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Poaceae represent the most important group of crops susceptible to abiotic stress. This
large family of monocotyledonous plants, commonly known as grasses, counts several
important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize
(Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors
under abiotic stress conditions: wheat and rice are considered sensitive, showing serious
yield reduction upon water scarcity and soil salinity, while barley presents a natural
drought and salt tolerance. During the green revolution (1940-1960), cereal breeding
was very successful in developing high-yield crops varieties; however, these cultivars
were maximized for highest yield under optimal conditions, and did not present suitable
traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress
tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise
novel approaches and decipher the key components of agricultural production systems.
Approaches to improve food production combining both enhanced water use efficiency
(WUE) and acceptable yields are critical to create a sustainable agriculture in the future.
This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular,
the focus will be directed toward various aspects of water deprivation and salinity
response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered,
given the importance of the plant cell wall in sensing environmental constraints and in
mediating a response; the role of silicon (Si), an important element for monocots’ normal
growth and development, will also be discussed, since it activates a broad-spectrum
response to different exogenous stresses. Perspectives valorizing studies on landraces
conclude the survey, as they help identify key traits for breeding purposes.

Keywords: drought stress, salinity, GGPDH, cell wall, silicon, Hordeum vulgare, Triticum aestivum, Oryza sativa

INTRODUCTION

One of the most impelling global challenges is the provision of enough food worldwide. The Food
and Agriculture Organization (FAO) has indeed estimated a dramatic increase in need for food by
2050 (Cobb et al.,, 2013). Agriculture represents the main source of global food and plant breeders
need to discern the potential improvement of traits in order to increase the yields (Tester and
Langridge, 2010). The urgent request of an increase in food production is not easy to achieve even
in a stable and optimal agricultural environment; moreover, this scenario is rapidly worsening,
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because of different factors, such as, the increase of land- and
water-use for biofuel-crops, climate change and abiotic stresses
(Ruggiero et al., 2017).

Abiotic stresses induce a wide range of molecular, biochemical
and physiological alterations in plants, including enhanced
accumulation of osmolytes, reduced photosynthesis, stomata
closure and the induction of stress-responsive genes (Yamaguchi-
Shinozaki and Shinozaki, 2006; Lata et al., 2015).

Water scarcity and soil salinity undoubtedly represent the
major limiting factors for plant cultivation and crop productivity
(Hayashi and Murata, 1998; Reynolds and Tuberosa, 2008),
as they trigger oxidative, osmotic and temperature stresses.
Drought, heat and salt stress cause dehydration, which in its turn
results in cytosolic and vacuolar volume reduction (Bartels and
Sunkar, 2005). Reactive oxygen species (ROS) are also produced,
which provoke damages to proteins, DNA and membranes (Gill
and Tuteja, 2010). Some of the most critical further damages
induced by these stresses are: reduction in photosynthesis rate
and efficiency, wilting and induction of programmed death cell.

Many other factors play a considerable role in drought and
salt stress responses, e.g., SOS (Salt Overly Sensitive) pathway,
kinases, phosphatases, abscisic acid (ABA), ion transporters,
transcription factors (Lata and Prasad, 2011; Lata et al., 2011),
but they will not be discussed in detail in this review, as they have
been already extensively treated in previous works.

The role of Poaceae in worldwide food demand is critical: rice
is the most important food source for more than half of the world
population, (Cui Y. et al., 2016) wheat provides nearly 55% of
carbohydrates worldwide (Gill et al., 2004), barley is the fourth
most important cereal crop in terms of planting area, mainly used
in brewing industries and as forage (Shen et al., 2016).

The natural resistance of barley to exogenous stresses makes
it the most tolerant among Poaceae and an important model
in stress physiology (Gtirel et al, 2016; Shen et al., 2016).
Nonetheless, several high-yield H. vulgare cultivars have become
sensitive to abiotic stress by loss of genetic variation induced by
breeding programs; hence, the response to exogenous constraints
has become an important issue in barley as well (Ahmed et al.,
2013).

