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Hypotheses on the existence of a universal “Root Economics Spectrum” (RES) have
received arguably the least attention of all trait spectra, despite the key role root trait
variation plays in resource acquisition potential. There is growing interest in quantifying
intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the
existence of an intraspecific RES within a plant species, or (ii) how a RES may
be coordinated with other trait spectra within species, such as a leaf economics
spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured
seven morphological and chemical traits of intact lateral roots, which were paired with
information on four key LES traits. Field collections were completed across four nested
levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged
from 25 to 87% with root diameter and specific root tip density showing the lowest and
highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity
alone for five of the seven traits measured. A single principal component explained
56.2% of root trait covariation, with plants falling along a RES from resource acquiring
to conserving traits. Multiple factor analysis revealed significant orthogonal relationships
between root and leaf spectra. RES traits were strongly orthogonal with respect to
LES traits, suggesting these traits vary independently from one another in response
to environmental cues. This study provides among the first evidence that plants from
the same species differentiate from one another along an intraspecific RES. We find that
in one of the world’s most widely cultivated crops, an intraspecific RES is orthogonal
to an intraspecific LES, indicating that above and belowground responses of plants to
managed (or natural) environmental gradients are likely to occur independently from one
another.

Keywords: agroecology, agroforestry, Coffea arabica, functional traits, intraspecific trait variation, leaf
economics spectrum, root economics spectrum, trait coordination
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INTRODUCTION

Elucidating the key dimensions of functional trait variation
among plant species has been critical for understanding,
predicting, and managing terrestrial ecological responses to
environmental or land-use change. Supporting the application
of functional trait-based approaches to terrestrial ecology is
arguably one unifying framework: evaluating how traits covary or
trade-off to form distinct trait “spectra” (Grime, 1979; Lambers
and Poorter, 1992; Reich et al., 1997; Westoby et al., 2002;
Reich, 2014; Diaz et al., 2016). In addition to early mentions of
plant strategies, trait suites, and trait trade-offs (Grime, 1979;
Givnish, 1988; Lambers and Poorter, 1992; Chapin et al., 1993),
the concept of trait spectra was popularized in the 2000s, most
notably with the publication of the “Leaf Economics Spectrum”
(LES) (Wright et al., 2004). Shortly before and since the LES
was published, nearly all groups of functional traits have been
hypothesized to covary along a distinct spectrum that describes
functional variation among plant species (Westoby et al., 2002;
Chave et al., 2009; Reich, 2014; Diaz et al., 2016). Evidence
on trait spectra in plants has been critical for evaluating the
evolutionary pressures driving trait variation among species (e.g.,
Shipley et al., 2006), and understanding how differences in species
traits influence ecosystem structure and function (e.g., Diaz et al.,
2004; Cornwell et al., 2008).

Among all traits, hypotheses on the existence of a universal
“Root Economics Spectrum” (RES) has received arguably the
least attention (Reich, 2014), despite the key role root trait
variation plays in resource acquisition potential (Lambers et al.,
2008; Cahill et al., 2010; Bardgett et al., 2014), and other
ecosystem functions such as soil stability (e.g., Rillig et al.,
2015). Evidence for the existence of a community-level RES has
emerged, with certain traits covarying along a spectrum from
resource acquiring to resource conserving root traits. Distinct
root morphological and chemical traits [i.e., high specific root
length (SRL), specific root area (SRA), specific root tip density
(SRTD) (or branching intensity, fine root tip density, and root
tip abundance), and root N concentration] designate resource
acquisition while large root diameter and high root C:N signify
resource conservation (Prieto et al., 2015; Fort et al., 2016;
Weemstra et al., 2016). However, studies testing for the presence
of a RES across species have produced mixed results. For example,
recent studies have found evidence for a RES in herbaceous
species, but analyses suggest woody species show drastically
different patterns (Larson and Funk, 2016; Roumet et al., 2016;
Weemstra et al., 2016).

Even less well resolved, is whether or not there exists a
within-species RES, unrelated to genetic diversity but driven by
environmental factors. The expression of root plasticity, and thus
measurable root intraspecific trait variation (ITV), may be owing
to within-species genetic variability or the integration of signals
from the rooting environment (Miner et al., 2005). Yet, artificial
selection during domestication can limit root trait variation,
such that ITV from genetic sources are constrained. Here,
we employ two highly related varieties from the economically
important tree-crop breeding program for Coffea arabica. Given
this, our study focuses near solely on phenotypic plasticity

derived from the effects of environmental conditions on root
trait values and root-leaf trait coordination. Recent analyses of
ITV point to within-species trait spectra (Albert et al., 2010;
Siefert et al., 2015) as having a key role in determining plant
community composition (Laughlin et al., 2012), plant responses
to environmental change (Jung et al., 2014; Moran et al., 2016),
and rates of ecosystem function (Lecerf and Chauvet, 2008;
Gagliardi et al., 2015) (but see Jackson et al., 2013). However,
to date this literature has almost exclusively focused on leaf
traits. In comparison, to our knowledge there is only one
study that directly tests for the presence of a within-species
RES. Hajek et al. (2013) found that certain root traits covaried
strongly along a single axis of variation that, when coupled
with relative growth rate, leaf size, and specific leaf area (SLA),
described nearly 70% of the variation in root chemistry and
morphology among Populus trema individuals. Ostonen et al.
(2007) illustrated the relationships between SRL and fertilization
within tree species through meta-analysis. Beyond this, there
is no evidence indicating whether or not a RES applies to
individuals of other species.

