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Pigments absorb light, transform it into energy, and provide reaction sites for

photosynthesis; thus, the quantification of pigment distribution is vital to plant research.

Traditional methods for the quantification of pigments are time-consuming and not

suitable for the high-throughput digitization of rice pigment distribution. In this study,

using a hyperspectral imaging system, we developed an integrated image analysis

pipeline for automatically processing enormous amounts of hyperspectral data. We

also built models for accurately quantifying 4 pigments (chlorophyll a, chlorophyll b,

total chlorophyll and carotenoid) from rice leaves and determined the important bands

(700-760 nm) associated with these pigments. At the tillering stage, the R2 values and

mean absolute percentage errors of the models were 0.827–0.928 and 6.94–12.84%,

respectively. The hyperspectral data and these models can be combined for digitizing

the distribution of the chlorophyll with high resolution (0.11 mm/pixel). In summary, the

integrated hyperspectral image analysis pipeline and selected models can be used to

quantify the chlorophyll distribution in rice leaves. The use of this technique will benefit

rice functional genomics and rice breeding.

Keywords: chlorophyll, hyperspectral imaging, image analysis pipeline, rice, phenomics

INTRODUCTION

Rice is a staple food for a majority of the world population (Zhang, 2007). To meet the increasing
demand due to natural disasters, human factors and the increasing world population on rice
growth and yield, it is important to breed new rice varieties. In breeding research, the plant
phenotype is essential for the evaluation of breeding results and gene functional analysis (Yang
et al., 2013; Jasinski et al., 2016; Montagnoli et al., 2016; Negi et al., 2016). Plants contain pigments
such as chlorophylls and carotenoids, which absorb light and provide energy for photosynthesis
(Blackburn, 1998b). Chlorophyll is the major nitrogenous substance in higher plants and can
be used for measuring plant growth (Kochubey and Kazantsev, 2007; Xue and Yang, 2009). The
amount of chlorophyll present also determines a plant’s photosynthetic capability, productivity and
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yield potential (Carter, 1998; Xue and Yang, 2009). Thus,
quantification of these pigments is vital for rice phenomics and
rice research.

Traditional methods for the quantification of plant pigments,
including spectrophotometry (Ergun et al., 2004), paper
chromatography (Sporer et al., 1954), thin-layer chromatography
(Sievers and Hynninen, 1977), and high-performance liquid
chromatography (Yuan et al., 1997), are time-consuming,
destructive and not suitable for high-throughput phenotyping.
Plant pigments have different absorption peaks under different
wavelengths, which means that their spectral reflectance
characteristics can be used for evaluating or distinguishing
pigments (Benedict and Swidler, 1961; Gamon and Surfus,
1999). Using spectroscopy and a portable chlorophyll meter,
several spectral indices have been identified, which can be used
for predicting plant chlorophyll content non-destructively.
Blackburn et al. reported that the amount of canopy chlorophyll
a and b is related to the original reflectance at 676 and 810
nm (Blackburn, 1998a; Blackburn and Pitman, 1999). Because
derivatization can reduce the noise caused by illumination,
soil background, and atmosphere (Collins, 1978; Baret et al.,
1992), derivative spectra have also been found to be more
sensitive to the chlorophyll content and more effective than
the original spectral index (Le Maire et al., 2004). Moreover,
spectral indices calculated by the red edge can provide a
more accurate estimation of pigment content (Miller et al.,
1990; Zou et al., 2011). Researchers have also found that the
ratio and normalized spectral indices are closely related to
the pigment content (Moss and Rock, 1991; Chappelle et al.,
1992). Yi et al. used partial least square regression and found
that the reflectance at 515–550 nm, 715 and 750 nm regions
had high sensitivity for detecting the carotenoid contents of
cotton (Yi et al., 2014). A recent study has used hyperspectral
imagery to estimate the spatial variability in the chlorophyll and
nitrogen content of rice, with an R2 of 0.69–0.82 (Moharana
and Dutta, 2016). Researchers also used canopy reflectance to
estimate the durum wheat nitrogen status, with an RMSECV of
19.3–36.3% (Thorp et al., 2017). Portable chlorophyll meters,
such as CCM-200 (Chlorophyll Content Meter) and SPAD-
502 (Soil and Plant Analyzer Development), are widely used
for measuring the chlorophyll content; however, manually
operated portable chlorophyll meters are relatively subjective,
and spectroscopy techniques cannot be used to digitize the
chlorophyll distribution in rice leaves. Moreover, we summarized
the recent studies on chlorophyll or nitrogen quantification
that used spectral techniques (Supplementary Table 1). These
studies showed that few efforts have been made to handle
massive amounts of hyperspectral data and automatically
digitalize the chlorophyll distribution in individual rice leaves
with high-resolution.