Climate changes between 1980 and 2008 caused a significant
yield loss in different crops, including Poaceae: rice showed a
remarkable yield reduction in China and in developing countries;
the global production of maize and wheat decreased by 3.8 and
5.5%, respectively (Lobell et al., 2011). These data highlight the
importance of studies addressing stress physiology in Poaceae
and the need to conceive strategies improving specific traits
under unfavorable conditions for these economically important
crops.

In the present study we will provide an overview of the latest
advances in the field of Poaceae stress physiology by focusing,
specifically, on drought and salt stress.

Stress-Responsive Genes in Poaceae:
Insights from ROS Scavengers and Water

Use Efficiency-Related Genes
One of the key mechanisms increasing the adaptation
to adverse environmental conditions in plants is the

regulation of the reactive oxygen species (ROS) levels
(Gill and Tuteja, 2010).

Recently, several abiotic stress-related genes conferring
tolerance in Poaceae have been described (key representatives are
summarized in Table 1).

The manganese-dependent superoxide dismutase (Mn-SOD)
of Triticum turgidum (TdMnSOD) expressed in Arabidopsis
thaliana enhanced the tolerance to multiple abiotic stresses by
promoting proline accumulation and lowering H,O, content
(Kaouthar et al., 2016). Similarly, tobacco overexpressing the
T. aestivum calreticulin protein 1 (CRT1, which plays important
roles in Ca?™ signaling and protein folding) showed an enhanced
salt tolerance with respect to wild type plants (Xiang et al., 2015).

Reactive oxygen species (ROS) must be regulated by
enhancing ROS scavenging and/or reinforcing pathways
preventing their dangerous increase. In this respect, ferritin
gene expression is known to be induced in response to drought,
salinity and other stresses (Ravet et al, 2009): Arabidopsis
ferritin genes were indeed upregulated by H,O,, iron and ABA.
Zang et al. (2017) recently described the interesting potential
of T. aestivum ferritin: A. thaliana plants transformed with
TaFER-5B and overexpressing transgenic wheat plants showed a
lower accumulation of O, and H,O5, resulting in enhanced heat
and drought stress tolerance. These results also demonstrate that
monocot genes can confer increased resistance to stresses when
heterologously expressed in dicots.

Significant improvements in abiotic stress tolerance by
ROS detoxification were obtained also in rice (Oryza sativa—
Os). OsSGL (Stress tolerance and Grain Length) codes for a
putative DUF1645 domain-containing protein: A. thaliana plants
transformed with OsSGL and overexpressing rice plants showed
enhanced drought and osmotic stress tolerance (Cui Y. et al,
2016). Additionally, RNA-Seq on rice plants overexpressing
OsSGL highlighted an increase in expression of several stress-
responsive genes; among these, a number of peroxidases
were identified, thereby correlating the OsSGL action with an
enhanced ROS scavenging system.

More recently, we have suggested an emerging role in salt and
drought stress response for glucose-6-phosphate dehydrogenase
(G6PDH-EC 1.1.1.49) (Cardi et al., 2015; Esposito, 2016; Landi
et al., 2016). This enzyme catalyzes the oxidation of glucose-6-
phosphate (G6P) and the corresponding reduction of NADP*
to NADPH. The increase in G6PDH activity in barley upon salt
stress resulted in an increased NADPH production, able to confer
stress resistance through the synthesis of osmolytes (e.g., glycine
betaine) and ROS scavengers, such as, glutathione (Cardi et al,,
2015). This response, notably, is linked to an ABA-dependent
pathway (Cardi et al., 2011; Dal Santo et al., 2012).

Another important parameter in the response of crops to
dehydration and osmotic imbalances is Water Use Efficiency
(WUE). This condition is connected with a decreased
photosynthetic rate, plant growth and productivity; usually
higher WUE values result in lower stomata conductance
(Ruggiero et al., 2017).