Documenting systematic responses of traits to environmental
conditions has long been a main theme when evaluating inter-
and intraspecific variation in traits (e.g., Givnish, 1988; Chapin
et al., 1993). Understanding how plants integrate signals from
highly heterogeneous soil environments in order to modify
root traits, is arguably more challenging as compared to other
aboveground traits. Unlike well-described relationships between
light availability and rates of C assimilation and associated traits
in leaves (e.g., Rijkers et al., 2000), root traits respond to a range of
regional and localized soil chemical resources including macro-
and micro-nutrients, soil moisture regimes, and soil pH, as well
as multiple physical properties including structure, texture, and
aggregation (reviewed by McCormack et al., 2015; Weemstra
et al., 2016). These factors would be expected to vary most widely
across broad growing regions, as compared to individual-plant
scales; an assumption that is widely reflected in many process-
based models of agricultural yield and ecosystem services, where
trait values are generalized across growing regions (e.g., Bouman
and van Laar, 2006; van Oijen et al., 2010). In this sense
quantifying the primary sources of variation in traits, especially
root traits that are difficult to collect, is key for ensuring that trait
values are actually reflective of the plants growing in a particular
region, site, or management scenario, and for designing trait
sampling strategies that adequately capture the main aspects of
ITV (Carmona et al., 2015; Martin et al., 2017).

Another key question in trait-based research is whether or not
different trait spectra are “parallel” vs. “orthogonal” (independent
of) to one another (Baraloto et al., 2010; Weemstra et al., 2016).
Studies on interspecific trait variation have found the LES is
orthogonal to suites of whole plant (Diaz et al., 2016), stem
(Baraloto et al., 2010), and leaf hydraulic traits (Li et al., 2015).
With respect to root traits, studies have found evidence of parallel
coordination between RES and other spectra, but these results
have been limited to herbaceous species (Craine et al., 2005;
Tjoelker et al., 2005), or have been observed only when evaluating
trait differences among plant communities (de la Riva et al.,
2016).
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To date, hypotheses on trait spectra orthogonality within
species have been only weakly tested, especially for root traits.
One study did find evidence of orthogonality among LES and
leaf hydraulic traits in a Eucalyptus genotype (Blackman et al.,
2016), while the analysis by Hajek et al. (2013) indicates that
only certain leaf traits (i.e., leaf area and SLA) covary along
a within-species RES, while other leaf traits (i.e., leaf N) do
not. Drawing on literature from trees and tree-crops, we expect
root ITV to occur along environmental gradients, namely soil
moisture (Moser et al., 2010; Padovan et al., 2015) and edaphic
conditions (Isaac et al., 2014; Defrenet et al., 2016); gradients
that may occur independently of those driving aboveground ITV,
such as air temperature, light, and CO2 availability (Gagliardi
et al., 2015; Niinemets, 2015; Blackman et al., 2016). Additionally,
mycorrhizal associations, a key biotic aspect of soils, may lead to
systematic differences in ITV of root traits as compared to other
trait spectra (Collins et al., 2016).

Testing hypotheses on trait coordination or orthogonality
has applied implications for both agroecosystem models and
crop biology. From a modeling perspective, if above- and
belowground traits coordinate along single axes of resource
acquisition/conservation, data on aboveground traits (which are
generally easier to collect) could be used to approximate root trait
data (that are generally more difficult to ascertain). Alternatively,
evidence of orthogonality among root and leaf traits within
species would indicate that root trait values are essential
when describing, or modeling the impacts of, independent
belowground dimensions of plant functional biology such as
nutrient capture and retention (Meister et al., 2014). From a crop
science perspective, researchers have pointed to the difficulties
in artificially selecting crops for desirable root traits (Meister
et al., 2014). If root and leaf show coordinated patterns of
ITV, managing the environmental conditions that are known to
influence leaf traits, would also be expected to influence root
traits. Alternatively, if suites of traits vary independently from
one another, multiple environmental gradients would have to be
managed in order to reach desired functional trait profiles of
crops of crop assemblages.

Our study was designed to evaluate patterns of intraspecific
root trait variation within an agroecosystem. We use individuals
of C. arabica, grown in four climatically different sites across two
management systems (monoculture and agroforestry) in a nested
design to determine primary sources of trait variation. As one of
the world’s most widespread tree-crops, ITV of C. arabica LES
traits have long been a focus on agronomists (e.g., DaMatta, 2004;
Matos et al., 2009), and have more recently been evaluated to
test hypotheses regarding ITV. For example, Martin et al. (2017)
report that while C. arabica plants differ along the LES, high-
resource agricultural environments lead this species to express
weakened patterns of LES trait covariation (when compared to
wild plants). Similarly, an analysis by Gagliardi et al. (2015) found
that the position of coffee plants along an “intraspecific LES” was
associated with plant yield. So while evidence indicates C. arabica
follows along the LES, and that this variation has implications
for agroecosystem functioning, tests on the patterns of C. arabica
root trait covariation are considerably less common (van Kanten
et al., 2005; Dias et al., 2007).

Our objectives were to (1) describe the magnitude of root trait
variation within individuals of the same genotype across a range
of organizational levels (site, management, and individuals);
(2) evaluate which nested level of biological organization best
explain root trait variation in C. arabica; (3) determine if root
traits coordinate along a single axis of resource acquisition
to resource conservation, an intraspecific RES; and (4) test
whether or not an intraspecific RES is related to other well-
known dimensions of ITV. Based on prior studies of root
trait variation, as well as studies in intraspecific leaf trait
variation in coffee, we hypothesized that root traits would
vary most widely across sites (Gagliardi et al., 2015; Martin
et al., 2017), which represent major climatic gradients of coffee
growing conditions. Based on the emerging literature on trait
ITV and within-species economic spectra (Niinemets, 2015;
Martin et al., 2017), we also hypothesized that root traits would
covary within coffee, along a single primary intraspecific RES;
more specifically, we anticipated that root traits associated with
resource acquisition trade-off with traits associated with resource
conservation. Lastly, since leaves and roots respond differently
to environmental gradients, we hypothesized that intraspecific
root and leaf economic spectra in coffee would show little
coordination among one another, and instead show patterns of
orthogonality.