In this study, we developed an integrated image analysis
pipeline that can process extremely large amounts of
hyperspectral data and built models to accurately measure 4 rice
leaf pigments: chlorophyll a, chlorophyll b, total chlorophyll, and
carotenoid. Moreover, by combining the hyperspectral data and
the selected models, the distribution of these 4 pigments can be
digitized with high resolution.

MATERIALS AND METHODS

Materials and Experimental Design
At the tillering stage, 10 rice accessions (BLUE STICK,
Chenwan3hao, PSBRC82, Manawthukha, Guantuibaihe,
Xianggu, Wumanggaonuo, La110, Diantun502, TB154E-TB-
2, and Ajaya) were randomly selected from 533 rice core
germplasm resources, and each accession was planted in 15
pots. The 15 pots were divided into 5 nitrogen application
levels with 3 replicates: 0, 50, 100% (0.1 g nitrogen per kg
soil), 150, and 200%. At the heading stage, 15 accessions
(RP2151-173-1-8, MR77 (seberang), BASMATI 385, BLUE
STICK, Chenwan3hao, PSBRC82, Manawthukha, Guantuibaihe,
Xianggu, Wumanggaonuo, La110, Diantun502, TB154E-TB-2,
Ajaya, and Bg90-2) were randomly selected from 533 rice
core germplasm resources, and 10 replicates of each accession
were planted under the same nitrogen level (0.1 g of nitrogen
per kg of soil). To test the relationship between the leaf
nitrogen and hyperspectral indices, 90 accessions (seen in
Supplementary Table 2) were randomly selected from 533 rice
core germplasm resources and measured by an auto discrete
analyzer (Smartchen 200, France), SPAD-502, and hyperspectral
imaging. Detailed genetic information about these SNPs can
be downloaded from the “RiceVarMap” database (http://
ricevarmap.ncpgr.cn/) (Narsai et al., 2013).

Hyperspectral Imaging System and
Hyperspectral Indices Extraction
Three leaves were selected from the main stem of each rice
plant and scanned using the hyperspectral imaging system,
which consisted of 4 major parts (Figure 1A): a halogen lamp, a
translation stage, a hyperspectral camera (HyperspecTM VNIR,
Headwall Photonics, USA), and a computer (OXPCO3, Dell,
USA). To scan three leaves of one main stem simultaneously, the
field of view was set at 115 × 180 mm. The major configurations
of the hyperspectral imaging system are shown in Figure 1B, and
the main parameters of the hyperspectral imaging system are
shown in Table 1. The data were continuously stored as a binary
data stream to acquire and store the original hyperspectral data as
rapidly as possible. For each sample, the data size was 1.15 GBit.

After data acquisition, the binary data stream was
reorganized to build 188 hyperspectral images under different
wavelengths (Figures 2A–C). To process the massive number
of images automatically, an integrated hyperspectral image
analysis pipeline was developed (Figure 3). The detailed
image analysis pipeline designed by LabVIEW is shown in
Supplementary Figures 1–11, which included the following
steps: (1) Open one binary data stream with the band interleaved
by line format: The size of the hyperspectral data cube was
188 × 1,004 (W) × 1,637 (H). (2) The binary data stream
was reorganized to build 188 hyperspectral images. (3) Image
processing and ROI extracting: After image division, gray
conversion, image binarization, horizontal open operation,
removal of large areas, removal of noise, region growing,
and extraction of the area of interest, a region of interest
(ROI) was extracted for each leaf (Figures 2E–N). (4) ROI
reflectance extracting: 188 original average reflectance indices
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FIGURE 1 | Hyperspectral imaging system (A) and schematic diagram (B).

TABLE 1 | Main parameters of the hyperspectral imaging system.