Root architecture plays a critical role in WUE in cereals and
this is controlled by a number of transcription factors (TFs).
The overexpression of the NAC-domain-containing TF OsNAC9
induced drought tolerance in rice transgenic plants, and triggered
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TABLE 1 | List of genes conferring abiotic stress tolerance in Poaceae.

Gene Annotation Function Stress Overexpression/ Species  References
inactivation
G6PDH Glucose-6P dehydrogenase NADPH provision Salt Overexpression H. vulgare  Cardi et al., 2015
HVAT1 LEA protein Enhanced water use efficiency Drought Overexpression H. vulgare  Gurel et al., 2016
HvPIP2;5 Plasma membrane intrinsic Acquaporin Salt and Osmotic ~ Overexpression H. vulgare  Alavilli et al., 2016
protein 2;5
OsNAC9 NAC domain containing protein 9  Enhanced Uptake in roots Drought Overexpression O. sativa Redillas et al., 2012
OsASR5 Abscissic acid and ripening Regulation of stomatal closure and Drought Overexpression O. sativa Lietal, 2016
protein 5 chaperon-like protein
OsJRL Jacalin-related lectin Cell protection and signal Salt Overexpression O. sativa He X. et al., 2016
transduction
OsMYB55 MYB transcription factor 55 Modulating expression of drought Drought Overexpression O. sativa Casaretto et al., 2016
related genes
OsNAC2 NAC domain containing protein 2 Reduction of LEA and SAPK Drought Inactivation O. sativa Shen et al., 2017
expression
OsPEX11 Peroxisomal biogenesis factor 11 Regulation in Nat/K* transporter, Salt Overexpression O. sativa Cui P et al., 2016
reduction in ROS accumulation
OsSAP1 Stress associated protein 1 Increase root growth and fresh weight Drought and Salt ~ Overexpression O. sativa Kothari et al., 2016
OsSGL Stress tolerance and grain length  Increase osmolytes accumulation and  Drought Overexpression O. sativa CuiY. etal., 2016
protein root growth
OsVPE3 Vacuolar processing enzyme 3 Vacuole-mediated PCD, Stomatal Salt Inactivation O. sativa Luetal., 2016
development
TaCRT1 Calreticulin Enhanced ROS scavenging activation  Salt Overexpression T. aestivum  Xiang et al., 2015
TaGBF1 G-box binding factor Induced hypersensivity to salt stress  Salt Inactivation T aestivum Sun et al., 2015
TaFER-5B Ferritin Reduction in ROS accumulation Drought and Heat Overexpression T. aestivum Zang et al., 2017
TaMYB31 MYB transcription factor 31 Cuticle synthesis Drought Overexpression T aestivum Bietal, 2016
TaMYB74 MYB transcription factor 74 Cuticle synthesis Drought Overexpression T aestivum Bietal, 2016
TaWRKY1 WRKY transcription factor 1 Promoted root growth Drought Overexpression T aestivum He G. H. etal., 2016
TaWRKY33 WRKY transcription factor 33 Promoted root growth Drought Overexpression T aestivum He G. H. etal., 2016
TdMnSOD Superoxide dismutase Enhanced ROS scavenging action Drought and Salt ~ Overexpression T. turgidum  Kaouthar et al., 2016
ZMmABA2 Dehydrogenase/ reductase SDR  Regulation of ABA content Drought Overexpression Z. mays MaF. et al., 2016
ZmGOLS2 Galactinol synthase Raffinose synthesis Drought and Salt ~ Overexpression Z. mays Guetal.,, 2016
ZmMPK5 MAP kinase 5 Regulation of ABA content Drought Overexpression Z. mays MaF. et al., 2016
ZmPP2C-A10 Protein phosphatase 2C Negative controller of ABA pathway Drought Inactivation Z. mays Xiang et al., 2016

The gene names, annotation, function, type of stress, species and references are indicated. Overexpression or inactivation of the specific genes conferring tolerance are indicated.

the formation of an enlarged stele and aerenchyma (Redillas et al.,
2012). WRKY is another class of TFs inducing drought tolerance
by root modification. The complete WRKY set of T. aestivum has
been described (He G. H. et al., 2016): among them, TaWRKY1
and TaWRKY33 were identified as drought-related factors, and
used to induce tolerance to Arabidopsis transgenic lines by
promoting germination and root growth.