MATERIALS AND METHODS

Sampling Design
Our study employed a nested design in order to quantify
root and leaf trait variation in C. arabica plants across four
different hierarchical scales: (1) individuals within blocks, (2)
among blocks within management treatments (i.e., full sun and
agroforestry); (3) among management treatments within a site;
and (4) among sites. This design resulted in traits measured
on 64 coffee plants, which were collected from n = 4 coffee
plants per block, within n= 2 blocks per management treatment,
within n = 2 management treatments per site, and across n = 4
sites.

We identified four sites in the coffee growing regions of Costa
Rica and Nicaragua where closely related varieties of C. arabica
(var. Caturra and var. Pacas, respectively, both derived from
var. Bourbon) are grown (hereafter referred to as, collectively,
C. arabica). While C. arabica var. Pacas is technically a different
variety, this genotype is long-recognized only as a mutation of
the same genetic strain as C. arabica var. Caturra (Bertrand
et al., 1999). Given this mutation, there is a possibility of slight
genetic variability between the two highly related varieties (but
see Table 5 for evidence of no systematic or consistent differences
between varieties). These sites ranged in latitude from 9 to 11◦N
and elevation of 455–1500 m (covering a range of coffee growing
altitudes) with a mean annual temperature (MAT) from 18.7
to 24◦C and mean annual precipitation (MAP) from 1386 to
3200 mm (Table 1). These four sites represented four broad coffee
growing regions as outlined in Table 1.

Coffea arabica is cultivated in two main management
systems: monoculture (hereafter “full sun” management) and
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in agroforestry systems where coffee is intercropped with
regularly pruned N2-fixing shade tree (hereafter “agroforestry”).
For the agroforestry management system, coffee is specifically
intercropped with Erythrina poeppigiana (Fabaceae) at three of
these sites, and Inga laurina (Fabaceae) at one site. Within
each site-by-management combination, we delineated two 25-m2

blocks that were spaced at minimum 20 m from one another to
ensure spatial interspersion of sampling. Within each block, we
selected four sample plants for collection of traits where n = 64
coffee plants total distributed equally among sites. In sum, all of
the traits measured on coffee plants were sampled and associated
with the following information: (i) roots/leaves within plants; (ii)
plants within blocks; (iii) blocks within management treatments;
and (iv) management treatments within sites.

At all of the sites coffee plants are stump pruned
approximately every 5–7 years leading to uneven-aged canopies
of coppiced resprouts, with generally 2–3 resprouts per
plant (Charbonnier et al., 2013). All sampled plants were at
reproductive maturity, were between 140 and 235 cm in height
with a resprout basal diameter between 14.4 and 34.6 mm. In the
monoculture treatments, coffee plants were at minimum 20 m
away from the nearest shade tree, a distance that is excess of the
zone of influence for certain physiological processes including
N transfer (Meylan, 2012). In the agroforestry treatments, all
sample plants were between 0.5 and 9.6 m from the nearest shade
tree.

Root Trait Collection
We excavated one complete lateral root from each individual
C. arabica plant in our study within 1 week in order to minimize
any growing season effects. The C. arabica root system is
typically composed of a primary taproot and lateral roots in the
upper soil horizon as well as four to eight axial roots (Garriz,
1978). We followed the main aerial stump to the taproot until
the upper-most lateral roots could be isolated. A lateral root
was then excavated in its entirety, which included all feeder
and fine roots and any gravitropically positive roots. Multiple
levels of standardization were used in our collection of lateral
roots. Specifically, we: (1) standardized all plants by genotype
(described above); (2) standardized all plants by age (based on
known relationships between diameter at sprout and age); (3)
standardized all intact lateral roots by depth at which they were
collected (top 20 cm); and (4) standardized all intact lateral
roots by originating diameter class (<4 mm). Roots were then
brushed, stored intact in freezer bags, and stored at −18◦C
until processing. We also collected an intact soil core (5 cm
diameter) from the top 20 cm of the soil profile, bagged the
collected soil and roots and stored at −18◦C until further
processing.

In the lab, intact lateral roots were rinsed by hand using
deionized water. We restricted analysis to absorptive fine roots
<2 mm in diameter (Perez-Harguindeguy et al., 2013), however,
given our standardization in sampling protocol described above,
we included higher ordered roots (4th order but <2mm) from
our intact lateral root sample. (Note – we also replicated all of
our analysis on a subset of roots that fall under the “absorptive”
functional classification as described by McCormack et al. (2015),
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which includes only 1st, 2nd, and 3rd order roots. Our results
were robust with respect to this data subsetting). Samples
were then scanned using a flatbed scanner at 600 dpi. Root
image analysis was then conducted using WinRhizo (Regents
Instruments, Montreal, QC, Canada), to generate information
on total root length, total root area, total tip number, and mean
root diameter. Roots from the soil cores were extracted in a
water bath with tweezers and scanned for length. All roots
were then oven-dried at 60◦C for 48 h and weighed, and then
transported to the University of Toronto Scarborough. Chemical
trait analysis was conducted on the intact roots of <2 mm, which
were first ground into a homogeneous powder using a ball mill
(Retsch Ltd., Haan, Germany). Root C and N concentrations
were then measured on approximately 0.1 g of dried sample using
a CN628 elemental analyzer (LECO Instruments, Mississauga,
ON, Canada).

