinerea). Each small inversion from trnS-trnG,
trnM-atpE, or rrn4.5-rrn5 occurred only in certain taxon within
sect. Rhysocaryon. The small inversion from trnE-trnT was only
observed in both section Juglans and section Cardiocaryon.

The small inversion from psbC-trnS occurred in section
Juglans, including J. hopeiensis which is regarded as a natural
hybrid between J. mandshurica and J. regia (molecular evidences
from our experiments will be published in another article
in detail). The small inversion in ycf1 occurred in either
J. mandshurica or J. hopeiensis. The 4 bp small inversion of
trnR-trnN occurred simultaneously in part of taxa in section
Cardiocaryon and section Rhysocaryon, showing no phylogenetic
implication (Table 4).

Phylogenetic Analysis
Phylogenetic analysis was conducted using each of the four
sequence data sets: the complete chloroplast genome, LSC, SSC,
or IR regions (Figure 3). The chloroplast genome sequences
of Corylus chinensis (GenBank accession No. KX814336,
Betulaceae), Ostrya rehderiana (GenBank accession No.

KT454094, Betulaceae), Carpinus putoensis (GenBank accession
No. KX695124, Betulaceae), Cyclocarya paliurus (GenBank
accession No. KY246947, Juglandaceae), and Annamocarya
sinensis (GenBank accession No. KX703001, Juglandaceae) were
used as outgroups (Figure 3).

A combined sequence data set of a 724 bp length ITS sequence
alignment with a 753 bp length ubiquitin ligase gene sequence
alignment was used for the phylogenetic analyses. A total of
1,477 bp length nuclear DNA sequence alignment was used
(Figure 4).

The sequence data set from either the whole chloroplast
genome or SSC region provided the best and almost identical
resolution in the phylogenetic analyses with high bootstrap
support value in comparison with the sequence data set from
each of the rest two chloroplast regions (LSC and IR regions).
Generally, the walnut taxa could be separated into three branches
by the chloroplast DNA sequence data sets: (1) section Juglans,
(2) section Cardiocaryon, and (3) section Rhysocaryon including
J. cinerea which is closer to J. nigra (Figure 3). However, the
combined sequence data set from the two nuclear DNA regions
revealed a different phylogenetic topology of three branches in
Juglans: (1) section Juglans, (2) section Cardiocaryon plus section
Trachycaryon (J. cinerea) which is closer to J. mandshurica,
and (3) section Rhysocaryon (Figure 4). J. hopeiensis which was
classified in section Cardiocaryon showed a closer relationship
with J. mandshurica. Based on the complete chloroplast genome
sequence data, the divergence time between section Juglans and
section Cardiocaryon was 44.77 Mya. The divergence time of
section Rhysocaryon from other sections in the genus Juglans was
47.61 Mya (Figure 5).

DISCUSSION

Structure, Size and Phylogenetic
Information of Small Inversions
Large inversions are well characterized in the chloroplast
genomes of various plant families/genera and the sequence data
have been used to determine angiosperm lineages from the genus
to phylum level (Jansen and Palmer, 1987; Milligan et al., 1989;
Raubeson and Jansen, 1992; Hupfer et al., 2000; Kim and Lee,
2005). In contrast, limited plant groups were studied involving
small inversions. For examples, a four base inversion associated
with a hairpin secondary structure occurs within the rpl16 intron
of the chloroplast genomes of some members of the genus
Chusquea and related bamboo species (Poaceae) (Kelchner and
Wendel, 1996). Sixteen small inversions ranging from 5 to 50 bp
occurred in chloroplast genomes of phylogenetically distantly
related groups of land plants including Poaceae, Fabaceae, and
Solanaceae (Kim and Lee, 2005).

Within a single genus, Kim and Lee (2005) selected nine
species of Jasminum (Oleaceae) to document the occurrence of
the small inversions in closely related species. A 11 bp small
inversion associated with a 19 bp inverted repeat was uncovered
within the trnL-F non-coding regions in the chloroplast genome
of Jasminum (Kim and Lee, 2005). In this study, 12 small
inversions (loops) ranging from 2 to 31 bp in length were detected
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FIGURE 2 | Sliding window analysis of the whole chloroplast genomes of 10 Juglans species. (window length: 600 bp, step size: 50 bp). X-axis: position of the
midpoint of a window, Y-axis: nucleotide diversity of each window.

in chloroplast genomes of Juglans (Juglandaceae), they were
associated with the inverted repeating sequences ranging from 8
to 18 bp in length. This indicated that there are large differences
in the occurrence and distribution of small inversion between
plant families. Our study further verified that small inversions
are valuable genetic source for phylogenetic researches within a
single genus, because more than 83.3% of them were found to be
phylogenetically informative in revealing the genetic variations of
Juglans plants at section and taxa levels.

In this study, a 4 bp small inversion in trnR-trnN intergenic
spacer has no phylogenetic significance, indicating that careful
analysis is necessary before use of small inversions.