An increased WUE can also be obtained by stimulating wax
deposition in the cuticle. In this respect, promising evidences
in wheat have been recently obtained using TauMYB31 and
TaMYB74 (Bi et al., 2016), two drought-responsive TFs involved
in cuticle biosynthesis. When overexpressed transiently in wheat
cells using particle bombardment, these TFs were able to activate
the promoters of those genes involved in cuticle biosynthesis (Bi
etal., 2016): therefore these transcriptional regulators can be used
to increase WUE in monocots under drought.

TFs, particularly master regulators, are able to modulate entire
pathways (clear examples come from TFs involved in secondary

cell wall or suberin deposition; Nakano et al, 2015; Legay
et al,, 2016), therefore they represent useful candidates for more
efficient biotechnological strategies.

ROS scavenging and WUE efficiency are connected by a
number of ABA-related genes involved in transduction and
transcription pathways. Examples of genes inducing abiotic stress
tolerance in Poaceae are OsASR5, ZmASR1, ZmABA2, ZmMPKS5:
it was demonstrated that these genes connect the regulation
of stomatal closure with the antioxidant response and ABA
signaling (Virlouvet et al., 2011; Li et al., 2016; Ma F. et al., 2016).

Furthermore, in Poaceae, specific TFs and water channels play
a crucial role in the response to abiotic stress: transgenic maize
overexpressing the ZmMYB55 showed an increase in drought
and heat stress tolerance by reducing ROS levels and lipid
peroxidation (Casaretto et al., 2016). Similarly, A. thaliana plants
overexpressing the H. vulgare aquaporin HyPIP2; 5 (PIP: Plasma-
membrane Intrinsic Protein) revealed an improved tolerance
to salt, drought and osmotic stresses (Alavilli et al., 2016).
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Intriguingly, these genes were co-expressed together with ROS
antioxidant enzymes as SOD, catalase (CAT) and ascorbate
peroxidase (APX).

The Role of Cell Wall-Related Genes in

Poaceae Stress Physiology

Cell wall is a natural biocomposite of polysaccharides, proteins
and, in certain cases, of the aromatic macromolecule lignin
(Guerriero et al., 2014b, 2016b). It is an active structure which
partakes in crucial stages of plant development and in cell
signaling under exogenous stresses (Parrotta et al, 2015). A
specific system of sensors ensures indeed the perception of the
cell wall integrity status, which becomes perturbed upon i.e.
pathogen attack or abiotic stresses (Gall et al.,, 2015; Hamann,
2015). Besides the cell wall integrity status perception, plants
modulate cell wall-related processes in the presence of exogenous
constraints (Guerriero et al, 2014a; Behr et al., 2015): an
emblematical example is the deposition of stress lignins upon the
sensing of exterior constraints (Moura et al., 2010). Nowadays,
thanks to next generation sequencing (NGS), huge dataset are
generated which can help shed light on the dynamics of cell
wall-related genes in different species. In this paragraph we
provide an example using O. sativa as a model, for which the
entire genome sequence is available (International Rice Genome
Sequencing Project, 2005). We used the rice expression database
at http://rice.plantbiology.msu.edu/expression.shtml, in order to
get an overview of salt and drought responsive cell wall-related
genes in this important crop (Ouyang et al, 2007). Drought
and salt stress treatments in rice (cv. Nipponbare) induced 551
and 1,600 genes in leaves and roots, respectively. In the stress-
repressed category, 323 and 613 genes were observed in leaves
and roots, respectively. Among these, a significant number of
genes belonging to the GO categories “cell wall” (GO: 005618)
was found (details are in Table 2). Specifically, 13 and 31 stress-
induced and 2 and 41 stress-repressed genes were found in
roots and leaves, respectively. Therefore, cell wall remodeling
represents a common mechanism in abiotic stress response:
plant cell walls are often modified upon drought and salt stress
(Tenhaken, 2015). Indeed, wheat cultivars differing in drought
stress tolerance were shown to display a different regulation of
cell wall-related processes (Leucci et al., 2008).