Based on these analyses, we derived data on seven root traits in
total for each plant including two traits associated with resource
conservation – average root diameter (D; mm) and root carbon:N
ratios (CNroot), four traits associated with resource acquisition –
SRL (root length divided by root dry mass; m g−1), SRA (root area
divided by root dry mass; m2 kg−1), SRTD (number of root tips
divided by root dry mass; tips g−1), root N concentrations (Nroot;
%), and one trait derived from soil cores, root length density
(RLD, total root length in a known soil volume; cm cm−3 soil). In
sum, we present one trait on a standardized volume basis (RLD),
three traits as a mean of <2 mm fine roots (D, Nroot, and CNroot),
and three traits on a standardized mass basis for <2 mm fine roots
(SRL, SRA, and SRTD).

Soil Conditions
Across all four sites, soil samples to a depth of 15 cm were
collected and analyzed for soil properties (n = 64; 16 samples
per site). Fresh soil samples were homogenized and divided into
three for determination of soil moisture content (%), soil pH,
and soil nutrients. For one of the subsamples, wet mass was
measured, soils were then oven-dried at 105◦C for 72 h, and soil
moisture content was calculated as the difference between wet
and dry mass divided by dry mass. Soil pH was measured with
one of the subsamples in a 1:5 soil to water solution with a pH
meter (Mettler Toledo pH meter, Mississauga, ON, Canada). The
final subsample was air-dried and transported to the University
of Toronto for total C and N concentrations (%), as well as
available plant-available phosphorus (P, mg kg−1 soil). Total
soil C and N concentrations were measured on approximately
1 g of dried sample using a CN628 elemental analyzer (LECO
Instruments ULC, Mississauga, ON, Canada). For plant-available
P determinations, samples were air-dried and sieved to 2 mm, and
4 g were extracted using 20 mL of Brays 1 and filtered through
#1 Whatman filter paper. Plant-available P was then determined
colorimetrically using a QuikChem8500 flow injection analyzer
(Lachat Instruments, Loveland, CO, United States). Soil total N
ranged from 0.34 to 1.02%, soil C ranged from 3.75 to 10.03%,
soil available P ranged from 3.9 to 9.5 mg kg−1, soil pH ranged
from 4.12 to 4.67, and gravimetric soil moisture content ranged
from 15.3 to 71.6% (Table 1).

Leaf Trait Data
To test the hypothesis that root and leaf trait represent
independent axes of variation among coffee plants, we used a
modified version of the leaf trait dataset collected by Martin et al.
(2017). In short, their study was designed to quantify intraspecific
variation in LES traits among the same coffee plants that were
sampled here for root traits. Their dataset entailed eight traits
measured on 384 coffee leaves, which corresponds to leaf traits
being measured on six leaves for each coffee plant in our sample
(Martin et al., 2017). To merge their dataset with ours, a plant-
level average value of four leaf traits [maximum photosynthetic
rates on a mass basis (Amass, µmol CO2 g−1 s−1); leaf mass per
area (LMA, g m−2); leaf N concentrations (Nleaf, %); leaf tissue
density (g cm−3)] was calculated for analysis here.

Statistical Analysis – Intraspecific Root
Trait (Co)variation
All statistical analyses were performed using R v. 3.0.2 (R
Foundation for Statistical Computing, Vienna, Austria). In total,
our dataset entailed 62 observations for each root trait (two
observations were removed as outliers). For each root trait,
we first described the magnitude of intraspecific variation by
calculating coefficients of variation (cv) across the entire dataset.
We then employed a maximum likelihood approach to fit
both normal and log-normal distributions to each root trait
dataset, and compared models based on log-likelihood ratios.
Where traits were best-described by log-normal distributions,
log-transformed data was used in further analyses.

We used standardized major axis (SMA) regression models
performed using the ‘lmodel2’ R package (Legendre, 2014) to
examine bivariate relationships between all seven root traits
(where n= 62 in all SMA models). For these pairwise tests, SMA
were employed since we were primarily interested in the slopes
of the relationships between any two given traits, all variables
were assumed to be measured with error, and we did not have a
priori hypotheses regarding the causal relationship between any
pair of traits (Warton et al., 2006). Lastly, to evaluate root trait
relationships in multivariate trait space, we performed a principal
component analysis (PCA) using all seven root traits with the
‘vegan’ R package (Oksanen et al., 2016). Based on these analyses,
we calculated PCA axis 1 and 2 scores for each root, and included
these in analyses on variance decomposition (detailed below).

Statistical Analysis – Causes of Root
Trait Variation
We used a nested analysis of variance (ANOVA) coupled with
variance partitioning techniques, to evaluate how categorical
environmental or management (full sun or agroforestry) factors
explained variation in coffee root traits. This was done by first
using the ‘lme4’ R package (Bates et al., 2014) to fit a linear
mixed model for each trait individually, as well as both PCA
axis 1 and 2 scores. In these models, all three nested levels (i.e.,
block within management within site) were entered as sequential
random effects, and the intercept was the only fixed effect. We
then used the ‘varcomp’ function in the ‘ape’ R package (Paradis
et al., 2004) to calculate the variance components associated with
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TABLE 2 | Intraspecific variation in roots traits of C. arabica.