Phylogeny of Juglans
In this study, we explored and analyzed new genetic
information by sequencing the complete chloroplast
genomes and two nuclear DNA regions (ITS, and ubiquitin
ligase gene) of nine Juglans taxa representing the four
sections of the genus Juglans previously published based
on morphological characteristics. The phylogenetic analyses
were conducted using three algorithms, MP, ML, and BI
methods. No significant difference was found among the
algorithms.

According to analysis based on DNA sequences from two
nuclear gene regions, the monotypic section Trachycaryon
(J. cinerea) is a sister to the section Cardiocaryon. These
two sections (Trachycaryon and Cardiocaryon) together further
formed one branch which is a sister group to section Juglans
or section Rhysocaryon. Sectional level divergence occurred in
Juglans around 44.77 to 47.61 Mya in Eocene. These are similar
to the previous reports (Aradhya et al., 2007).

The phylogenetic topology obtained using molecular data
is generally identical with the tree topology obtained using
morphological data, except for the placement of J. cinerea
(Manning, 1978). In Juglans, the phylogenetic position of
J. cinerea has been controversial (Aradhya et al., 2007;

Laricchia et al., 2015). In this study, phylogenetic analysis
based on the chloroplast genome sequences showed that
J. cinerea was positioned within section Rhysocaryon. The closer
relationship between J. cinerea and J. nigra is identical with
their current geographical occurrence. The chloroplast genome
data do not support the isolated position of the monotypic
section Trachycaryon (J. cinerea) based on morphological
characters.

The distributional ranges of the Tertiary fossils of
butternuts (J. cinerea) and black walnuts (J. nigra) do not
overlap except in the northwestern parts of the United
States around 40◦ N latitude, strongly suggesting that they
may have evolved independently as suggested by Hills et al.
(1974).

Sequences from eight different regions of the chloroplast
genome in 197 trees in J. cinerea sampled from their distribution
area revealed 10 haplotypes (Laricchia et al., 2015). The
phylogenetic incongruence for J. cinerea based on nuclear
DNA sequences and/or chloroplast genome sequences might be
potentially caused by hybridization. Juglans section Trachycaryon
based on morphological characteristics was supported by
neither nuclear nor chloroplast DNA sequences. This is still
a mystery at current stage and will be a key point for
us to challenge in future phylogenetic studies of the genus
Juglans (Aradhya et al., 2007). Further study by sampling
more individual trees/populations of J. cinerea, members
from section Rhysocaryon and section Cardiocaryon and
utilizing potential information from the whole nuclear genome
sequence of J. regia (Martinez-Garcia et al., 2016) will be
meaningful.

Juglans hopeiensis was shown maternally belonging to the
same chloroplast lineage with J. mandshurica in section
Cardiocaryon in this study. This result is identical with the
previous studies which suggested that J. hopeiensis is an inter-
specific hybrid between J. mandshurica and J. regia (Rehder, 1940;
Lu et al., 1999; Wu et al., 2000; Aradhya et al., 2007). Further study
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FIGURE 3 | Phylogenetic relationships of Juglans inferred from maximum parsimony (MP), Bayesian inference (BI), and maximum likelihood (ML) analyses of different
chloroplast genome data partitions. (A) Whole chloroplast genome. (B) LSC region. (C) IR region. (D) SSC region. Numbers near nodes indicate the MP bootstrap
values (left) for each clade present in the 50% majority-rule consensus, ML bootstrap values (middle), and Bayesian posterior probability (right). Both MP and ML
bootstrap support values = 100 and Bayesian posterior probability = 1.0 are not given at the nodes.

is necessary for a more clear elucidation involving the origin of
J. hopeiensis.

CONCLUSION

This study reports the comparative genomic analysis results of
nine Juglans chloroplast genome sequences with detailed gene
annotation. More than 83.3% of the small inversions in the
chloroplast genomes provided valuable genetic information for
phylogenetic researches at taxon and section levels in Juglans.
All of the Juglans taxa were discriminated completely with high
bootstrap support values. The molecular taxonomy of Juglans
is almost compatible to the currently accepted morphological

taxonomy except J. cinerea (section Trachycaryon). The existence
of the monotypic section Trachycaryon (J. cinerea) based on
morphological characteristics was supported by neither nuclear
nor chloroplast DNA sequences. The systematic position of
J. cinerea shifted from a member of J. section Cardiocaryon based
on the combined nuclear DNA sequence data set to a member
of the section Rhysocaryon based on the chloroplast genome
sequence data set. Further studies centering J. cinerea by sampling
more samples will be helpful for clarifying the phylogenetic
placement of J. cinerea. Sectional level divergence time of Juglans
was 44.77 to 47.61 Mya in Eocene. These results obtained in this
study are valuable for future researches on global Juglans genetic
diversity and will enhance our understanding of the phylogenetic
evolution of the Juglandaceae.
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FIGURE 4 | Phylogeny of Juglans based on ITS and ubiquitin ligase gene. Numbers near nodes indicate the MP bootstrap values (left) for each clade present in the
50% majority-rule consensus, ML bootstrap values (middle), and Bayesian posterior probability (right).

FIGURE 5 | Chronogram obtained for Juglans under a Bayesian relaxed-clock approach based on the chloroplast genome dataset. Gray boxes indicate 95%
confidence intervals on nodal ages.
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