Particularly interesting is the presence of cell wall receptors
among the class of genes downregulated in rice roots (Table 2):
the downregulation of OsWAK32 and the ortholog of FERONIA
is likely related with the inhibition in root elongation observed
upon drought/salt stress in rice.

A number of  peroxidase  (LOC_Os04g59260.1,
LOC_0s05g04470.1, LOC_0Os07g48030.1, LOC_Os07g48060.1
e.g.,) were found as repressed in roots of rice (Table 2). Cell wall
peroxidases play contradicting roles in abiotic stress response.
As example, drought tolerant wheat cultivars exposed to osmotic
stress showed higher transcripts levels of the peroxidases
TaPrx01, TaPrx03, TaPrx04 (Csiszar et al., 2012). On the other
hand, an increase in peroxidase activity may induce the excess
in OH™ levels, inducing cell wall loosening (Tenhaken, 2015),
thus suggesting that a correct balance of peroxidase activities is
desirable in abiotic stress tolerance.

TABLE 2 | List of drought- and salt-responsive genes in O. sativa.

Gene Induced Type of stress
LEAVES
LOC_0s05g25640.1 Cytochrome P450 Drought and Salt
LOC_0Os01g11010.1  Peptide-N4-asparagine amidase A Drought
LOC_0s01g11760.1 GDSL-like lipase/acylhydrolase Drought
LOC_0s01g33420.1 Glycosyl hydrolase family protein 27 Drought
LOC_0s11g06390.1 Actin Drought
LOC_0s11g29190.1 40S Ribosomal protein S5 Drought
LOC_0s02909940.1  Peroxiredoxin Drought
LOC_0s04g46390.2 Chaperone protein dnaJ Drought
LOC_0s08g02230.1 FAD-binding and arabino-lactone Drought
oxidase domains containing protein
LOC_0Os11g47760.1 DnaK family protein Salt
LOC_0s12g38170.1  Osmotin Salt
LOC_0s04g03796.1 OsSub37 - Subtilisin homolog Salt
LOC_0Os07g38760.1 HEAT repeat family protein Salt
ROOTS
LOC_0s01g07910.1  NADH-cytochrome b5 reductase Drought
LOC_0s01g10950.1 Peptide-N4-asparagine amidase A Drought
LOC_0s01g71670.1  Glycosy! hydrolases family 17 Drought
LOC_0s11g24450.1 Mitochondrial carrier protein Drought
LOC_0s129g05040.6 Heavy-metal-associated Drought
domain-containing protein
LOC_0s12g12850.1 ATP-dependent Clp protease Drought
ATP-binding subunit clpA homolog
LOC_0s02g02410.1  DnaK family protein Drought
LOC_0s02g02400.1 Catalase isozyme A Drought
LOC_0s02g18650.1 Pectinesterase Drought
LOC_0s02g44590.1 OsSub20 - Subtilisin homolog Drought
LOC_0s03g11410.1  Miltochondrial-processing peptidase Drought
subunit
LOC_0s03g15690.1 Phosphate carrier protein Drought
mitochondirial precursor
LOC_0s03g15020.1 Beta-galactosidase precursor Drought
LOC_0s03g49600.1 Os3bglu7 - beta-glucosidase Drought
exo-beta-glucanase
LOC_0s03g55110.1  26S proteasome non-ATPase Drought
regulatory subunit 10
LOC_0Os04g41740.1 Expressed protein Drought
LOC_0s04g44410.1 OsSCP25 - Serine Drought
Carboxypeptidase homolog
LOC_0s04g46390.2 Chaperone protein dnaJ Drought
LOC_0s04g56930.1 Glycosy! hydrolases GH32 Drought
LOC_0s05g29790.1 Pectinesterase Drought
LOC_0s06g40600.1  Elongation factor Drought
LOC_0s06g48650.2 OsSub52 - Subtilisin homolog Drought
LOC_0s07g38730.1 Tubulin/FtsZ domain containing Drought
protein
LOC_0Os07g44780.1 GDSL-like lipase/acylhydrolase Drought
LOC_0s08g39500.1 60S ribosomal protein L31 Drought
LOC_0s08g39140.1 Heat shock protein Drought
LOC_0s01g22010.3 S-adenosylmethionine synthetase Salt
LOC_0s10g33140.1  hcrVi2 protein Salt
(Continued)
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TABLE 2 | Continued