Root trait Log-likelihood values Descriptive statistics

Normal Log-normal Mean (± s.d.) Range Intraspecific cv (%)

D −10.56 −5.86 1.17 (0.29) 0.67–1.93 24.69

SRL −133.56 −121.78 2.87 (2.10) 0.37–9.97 73.23

SRA −423.43 −395.88 277.2 (255.6) 63.6–1538.9 81.39

SRTD −449.68 −428.67 397.1 (344.5) 29.6–1987.2 86.76

RLD −96.59 −91.22 1.53 (1.16) 0.09–5.17 75.55

Nroot −35.78 −37.65 1.71 (0.43) 0.87–2.87 25.46

CNroot −223.47 −216.70 28.58 (8.97) 14.14–53.69 31.38

The maximum likelihood-based model that best-describes the distribution of each trait is highlighted in bold (where n = 62 in all cases). Root traits are: root diameter
(D; mm), specific root length (SRL; m g−1), specific root area (SRA; m2 kg1), specific root tip density (SRTD; tips g1), root length density (RLD; cm cm−3), root nitrogen
concentrations (Nroot; %), and root carbon:N ratios (CNroot).

each nested level. These analyses were based on log-transformed
data for all root traits except Nroot and PCA axis 1 and 2 scores
(Table 2).

For each trait, we then performed an additional mixed
model analysis that included soil pH, soil N, soil C, soil
P, and soil moisture as fixed effects, and our three nested
categorical factors (site, management, and block) as random
effects. For these models we then calculated the proportion of
intraspecific root trait variation explained by the fixed effects
alone (i.e., the “fixed effects r2”) and the proportion of ITV
explained by both the fixed and random factors combined
(i.e., the “fixed effects + random effects r2”) (Nakagawa
and Schielzeth, 2013). These values were calculated using
the ‘sem.model.fits’ function in the ‘piecewiseSEM’ R package
(Lefcheck, 2016).

Statistical Analysis – Intraspecific Root
and Leaf Trait Coordination
To test if root and leaf traits represent independent axes
of variation in C. arabica, we used a MFA: a multivariate
ordination method that tests if different groups of variables form
independent structures within a dataset. This analysis follows
previous studies testing the independence of trait spectra across
species (c.f. Baraloto et al., 2010), but in our case, the MFA tests
if root traits covary and leaf traits covary independently from
one another within C. arabica. The test statistic derived from
our MFA is the RV coefficient that describes the relationship
among root and leaf trait spectra; values closer to zero indicate
little correlation among leaf and root traits, and coefficients
approaching an absolute value of 1 indicate stronger relationships
among leaf and root trait dimensions. We used a permutation
test to generate a one-tailed significance value for our RV
coefficient. Specifically, root and leaf traits were determined
to vary independently from one another, if our observed RV
coefficient fell within the lower 95% percentile of the distribution
of RV coefficients, derived from n= 10000 permuted datasets. In
order to test if our observed patterns of coordination/decoupling
among leaf and root trait spectra were heavily influence by a
single root trait that did not strongly align with an RES (see
results below), this MFA analysis and permutation test was

also performed on a dataset with RLD removed. All MFA tests
were performed using the “FactoMineR” R package (Le et al.,
2008).

RESULTS

Root Trait (Co)variation
All C. arabica root traits exhibited considerable intraspecific
variation, with cvs ranging from approximately 25–87%
(Table 2). The two root chemical traits, Nroot and CNroot,
exhibited low variation at 25.46 and 31.38%, respectively, while
root D also exhibited low intraspecific variation (cv = 24.69
%). All other traits varied by over an order of magnitude within
C. arabica, with cvs ≥ 73%. In particular, SRL ranged from 0.37
to 9.97 m g−1, SRA from 63.6 to 1538.9 m2 kg−1, and RLD
from 0.09 to 5.17 cm cm−3 (Table 2). Specific root tip density
exhibited the highest intraspecific variation (cv = 86.76%), with
SRTD values ranging over almost two orders of magnitude from
29.6 to 1987.2 tips g−1 (Table 2).

Bivariate Root Trait Correlations
Pairwise relationships between all C. arabica root traits were
strong and highly significant (Table 3). Specifically, three root
morphological traits that are associated with resource acquisition
(i.e., SRL, SRA, and SRTD) were strongly and significantly
positively related with one another (r2

= 0.479–0.804, p < 0.001
for all three tests), while root D was negatively related with SRL
(r2
= 0.645; p < 0.001), SRA (r2

= 0.497; p < 0.001), and SRTD
(r2
= 0.501; p < 0.001). The root chemical trait associated with

resource acquisition, Nroot, was significantly positively related
with SRL, SRA, SRTD, and RLD, (r2

= 0.172–0.431; p < 0.001),
and significantly negatively related with root D (r2

= 0.226;
p < 0.001).

Multivariate Root Trait (Co)variation
The first two PCA axes explained 72.3% of the variation in
the seven root traits among C. arabica plants (Figure 1). PCA
axis 1 explained the majority of this variation (56.2%) and was
significantly positively associated with D (p < 0.001) and CNroot
(p < 0.001) while negatively associated to root traits associated
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TABLE 3 | Bivariate relationships among seven root traits in C. arabica.

log-D log-SRL log-SRA log-SRTD log-RLD Nroot log-CNroot

log-D — −0.212
(−0.341, −0.251)

−0.361
(−0.434, −0.301)

−0.273
(−0.328, −0.228)

−0.229
(−0.288, −0.183)

−1.846
(−2.312, −1.473)

0.8008
(0.644, 0.995)

log-SRL 0.645 (<0.001) — 0.809
(0.700, 0.934)

0.935
(0.834, 1.048)

0.784
(0.626, 0.982)

1.845
(1.528, 2.250)