Parameter Value

Object distance 500 mm

Field of view (FOV) 115 × 180 mm

Slit FOV 0.46 mm

Scan speed 2 mm/s

Hyperspectral data of one plant 1.15 GBit

Frame number 1,637

Spectral resolution 3.2 nm

Spatial resolution 0.11 mm

Spectral range 400–1,000 nm

Focal length 35 mm

Band numbers 188

CCD resolution 1,004 × 1,002

(R) were obtained. (5) Derived indices extracting: These included
376 pseudo-absorption indices, 564 first derivative indices,
564 second derivative indices, 316,404 ratio indices, 316,404
normalized indices, 20 spectral indices, and 95 published
indices. Finally, for each sample, 634,615 hyperspectral indices
(in Table 2, among them, 20 spectral indices were shown in
Supplementary Table 5, 95 published indices were shown in
Supplementary Table 6) were saved. (6) Pearson’s correlation
coefficient was calculated, and the max correlation coefficient
was obtained. (7) The binary data stream was closed.

Manual Measurement
After hyperspectral imaging system acquisition, the ROI of each
leaf was immersed in a 95% ethanol solution. When all of the

pigments had been dissolved, a spectrophotometer (L3, INESA,
China) was used to measure the absorbance values of the solution
at different wavelengths (470, 649, and 665 nm, Figure 2O).
Finally, the contents of 4 pigments, chlorophyll a, chlorophyll b,
carotenoid, and total chlorophyll, were calculated according to
Equations (1)–(4) (Arnon, 1949).

Ca = 13.95A665 − 6.88A649 (1)

Cb = 24.96A649 − 7.32A665 (2)

Cxc =
1000A470 − 2.05Ca − 114.8Cb

245
(3)

C = Ca + Cb (4)

Ca is the chlorophyll a content, Cb is the chlorophyll b content,
Cxc is the carotenoid content, and C is the total chlorophyll
content. A665, A649, and A470 represent the absorbance at 665,
649, and 470 nm, respectively.

The distribution of the pigments at the two stages of plant
growth is shown in Supplementary Table 3. For instance, at
the tillering stage, the chlorophyll a content ranged from
61.24 to 573.63 mg/m2. The average value, the standard
deviation, and the variable coefficient were 294.35 mg/m2, 92.19
mg/m2, and 31.32%, respectively. The correlation coefficients
(r) between the pigments for the two stages were all
above 0.88 (Supplementary Table 4), demonstrating that the
concentrations of the various pigments were highly correlated.

Data Analysis and Modeling
To determine the specific bands that are highly correlated with
chlorophyll a, we calculated all of the correlation coefficients
between 634,615 spectral indices and 4 pigments. The calculation
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FIGURE 2 | Flow chart of data processing. (A) System diagram. (B) Binary data stream acquired by the hyperspectral imaging system. (C) Hyperspectral images

reorganized from the binary data stream. (D) Reflectance of the rice leaf. (E) Divided results (float image) of the two hyperspectral images. (F) Conversion of the float

image to 8-bit grayscale. (G) Image binarization. (H) Horizontal open operation. (I) Removal of the large area. (J) Removal of small noise. (K) Image masking. (L)

Region growing. (M) Region extraction. (N) All extractive images. (O) Manual measurement of the pigments. (P) Modeling and validation.

of correlation coefficients was programmed using LabVIEW 8.6
(National Instruments, Inc., USA). The hot bands were found
using the heat maps of the correlation coefficients, which were
drawn using HemI software (Deng et al., 2014). After all of
the indices were obtained, the best index with the highest

r was identified and used to build 5 models (linear, power,
exponential, logarithmic, and quadratic models). The statistical
analyses of the 5 models (linear, power, exponential, logarithm,
and quadratic model) for 4 pigments and cross-validation were
implemented with LabVIEW 8.6 (National Instruments, Inc.,
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FIGURE 3 | Flow chart of integrated hyperspectral image analysis pipeline.

USA). To evaluate the model performance with primary indices
or multiple variables, stepwise regression analysis (SRA) was
conducted using SPSS software (Statistical Product and Service

Solutions, Version 13.0, SPSS Inc., USA) (Figure 2P). Finally,
the digitization of pigment distribution was performed using
LabVIEW 8.6 (National Instruments, Inc., USA).
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TABLE 2 | Table 2 Definition and calculation formulas of 634,615 hyperspectral indices.