TABLE 2 | Continued

Gene Induced Type of stress Gene Repressed Type of stress

LOC_0s11g03400.1 Ribosomal protein Salt LOC_0s05g45950.1  Outer mitochondrial membrane porin  Drought and Salt
LOC_0s02g10070.2 Citrate synthase Salt LOC_0s05g48900.1 Fasc|lclin domain containing protein Drought and Salt
LOC_0s09g25910.1  Xylanase inhibitor Salt LOC_0s07g04240.1 Succinate dehydrogenase Drought and Salt

Gene Repressed Type of stress

LEAVES

LOC_0s12g02310.1 LTPL11 - Protease inhibitor/seed Drought and Salt
storage/LTP family

LOC_0s07g04240.1 Succinate dehydrogenase Drought and Salt
flavoprotein

ROOTS

LOC_0s01g01060.1  40S Ribosomal protein S5 Drought and Salt

LOC_0s01g05490.1
LOC_0s01g18170.1
LOC_0s01g28450.1
LOC_0s01g54620.1
LOC_0s01g67240.1 Formin-like protein 1 precursor

LOC_0s01g68324.3 Dolichyl-diphosphooligosaccharide—
protein glycosyl transferase 63
kDa

LOC_0s01g71060.1  Xylanase inhibitor
LOC_0s10g11500.1
LOC_0s10g25400.1
LOC_0s10g26680.1
LOC_0s11906390.1 Actin
LOC_0s12921798.1
LOC_0s12932986.1
LOC_0s12g38180.1

Triosephosphate isomerase cytosolic
Cupin domain containing protein
SCP-like extracellular protein

CESA4 - cellulose synthase

SCP-like extracellular protein
GDSL -like lipase/acylhydrolase
Pectinesterase

408 ribosomal protein S3a
Heat shock protein

Heat shock cognate 70 kDa
protein 2
LOC_0s02g18550.1 40S ribosomal protein S3a
LOC_0s02g44490.1  Anthranilate
phosphoribosyltransferase

LOC_0s02g51970.1 Phosphate-induced protein 1

conserved region domain
LOC_0s03g10340.1
LOC_0s03g16860.1
LOC_0s03g31510.1

408 ribosomal protein S3a
DnaK family protein

Cysteine proteinase inhibitor 8
precursor

LOC_0s03g51440.1
LOC_0s03g51600.1

LRR receptor-like protein kinase
Tubulin/FtsZ domain containing
protein

LOC_0s03g53800.3 Periplasmic beta-glucosidase
precursor

OsWAK32 - OsWAK receptor-like
protein kinase

LOC_0s04g24220.1

LOC_0s04g35090.1
LOC_0s04g49690.1
LOC_0s04g51460.1
LOC_0s04g59260.1
LOC_0s05g04470.1
LOC_0s05g27940.1
LOC_0s05932110.1

408 ribosomal protein S10
FERONIA receptor-like kinase
Glycosyl! hydrolases family 16
Peroxidase precursor
Peroxidase precursor