−2.740
(−3.323, −2.260)

log-SRA 0.497 (<0.001) 0.687 (<0.001) — 0.756
(0.628, 0.910)

0.634
(0.503, 0.800)

0.667
(0.538, 0.824)

−2.216
(−2.731, −1.798)

log-SRTD 0.501 (<0.001) 0.804 (<0.001) 0.479 (<0.001) — 0.839
(0.658, 1.068)

1.983
(1.617, 2.431)

−2.930
(−3.582, −2.397)

log-RLD 0.209 (<0.001) 0.227 (<0.001) 0.180 (<0.001) 0.105 (0.005) — 2.364
(1.873, 2.984)

−3.494
(−4.394, −2.778)

Nroot 0.226 (<0.001) 0.431 (<0.001) 0.318 (<0.001) 0.369 (<0.001) 0.172 (<0.001) — −1.478
(−1.630, −1.340)

log-CNroot 0.279 (<0.001) 0.436 (<0.001) 0.335 (<0.001) 0.387 (<0.001) 0.198 (<0.001) 0.856 (<0.001) —

All relationships are based on standardized major axis regression analysis, where n = 62 for all tests. The upper right portions of the table represent the slopes of bivariate
trait relationships with associated 95% confidence limits (in brackets). The bottom left portion represents r2 values and associated p-values (in brackets).

FIGURE 1 | Principal components analysis of intraspecific variation in root functional traits in Coffea arabica. The PCA is based on root traits measured on 62
individual-plants, sampled across four different sites (open circles = CW, open triangles = HW, closed circles = CD, and closed triangles = HD). Dashed lines
correspond to 95% confidence ellipses for C. arabica roots sampled at each site. PCA axis 1 scores were significantly different (p < 0.001) for CD as compared to
CW, HW, and HD.

with resource acquisition, SRL (p < 0.001), SRA (p < 0.001),
SRTD (p < 0.001), RLD (p = 0.001), and Nroot (p < 0.001)
(Figure 1). PCA axis 1 highlights the trade-offs between traits
associated with resource acquisition and traits associated with

resource conservation; PCA axis 1 scores were also significantly
(p < 0.001) related to site category. PCA axis 2 explained a further
16.1% of the variation in the seven root traits among C. arabica
plants (Figure 1).
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Variance Partitioning
For all root traits, the site in which a C. arabica plant was growing
consistently explained the majority of intraspecific variation
among plants (Table 4). Specifically, among morphological traits,
site identity explained 29.1% of the variance in root D, 68.3% of
the variance in RLD, and 36.1% of the variance in SRL (Table 4).
Intraspecific variation in root chemical traits was also best
explained by site (Nroot = 27.4%; CNroot = 42.1%), as compared
to management treatment or block. Management treatment did
explain the largest proportion of variance in SRTD (35.4%) and
SRA (29.1%), but site identity explained an additional 21.4 and
16.9% of the variation, respectively. Management treatment also
explained between ∼15 and 28% of the variation in SRL, Nroot,
and CNroot (Table 4). Site and management also explained root
trait variation in multivariate trait space. Specifically, 33.7 and
31.7% of the variation in PCA score 1 was explained by site and
management, respectively, while 4.1 and 39.4% of the variation in
PCA score 2 was explained by site and management, respectively
(Table 4). Within the exception of Nroot, block identity explained
<11% of the intraspecific variation in any coffee root trait
(Table 4).

Continuous soil parameters (soil N, soil C, soil P, soil pH, and
soil moisture) measured within the nested levels also explained

very little of the variance in any root traits (Table 4). Specifically,
these continuous variables explained only between 1.5 and 10.5%
of the variation in any root trait, indicating that continuous soil
variables did not systematically explain intraspecific root trait
variation. In comparison, the addition of the nested categorical
levels to mixed models increased the explanatory power to
47–79% (Table 4).

Given that the nested level “site” strongly explained variance
in root traits, we conducted an ANOVA of root traits among
sites (Table 5). Root D, SRL, and RLD were significantly different
at the CD site as compared to the other three sites (Table 5);
larger root D was paired with lower SRL and SRA at the CD
site. Similarly, Nroot and CNroot were significantly different at this
site, expressing lower concentrations of N and higher C:N ratios
(Table 5).

Root and Leaf Trait Coordination
Multiple factor analysis indicated a significant lack of
intraspecific coordination among C. arabica root traits and
leaf traits (Figure 2). These two trait spectra were strongly
orthogonal to one another, with an observed RV correlation
coefficient of 0.245 that ranked as the lowest observed RV
value in our randomized distribution of RV coefficients

TABLE 4 | Sources of intraspecific variation in root traits of C. arabica.

Root trait Variance decomposition Mixed effects model

Site Management Block Error Fixed effects r2 Fixed effects +
random effects r2

log-D 29.1 18.7 8.4 43.9 0.0463 0.6158

log-SRL 36.1 27.5 3.2 33.2 0.0721 0.6864

log-SRA 16.9 29.7 10.9 42.4 0.0660 0.6337

log-SRTD 21.4 35.4 2.0 41.2 0.1045 0.6259

log-RLD 68.3 6.7 3.2 21.8 0.0181 0.7944

Nroot 27.4 15.6 16.2 40.8 0.0434 0.7351

log-CNroot 42.1 24.1 2.7 31.1 0.0245 0.7479

PCA1 33.7 31.7 5.4 2.9 0.0148 0.7432

PCA2 4.1 39.4 5.4 51.1 0.0846 0.4697

Variance decomposition was based on a nested analysis of variance, which for each trait was based on n = 62 individual-plants. The nested level explaining the highest
percentage of variation in a given trait is highlighted in bold. Also presented are the explained variance associated with continuous soil variables (soil N, soil C, soil P, soil
pH, and soil moisture) measured within these nested levels (“Fixed effects r2”), and the explained variance associated with both the fixed effects and random effects.