Hyperspectral index Number Symbol*

Original average reflectance 188 Ri

Pseudo-absorption index 376 lg(Ri ), lg(1/Ri )

First derivative index 564 d(Ri ), d(lg(Ri )), d(lg(1/Ri ))

Second derivative index 564 dd(Ri ), dd(lg(Ri )), dd(lg(1/Ri ))

Ratio index 316404
Ri
Rj
,
lg(Ri )
lg(Rj )

,
lg(1/Ri )
lg(1/Rj )

,
d(Ri )
d(Rj )

,
d(lg(Ri ))
d(lg(Rj ))

,
d(lg(1/Ri ))
d(lg(1/Rj ))

,
dd(Ri )
dd(Rj )

,
dd(lg(Ri ))
dd(lg(Rj ))

,
dd(lg(1/Ri ))
dd(lg(1/Rj ))

Normalized index 316404
Ri−Rj
Ri+Rj

,
lg(Ri )−lg(Rj )

lg(Ri )+lg(Rj )
,
lg(1/Ri )−lg(1/Rj )

lg(1/Ri )+lg(1/Rj )
,
d(Ri )−d(Rj )

d(Ri )+d(Rj )
,
d(lg(Ri ))−d(lg(Rj ))

d(lg(Ri ))+d(lg(Rj ))
,
d(lg(1/Ri ))−d(lg(1/Rj ))

d(lg(1/Ri ))+d(lg(1/Rj ))
,
dd(Ri )−dd(Rj )

dd(Ri )+dd(Rj )
,

dd(lg(Ri ))−dd(lg(Rj ))

dd(lg(Ri ))+dd(lg(Rj ))
,
dd(lg(1/Ri ))−dd(lg(1/Rj ))

dd(lg(1/Ri ))+dd(lg(1/Rj ))

Spectral index based on spectral position and area 20 Supplementary Table 5

Published index 95 Supplementary Table 6

*0 ≤ i ≤ 187, 0 ≤ j ≤ 187.

RESULTS AND DISCUSSION

The Relationship between Chlorophyll a
Concentration and Hyperspectral Indices
The number of total indices was too large to handle (634,615
indices for each sample); thus, to decrease the number of
redundant indices, we first determined the relationship between
the chlorophyll content and all the hyperspectral indices.
Because the pigments were highly correlated with each other
(Supplementary Table 4), we used chlorophyll a as an example
to define the relationship between the pigments and the
hyperspectral indices. In the 500–700 nm region (Figure 4A),
the reflectance R was inversely correlated with the chlorophyll
a content, indicating that the higher the reflectance was, the
lower the chlorophyll a content was. This occurred because
leaves with high chlorophyll content absorbedmore light, causing
the reflectance to decrease (Figure 2D). From Figures 4A–F, we
found that compared with a logarithmic transformation, the
use of derivative transformations such as dR, ddR, d(lg(1/R)),
and dd(lg(1/R)) could provide more abundant hyperspectral
information.

Figures 4G–I show the correlation between the ratio index
as defined in Table 2 and chlorophyll a, and Figures 4J–L show
the correlation between the normalized index (also defined
in Table 2) and chlorophyll a. Each point on the heat map
represents the correlation coefficient between a hyperspectral
index and the chlorophyll a level. The correlation coefficients
for other indices and the chlorophyll a level are shown in
Supplementary Figures 12, 13. When Ri and Rj were both in
the 500–750 nm region, the correlation coefficient was high,
sometimes even close to 1. Thus, we can infer that useful
information for estimating chlorophyll a can be obtained in the
wavelength range 500–750 nm.

By comparing the data shown in Figures 4G–I, we
found that for the ratio indices, the correlation between the
derivative indices and chlorophyll a decreased, and the original
hyperspectral index (average reflectance, R) showed better
correlation with chlorophylla. As illustrated in Figures 4J–L,
the same results could be obtained for the normalized indices.
Thus, to decrease the redundant indices, primary indices,
including the original average reflectance (Ri), first derivative

index (d(Ri)), second derivative index (dd(Ri)), ratio index
(Ri/Rj), and normalized index ((Ri-Rj)/(Ri+Rj)), were used for
the subsequent modeling and prediction of chlorophyll levels.
A combined heat map obtained by adding together all of the
heat maps of ratio and normalization coefficients is shown in
Figure 5. From this, we found that the region of the highest
correlation was located between 700 and 760 nm. If only the
primary indices in the 700–760 nm region were used, the number
of indices would decrease from 634, 615 to 483.