40S ribosomal protein S7
COBRA

Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt

Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt

Drought and Salt
Drought and Salt

Drought and Salt

Drought and Salt
Drought and Salt
Drought and Salt

Drought and Salt
Drought and Salt

Drought and Salt

Drought and Salt

Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt
Drought and Salt

(Continued)

flavoprotein subunit mitochondrial

precursor

LOC_0Os07g48030.1 Peroxidase precursor Drought and Salt

LOC_0s07g48060.1 Peroxidase precursor Drought and Salt

LOC_0s08g23180.1 Fasciclin-like arabinogalactan protein  Drought and Salt
8 precursor

LOC_0s08g37840.1 Phosphate-induced protein 1

conserved region domain containing

Drought and Salt

prot.
LOC_0s09g26920.1 OsSub57 - Subtilisin homolog Drought and Salt
LOC_0s09g31486.1 DnaK family protein Drought and Salt

Another interesting class of cell wall-related genes regulated
by drought and salt stress is represented by pectinesterases
(LOC_0s02g18650.1; LOC_0Os10g26680.1 e.g.,). Various crops
such as, wheat, soybean, tomato, showed higher levels of
pectin remodeling enzymes in tolerant cultivars than susceptible
genotypes (Leucci et al., 2008; An et al., 2014; Iovieno et al., 2016).

In this respect it should be noted that a study centered on
rice identified the presence of methyl esterified pectins in both
primary and secondary cell walls and the differential expression
of pectin methylesterases upon stress treatments (Jeong et al.,
2015).

In rice the role of genes encoding both hydrolytic enzymes
and glycosyltransferases can be analyzed via publicly available
databases, notably the Rice GH and GT databases (Cao et al.,
2008, 2010; Sharma et al., 2013).

Notably, GHs represent an important group of cell-wall
related enzymes involved in the remodeling of the cell wall
structure, particularly under stress: as expected, at least two GH
genes are activated under drought (LOC_Os01g71670.1;
LOC_0s04g56930.1) in rice roots, while another gene
(LOC_0Os04g51460.1) is repressed by drought and salt stress
(Table 2).

The expression pattern of cell wall-related genes in rice, as
well as other monocots, helps in the identification of specific
trends in response to exogenous stresses shared between the
dicot and monocot lineages. Houston et al. (2016) made a
detailed survey of the microarray data available for Arabidopsis
and barley and highlighted those genes coding for CAZymes
(Carbohydrate-Active Enzymes) upregulated in both Arabidopsis
and barley in response to biotic and abiotic stress. The analyses
revealed members of families GT1, GT8, GT61, GT75 (the role
of GTs in response to exogenous stresses is less understood than
that of GHs) as being upregulated in both organisms in response
to the stresses.

Silicon: A Crucial Element for Poaceae and

a Stress Reliever
Silicon (Si) is an abundant element in soils and it plays an
important role in plants, improving vigor, productivity and
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stress resistance. Si (taken up by plants as silicic acid) acts
as a priming agent and activates the defense response arsenal
of plants, by stimulating the metabolism, both primary and
secondary, via still not fully understood mechanisms (recently
reviewed by Guerriero et al., 2016a). Since among Poaceae there
are representatives classified as high Si-accumulators (notably the
commelinoid monocot rice, which can accumulate up to 10%
of the shoot dry weight; Ma et al., 2002) and given its role in
boosting the plant response to exogenous stresses, we believe
it necessary to comment on its role in Poaceae abiotic stress
response.

In monocots, like rice, Si is considered essential (Savant
et al., 1997), despite the current classification of this element as
quasi-essential (Epstein and Bloom, 2005), because its absence
triggers dramatic consequences, namely yield loss, pathogen and
abiotic stress increased susceptibility (Datnoff and Rodrigues,
2005). This importance may be partly due to the nature of
monocots’ cell walls, which are of type II (Yokoyama and
Nishitani, 2004) and where Si may play a structural role
connected to cell wall integrity, in a manner analogous to B in
dicots’ type I cell walls.