TABLE 5 | Mean (± s.d.) of root traits among the four sites.

Trait Cool and wet (CW) Hot and wet (HW) Cool and dry (CD) Hot and dry (HD)

D 1.12(0.13)a 1.04(0.14)a 1.47(0.30)b 1.05(0.31)a

SRL 4.01(2.06)a 2.98(1.29)a 1.05(0.80)b 3.56(2.62)a

SRA 329.1(156.2)ab 289.0(109.7)ab 131.8(63.5)a 367.5(379.7)b

SRTD 607.4(426.0)ab 378.5(195.3)ab 160.6(121.3)a 458.9(404.0)b

RLD 1.74(0.82)a 2.22(1.16)a 0.30(0.22)b 1.90(1.10)a

Nroot 1.96(0.44)a 1.94(0.33)a 1.34(0.34)b 1.59(0.31)b

CNroot 24.61(4.52)a 21.36(3.17)a 37.23(9.85)b 31.02(6.83)b

PCA 1 score −0.31(0.39)a 0.26(0.29)a 0.66(0.38)b
−0.11(0.63)a

PCA 2 score 0.05(0.61)a
−0.45(0.45)b 0.30(0.26)a 0.11(0.68)a

Values followed by the same letter within a row are significantly different based on Tukey’s HSD test (n = 16).
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FIGURE 2 | Multiple factor analysis of root traits and leaf economics traits in C. arabica. Leaf traits were based on tree-level values derived from Martin et al. (2017),
and a priori multiple factor analysis (MFA) groupings of root traits [with the removal of root length density (RLD)] and leaf traits, are denoted by gray and black
coloring, respectively. A histogram of the randomized absolute correlation values (RV values) between these trait groups (where n = 10, 000 randomizations) is also
presented as an inset. The red line indicates the observed correlation (RV) between root and leaf groups, relative to the distribution expected if traits were randomly
assigned to groups.

(randomization test p < 0.001, Figure 2 inset). These MFA
results were robust with respect to the inclusion of RLD: the
one root trait that is measured on a per soil volume basis and
aligns most closely with axis 2 of our RES PCA (see Figure 1).
Specifically, when RLD is included in the analysis, the MFA
RV = 0.244 (p = 0.02) (data not shown). Qualitatively, Amass,
Nleaf, LMA, and leaf tissue density covaried along an LES,
while root traits covaried along an independent trait spectrum
(Figure 2).

DISCUSSION

The Existence an Intraspecific Root
Economics Spectrum
Our findings contribute to the growing literature evaluating how
trait spectra commonly used to describe interspecific differences
in functional biology, may also describe the ecological variability
among plants within a species (Hajek et al., 2013; Gagliardi
et al., 2015; Niinemets, 2015). Although there remains limited
evidence that species in fact differentiate across a universal RES

(Weemstra et al., 2016), we did find strong support for a single,
well-defined RES in C. arabica. Specifically, this intraspecific
RES describes bi- and multivariate trade-offs among resource
acquiring traits on one hand – namely high values of SRL,
SRA, SRTD, RLD, and Nroot – and resource conservation traits
on the other – namely high values of CNroot and root D
(Figure 1).

The relationship among root D and specific root length
and area measures must be tempered with an inherent
autocorrelation to SRL and SRA (Weemstra et al., 2016),
and controversy in regards to the meaningfulness of these
relationships (van Kanten et al., 2005). However, the trade-off
between root D with SRTD and Nroot as well as SRL, SRA, and
RLD with CNroot provides substantive evidence of a singular
axis. We indicate strong covariation across root acquisition
and conservative traits, with coffee plants assembling along a
hypothesized resource acquisitive-conservative spectrum. Our
results also suggest that when evaluating the traits comprising
a RES, including all traits that are strongly tied to resource
acquisition potential (c.f. Cahill et al., 2010), may increase the
ability to detect a RES within species.
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The Role of Abiotic Gradients and Biotic
Interactions in Forming an RES
In our study, site identity explained the largest portion of variance
for most of our root traits for five of the seven traits, while
management systems (full sun versus agroforestry) explained
the largest portion of variance for two of the seven traits (SRA
and SRTD) (Table 4). Multivariate trait syndromes differed
most consistently according to site-level differences. We show
that PCA axis 1 scores were significantly different for the cold
and dry site as compared to the other three sites (p < 0.001;
Figure 1 and Table 5). Generally, root traits for plants growing
at the CD site were significantly different than those at the
other sites (Table 5), tending toward the resource conservative
end of the intraspecific RES (notably, higher D, lower Nroot,
higher CNroot); differences that appear largely attributable to
the significantly lower soil moisture content at the CD site
(Table 1), but could be due to a range of abiotic factors not
captured in this study. This conforms to previous suggestions that
plant traits will hinge on environmental gradients, highlighting
the need to replace species mean traits with distributions that
can be used to describe the breadth of ITV (Albert et al.,
2010).