Linear Modeling with a Single Variable
After all of the indices were calculated, the hyperspectral indices
with the highest correlation coefficients (r) of the pigments were
selected for the modeling step, as shown in Table 3. The single-
variable model for 4 pigments at the tillering and heading stages
is shown in Table 4, which show that R2 ranged from 0.654 to
0.928, and the mean absolute percentage error (MAPE) was 6.94–
12.84%. The scatter plots and the distribution of the relative
error are shown in Figure 6 and Supplementary Figure 14,
respectively, which show the points to be evenly distributed
around the line y = x and that most of the relative error within
the range ±10%. A 5-fold cross-validation of the single variable
model for the 4 pigments at the two stages is shown in Table 4,
which shows the ranges of R2 and MAPE as 0.671–0.930 and
7.49–13.02%, respectively.

To evaluate the model’s robustness, we evaluated the
relationship between lg(R715)/lg(R500) and the chlorophyll a level
for different accessions grown under different nitrogen regimes
at the tillering stage (Figure 7). The model was not sensitive
to accession or the nitrogen application level. Figure 7B shows
that the amount of chlorophyll an increased with increase in the
nitrogen application level. Moreover, we also compared the best
model for the 4 pigments in this study with the published indices,
as shown in Table 3 and Supplementary Table 6. The correlation
between the pigments and the indices selected in this study (0.81–
0.96) was higher than the correlation between the pigments and
the published index with the highest r (0.67–0.92). On the other
hand, all of the published indices with high r values were based
on at least one wavelength in the range of 700–760 nm, implying
that this range (700–760 nm) is important for the quantification
of leaf chlorophyll.
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FIGURE 4 | Correlation coefficients between chlorophyll a and (A) R, (B) dR, (C) ddR, (D) lg(1/R), (E) d(lg(1/R)), (F) dd(lg(1/R)), (G) ratio R, (H) ratio dR, (I) ratio ddR,

(J) normalization R, (K) normalization dR, and (L) normalization ddR at the tillering stage.

Comparison of Linear and Non-linear
Models
To determine the best model for determination of chlorophyll
a levels, 5 models, including the linear, power, exponential,
logarithmic, and quadratic models, were compared. The results
are shown in Table 5. We found that the linear model had

the highest R2 (0.928) and lowest MAPE (6.94%). Based on
the relative robustness of the models, the linear model was

selected as the final model for the quantification of chlorophyll.

The results also indicate that the best relationship between

the chlorophyll content and the index value was linear in our

study.

Frontiers in Plant Science | www.frontiersin.org 7 July 2017 | Volume 8 | Article 1238

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Feng et al. Digitization of the Chlorophyll Distribution

FIGURE 5 | Summed coefficient image of all of the ratio and normalization coefficient images.

TABLE 3 | Hyperspectral indices that displayed the highest r values selected from all indices or primary indices for the 4 pigments and comparison with published indices.

Stage Pigment Best index selected in

all indices

r Best index selected in

primary indices

r Published indices with the

highest r

r

Tillering stage Chlorophyll a
lg(R715 )
lg(R500 )

0.963 R714 0.919
D705
D702

(Zarco et al., 2002) 0.919

Chlorophyll b
lg(R715 )
lg(R660 )

0.909 R721 0.886
R657
R700

(Chappelle et al., 1992) 0.876

Total chlorophyll
lg(R715 )
lg(R500 )

0.957 R718 0.920
R657
R700

(Chappelle et al., 1992) 0.915

Carotenoid
lg(R718 )
lg(R450 )

0.914 dd(R724) 0.848
R657
R700

(Chappelle et al., 1992) 0.852

Heading stage Chlorophyll a
d(R997 )−d(R747 )
d(R997 )+d(R747 )

0.873 dd(R721) 0.836
R728−R434
R720−R434

(Le Maire et al., 2004) 0.732

Chlorophyll b
d(R997 )−d(R728 )
d(R997 )+d(R728 )

0.855 R714 0.835
R728−R434
R720−R434

(Le Maire et al., 2004) 0.675

Total chlorophyll
d(R997 )−d(R747 )
d(R997 )+d(R747 )

0.872 R714 0.837
R728−R434
R720−R434

(Le Maire et al., 2004) 0.726

Carotenoid
d(lg(1/R747 ))−d(lg(1/R792 ))
d(lg(1/R747 ))+d(lg(1/R792 ))

0.809 dd(R721) 0.782
R728−R434
R720−R434

(Le Maire et al., 2004) 0.668

TABLE 4 | Details of the single-variable models for the 4 pigments.