Si was shown to protect barley under Cr stress: it alleviated
the ultrastructural disorders in both leaves and root tips and
ameliorated net photosynthetic rate and stomatal conductance
under heavy metal stress (Ali et al., 2013).

The deleterious effects of drought were mitigated by
exogenous Si application in wheat: plants treated with Si
displayed higher activities of SOD, CAT, and GR (glutathione
reductase), had higher amounts of photosynthetic pigments and

total thiols, while H,O, content and protein oxidative stress
decreased (Gong et al., 2005). Another study on wheat, in
which gene expression analysis was performed, revealed that
the drought tolerance in Si-treated wheat was accompanied by
transcriptional reprogramming: genes involved in the ascorbate-
reduced glutathione cycle, flavonoid biosynthesis and antioxidant
response showed increased expression in Si-supplied plants (Ma
D.etal, 2016).

Seed priming with Si can be very effective in protecting the
growing plantlets from exogenous stresses: for example maize
primed with Si displayed better resistance to alkaline stress
through enhanced growth, photosynthesis, leaf relative water
content and by increasing the activities of antioxidant enzymes,
soluble sugars and proteins, while decreasing the contents of
malondialdehyde, proline and Na™ (Abdel Latef and Tran, 2016).

Si can also establish positive interactions and synergy with
other elements, such as, N: a recent study on rice showed indeed
that Si basal application, coupled to post-flood N application,
resulted in the highest tolerance to submergence, by reducing
lodging, leaf chlorosis and senescence (Gautam et al., 2016).

Perspectives on the Study of Abiotic Stress
Tolerance in Poaceae: the Importance of
Landraces and Their Wild Relatives

A serious consequence of the modern breeding strategies is the
decrease of the agricultural biodiversity; this leads to a reduction
in abiotic stress tolerance, because of the loss of specific genomic
traits during domestication (Dwivedi et al., 2016). Therefore,
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FIGURE 1 | Cartoon depicting the major events and factors affecting drought and salt stress response in a monocot.
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the exploitation of the genetic resources represented by local
landraces, or wild relatives, is a promising approach to find
interesting genetic traits useful to improve breeding strategies
of crops. This strategy has already been successfully tested in
different Poaceae such as, wheat, rice, maize, and barley (Lopes
et al., 2015; Dwivedi et al., 2016; Van Qosten et al., 2016). As
example, different wheat and rice landraces have been recently
used in high-throughput studies, describing thousands of SNPs
possibly able to enhance drought and salt tolerance (Huang et al.,
2010; Cavanagh et al., 2013). Moreover, at least 22 wild relatives
of Oryza are known, and their genetic diversity can provide
novel traits for drought tolerance (Van Oosten et al., 2016).
Furthermore, wild relatives of rice (Oryza rufipogon Grift.),
were recently used for a miRNA sequencing in drought stress
condition (Zhang et al., 2017). The study led to the identification
of 162 known miRNAs differentially expressed in drought stress
condition and, notably, 69 new miRNAs candidates.

Recently, the genome sequencing of the Tibetan barley
(Hordeum vulgare L. var. nudum), highlighted an interesting
expansion of stress-related gene families (Zeng et al., 2015).

In recent years, new introgression lines between commercial
cultivars and wild relatives have been generated in Poaceae. As
an example, the wild rice Dongxiang accession (O. rufipogon
Griff.) was used to generate drought tolerant accessions by the
introgression of genetic traits in modern rice cultivars (Zhang
et al., 2006).

Significant results in abiotic stress tolerance traits
introgression were obtained also in Triticum. Wheat was
improved in drought and salt stress tolerance by the wild
relatives Aegilops umbellulata and Agropyron elongatum (Molnar
et al., 2004; Colmer et al., 2006; Placido et al., 2013).

More recently, interesting abiotic stress-related loci were
described in wild barley. Shen et al. (2016) showed a high
salt tolerance in Tibetan wild barley (Hordeum spontaneum
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