Significant relationships between root traits and soil fertility
metrics have been demonstrated at the plant community level
(Fort et al., 2016) and across land-use types (Prieto et al.,
2015), though results are not consistent; for example, SRL
has been observed to both increase (Fort et al., 2016) and
decrease (Prieto et al., 2015) with increasing soil fertility. Similar
inconsistencies have been shown in other studies on interspecific
variation in root trait: Holdaway et al. (2011) found that species
grown in P limited environments exhibited high SRL, low
root D, and high root branching, while Ostonen et al. (2007)
found that SRL decreases with increasing fertilization. Although
Tobner et al. (2013) illustrate that intraspecific variation in
certain root traits, namely root D, may indicate environmental
change, our continuous soil variables (soil N, soil C, soil
P, soil pH, and soil moisture) embedded within our nested
levels explained little ITV (1.5–10.5%) in C. arabica roots
(Table 4), and were not sufficient to capture the full range of
explanatory soil variables. Highly dynamic soil metrics, such as
N mineralization rates or hydraulic conductivity may be more
well suited to predict root ITV at the site- through to the
individual-plant level, however, this is beyond the scope of this
study.

Unmeasured components of the root economy in ecosystems
may also be more adept in explaining ITV in roots. For
example, Valverde-Barrantes et al. (2016) suggest an ‘alternative
adaptation’ to resource acquisition leading to higher colonization
space for arbuscular mycorrhizal fungi (AMF), which results in
root traits that defy strict trade-offs along a RES. Furthermore,
associations to AMF versus ectomycorrhizal fungi among
woody species may differentially impact root morphology,
root elongation, and tip density (Chen et al., 2016). In
our study systems, the most significant feature differentiating
the two management systems is the presence or absence
of N2-fixing Fabaceae trees, which consequently results in

alternate pathways for N deposition (Munroe and Isaac, 2014).
Whereas the presence of an N2-fixing tree has a strong
influence on C. arabica leaf chemical traits (Martin et al.,
2017), but not roots (Table 4), much remains unknown
about the impact of N2-fixing trees on the N economy
of neighboring plants as well as fungal communities within
these systems, two potential drivers of root trait form and
function.

Intraspecific RES and LES Orthogonality
Our findings suggest that orthogonality of trait spectra that has
been observed across species (Baraloto et al., 2010; Li et al., 2015),
also describe the relationship between an intraspecific RES and
LES in C. arabica (Figure 2). These two axes of variation are
independent of one another, suggesting that within our study
species, root traits vary in response to environmental conditions
that do not necessarily result in commensurate changes in leaf
form and function. These results support recent work on the
lack of coordination between a RES and other trait spectra across
species (Weemstra et al., 2016), but it is important to note
that interspecific studies on root trait coordination/orthogonality
with other known dimensions of plant functional specialization,
have produced conflicting results (e.g., Liu et al., 2010; de la Riva
et al., 2016).

One explanation for the decoupling of RES and LES
traits within a species observed here, is that root traits
are less constrained than leaves in terms of ‘phenotypic
morphospace’ (Donovan et al., 2014). Individual phenotypic
leaf plasticity is constrained while root trait expression
exhibits larger variability. These differences are despite strong
phylogenetic constraints on root traits that should limit their
variability (Cornwell et al., 2014; Kramer-Walter et al., 2016).
C. arabica plants exhibited relatively low variation in leaf
morphological (LMA cv = 17.3%) and chemical traits (leaf
C and N cv ≤ 10.1%, Martin et al., 2017), as compared to
analogous root traits (SRL cv = 73.23%; SRA cv = 81.39%;
Nroot cv = 25.46%; Table 2). This may be due to greater
differentiation as a result of the multifunctional nature of
roots for resource acquisition in a highly heterogeneous
space as well as structural support. Furthermore, this lack of
constrained ITV may be particularly strong in agroecosystems,
given management practices that increase resource (water
and nutrients) stability and thus allow for greater niche
differentiation.

An alternative explanation engages the role of artificial
selection (Milla et al., 2015; Martin et al., 2017). Given luxury
resource availability in agroecosystems, artificial selection has
been hypothesized to shift crop trait values toward the resource
acquisition end of any trait spectra (Milla et al., 2014; Gagliardi
et al., 2015). Additional studies testing hypotheses on how
root trait syndromes have evolved across species are needed
(Valverde-Barrantes and Blackwood, 2016). It is possible that
selection has resulted in trait trade-offs in C. arabica that are
less strong as compared to those observed in wild plants, but
comparative analyses (c.f. Figure 2 in Martin et al., 2017) would
be needed to test this expectation.
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CONCLUSION

Observations that an intraspecific RES in C. arabica is orthogonal
to an intraspecific LES, contributes to our understanding of the
causes of whole plant ITV and will advance our predictive ability
of C. arabica productive vigor and response to environmental
change. Recent analyses point to a lack of root functional trait
data as a major limitation when predicting the effects of climate
change on yield or other agroecosystem functions (Rosenzweig
et al., 2014). On one hand, our results indicate that root trait
data cannot be reliably approximated based on correlations
with other traits that might be more easily measured. However,
our results here suggest root trait data from different sites or
management-systems, may indeed capture the large majority of
ITV in root traits, and could be incorporated into local-level
models of agroecosystem function. For example in C. arabica,
certain models (e.g., van Oijen et al., 2010) incorporate CNroot
data as a predictor of yield and C storage; our results show
that nearly 70% of the total variation in this particular trait
can be accounted for by sampling C. arabica roots across sites
and management-systems. As quantifying ITV in crops remains
a key data requirement for many of the world’s most widely
employed crop models (Bouman and van Laar, 2006), new site-
specific observations of root traits will be central in refining such
models.

As C. arabica is one of the most economically important
tree-crops globally, providing evidence-based criteria to manage
such systems across climatic and management conditions
is undoubtedly needed for the success of coffee producers,
particularly smallholder farmers. Extending our results to other
important crop or wild plant species could have important
implications for predicting ecosystem structure and function.
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