Stage Chlorophyll Single-variable model* R2 MAPE RMSE

(mg/m2)

5-fold cross validation

Modeling Validation

R2 MAPE RMSE

(mg/m2)

MAPE RMSE

(mg/m2)

Tillering stage Chlorophyll a y = 1217.948x1 − 301.306 0.928 6.94% 24.73 0.930 6.93% 24.721 7.49% 24.944

Chlorophyll b y = 557.723x2 − 126.609 0.827 12.84% 11.19 0.832 12.86% 11.184 13.02% 11.323

Total chlorophyll y = 1596.104x1 − 405.674 0.916 7.48% 34.18 0.918 7.48% 34.179 7.53% 34.221

Carotenoid y = 188.087x3 − 22.582 0.835 8.75% 7.76% 0.833 8.74% 7.760 8.91% 7.786

Heading stage Chlorophyll a y = 7874.223x4 − 8009.138 0.761 8.25% 32.73 0.770 8.24% 32.703 8.46% 33.023

Chlorophyll b y = 933.651x5 − 1006.710 0.731 10.93% 10.40 0.732 10.94% 10.384 11.24% 10.594

Total chlorophyll y = 10159.684x4 − 10340.279 0.761 8.70% 42.32 0.768 8.68% 42.218 8.59% 43.702

Carotenoid y = 175.113x6 − 52.628 0.654 9.14% 8.53 0.671 9.13% 8.528 9.29% 8.586

*x1 = log(R715 )/ log(R500 ), x2 = log(R715 )/ log(R660 ), x3 = log(R718 )/ log(R450 ), x4 = (d(R997 ) − d(R747 ))/(d(R997 ) + d(R747 )), x5 = (d(R997 ) − d(R728 ))/(d(R997 ) + d(R728 )),

x6 = (d(lg(1/R747 ))− d(lg(1/R792 )))/(d(lg(1/R747 ))+ d(lg(1/R792 ))).

Comparison of Models with All Indices and
Models with Primary Indices
To compare the models that use all indices with those that
use primary indices, we used 634,615 indices, and 483 primary
indices for evaluating the model performance. The results

(Table 3) showed that the highest r of the models that used
primary indices (0.782–0.920) was similar to the highest r of

the models that used all indices (0.809–0.963), indicating that

the models that use primary indices are sufficiently accurate

for the quantification of the 4 pigments. If only the primary
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FIGURE 6 | Scatter plots of the single-variable model of pigments at the two stages. (A) Chlorophyll a at the tillering stage. (B) Chlorophyll b at the tillering stage. (C)

Total chlorophyll at the tillering stage. (D) Carotenoid at the tillering stage. (E) Chlorophyll a at the heading stage. (F) Chlorophyll b at the heading stage. (G) Total

chlorophyll at the heading stage. (H) Carotenoid at the heading stage.
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indices were extracted and analyzed, the volume of hyperspectral
data decreased from hundreds of thousands to hundreds, which
dramatically reduced the workload of data acquisition and data
analysis. The results of this comparison are shown in Table 3 and
Supplementary Table 7.

FIGURE 7 | Relationship between R715/R500 and chlorophyll a content for

different accessions (A) and for the same accessions under different nitrogen

application levels (B) at the tillering stage.

Linear Modeling with Multi-Variables
We also evaluated the model performance using multi-variables.
To faciliate the evaluation, only some primary indices, including
R, dR, and ddR, were used to build the model using a stepwise
regression analysis. The results (Supplementary Table 8) showed
that R2 and Radj

2 increased slightly and that MAPE and
RMSE decreased slightly as the number of independent
variables increased. The distribution of the relative error of
the model using a stepwise regression analysis and multi-
variables for chlorophyll a at the tillering stage is shown in
Supplementary Figure 15, and 5-fold cross-validation of these
models is shown in Supplementary Table 8.

Digitization of Leaf Chlorophyll Distribution
After the best single-variable model was built, it was used to
digitize the leaf chlorophyll distribution at a high resolution
(0.11 mm/pixel), as shown in Figure 8 (pseudo-color images).
Figures 8A–C show the results obtained for one accession
grown under different nitrogen application levels; with increasing
nitrogen application, the chlorophyll a content increased
dramatically. The chlorophyll a content of different accessions
grown under the same nitrogen application level also varied
(Figures 8D–F). Figures 8A–F show that for most samples, the
chlorophyll concentration in the middle portion of the leaf
was the highest, followed by the lower leaf and the upper leaf.
Moreover, for the same leaf, the chlorophyll a content of the leaf
vein was less than that of the leaf pulp, as shown in Figure 8G.

Modeling Nitrogen with Hyperspectral
Imaging
A recent study showed that R2 between the total chlorophyll
content and leaf nitrogen content of Papaya plants (Castro
et al., 2011) could reach 0.78, and hyperspectral reflectance
measurements could reflect the canopy nitrogen content of
winter wheat (Zhou et al., 2016). To test the correlation between
the nitrogen and hyperspectral indices in rice, we measured
90 rice accessions, selected from 533 rice core germplasm
resources, using an auto discrete analyzer (Smartchen 200,
France), SPAD-502, and hyperspectral imaging. The correlation

TABLE 5 | Statistical summary of the 5 developed models for chlorophyll a estimation (sample size = 425)*.

No. Model classification Model Coefficients R2 MAPE SDAPE

1 Linear y = a0 + a1 × x a0 = –284.78 0.928 6.94% 7.86%

a1 = 1351.04

2 Power y = a0x
a1 a0 = 1469.65 0.913 7.85% 10.16%

a1 = 1.92

3 Exponential mode y = a0 × ea1×x a0 = 49.69 0.887 9.65% 14.24%

a1 = 4.11

4 Logarithmic y = a0 ln(a1x) a0 = 568.05 0.911 8.23% 9.73%

a1 = 3.96

5 Quadratic y = a0 + a1 × x + a2 × x2 a0 = –305.10 0.922 7.54% 7.54%

a1 = 1446.59

a2 = –109.76

*y is chlorophyll a, x is lg(R715 )
lg(R500 )

.
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coefficient (r) between the SPAD value and the nitrogen content
was 0.766 (Figure 9A), and r between the nitrogen content
and hyperspectral measurements with 4 indices was 0.897
(Figure 9B). Moreover, only using one index, the r between
the nitrogen content and hyperspectral measurements was 0.773
(Figure 9C). The results showed that nitrogen in rice plants could
also be quantified using hyperspectral imaging.

Comparison of Recent Related Studies for
Quantifying Chlorophyll or Nitrogen
Distribution
We compared the present research with recent related studies
and found that several key wavelengths that reflect chlorophyll,
such as cotton at 715 and 750 nm (Yi et al., 2014), winter

wheat at 705 nm and the red edge (Zhou et al., 2016), and
grass at 690–750 (Tong and He, 2017), were co-determined.

Moreover, the commonly adopted tools, such as ENVI and SAS,

handled enormous amounts of hyperspectral data, particularly

image analysis, with difficulty. To relieve the bottleneck, we

developed an integrated image analysis pipeline in this study.

With a single variable, the measuring accuracy of chlorophyll, R2,

ranged from 0.654 to 0.928. Moreover, due to using hyperspectral

imaging in a higher resolution (0.11 mm/pixel), the distribution

of leaf chlorophyll could be clearly visualized. The goal of

this article was to quantify the chlorophylls in individual rice

leaves, which should be tested and verified in the field in future.

Combining the current field phenotyping tools, such as field

phenotyping at the plot level (Andrade-Sanchez et al., 2014)

FIGURE 8 | Digitization of the leaf chlorophyll distribution at the tillering stage. (A–C) One accession with different nitrogen application levels. (D–F) Different

accessions with the same nitrogen application level. (G) Detailed image of (C). (To facilitate comparison, the gray stretching parameters of A–C were the same, and

the gray stretching parameters of D–F were the same).

FIGURE 9 | The correlation coefficient (r) between the SPAD value and the nitrogen content (A), between the nitrogen content and hyperspectral measurements with

4 indices (B), and between the nitrogen content and hyperspectral measurements with 1 index (C).
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and movable imaging chambers in the field (Busemeyer et al.,

2013), the integrated image analysis pipeline could be expanded
to the field. Moreover, combined hyperspectral imaging with
a novel sensor for structure imaging, such as a micro-CT
(Mineyuki, 2014) and 3D laser scanning (Paulus et al., 2014),
could also reconstruct the 3D distribution of chlorophyll in a high
resolution.

CONCLUSIONS

In this study, we used a hyperspectral imaging system to develop
an integrated image analysis pipeline to handle extremely large
amounts of hyperspectral data automatically. We also built
models that could be used to accurately quantify 4 rice leaf
pigments and identify the important spectral bands (700–760
nm) associated with these pigments. Moreover, by combining
the hyperspectral data and these models, the distribution
of chlorophyll could be digitized with high resolution (0.11
mm/pixel). In the future, the pipeline and selected models can
potentially be applied to quantify the chlorophyll distribution
in individual plants non-destructively. Evidence from related
works shows that the image analysis pipeline combined with
hyperspectral imaging could also be extended for co-determining
wavelengths for quantifying chlorophyll in other crops.
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Supplementary Figure 1 | Flow chart of the program. The number represents

the processing module of the following Supplementary Figures 2–11.

Supplementary Figure 2 | Program for image processing and ROI extraction. (A)

Reorganized two images from the binary data stream (1), (B) Segment the leaf

part from the background with the two images (2), (C) Image processing for the

ROI extraction from the leaf part (3), (D) ROI extraction and save (4).

Supplementary Figure 3 | Program for ROI reflectance extraction. (A) The main

program for ROI reflectance extraction of all samples (5), (B) Creating the Excel file

(6), (C) Savin the Excel file (7), (D) The sub-program for ROI reflectance extraction

of single sample (8), (E) Applying the Supplementary Figure 2 results to the

current data processing (9).

Supplementary Figure 4 | Program for calculation of the original average

reflectance (A) (10) and the spectral index based on spectral position and area (B)

(11).

Supplementary Figure 5 | Program for calculation of the first and second

derivatives (12).

Supplementary Figure 6 | Program for calculation of the pseudo-absorption

index. (A) The calculation of the lgR (13), (B) The calculation of the lg(1/R) (14).

Supplementary Figure 7 | Program for calculation of the ratio index. (A) The

calculation of the 0-61 part of the ratio index (15), (B) The calculation of the

62–121 part of the ratio index (16), (C) The calculation of the 122–187 part of the

ratio index (17). The programs for calculation of the normalized index are similar,

except the Ri/Rj was changed into (Ri–Rj )/(Ri+Rj ).

Supplementary Figure 8 | Program for calculation of the partial published index.

(A) Published index 1–3 (18), (B) Published index 4–9 (19), (C) Published index

10–15 (20), (D) Published index 16–22 (21).

Supplementary Figure 9 | Program for calculation of the partial published index.

(A) Published index 23–31 (22), (B) Published index 32–35 (23), (C) Published

index 36–43 (24), (D) Published index 44–56 (25).

Supplementary Figure 10 | Program for calculation of the partial published

index. (A) Published index 57–67 (26), (B) Published index 68–79 (27), (C)

Published index 80–85 (28), (D) Published index 86–95 (29).

Supplementary Figure 11 | Program for calculation of the correlation coefficient.

(A) The program for calculation of the correlation coefficients between all the

pigments and all the hyperspectral indices (30), (B) The program for combination

the correlation coefficients of the ratio and normalized indices (31), (C) The

program for building image with the correlation coefficients (32), (D) The program

for finding the max correlation coefficient (33).

Supplementary Figure 12 | Correlation coefficients between chlorophyll a and

ratio lg(R) (A), normalization lg(R) (B), ratio d(lg(R)) (C), normalization d(lg(R)) (D),

ratio dd(lg(R)) (E), and normalization dd(lg(R)), (F) at the tillering stage.

Supplementary Figure 13 | Correlation coefficients between chlorophyll a and

ratio lg(1/R) (A), normalization lg(1/R) (B), ratio d(lg(1/R)) (C), normalization

d(lg(1/R)) (D), ratio dd(lg(1/R)) (E), and normalization dd(lg(1/R)) (F) at the tillering

stage.

Supplementary Figure 14 | Distribution of relative error of the single-variable

models for the chlorophyll a (A), chlorophyll b (B), total chlorophyll (C), and

carotenoid (D) at the tillering stage. Distribution of relative error of the

single-variable models for the chlorophyll a (E), chlorophyll b (F), total chlorophyll

(G), and carotenoid (H) at the heading stage.

Supplementary Figure 15 | Distribution of relative error of the one independent

variable (A), two independent variables (B), three independent variables (C), four

independent variables (D) models using stepwise regression analysis for

chlorophyll a at the tillering stage.

Supplementary Table 1 | The latest related papers of chlorophyll or nitrogen

quantification with spectral methods.

Supplementary Table 2 | Information about the 90 rice accessions and SPAD

value.

Supplementary Table 3 | Distribution of the pigments at the two stages.

Supplementary Table 4 | Correlation coefficient (r) between the pigments at the

two stages.

Supplementary Table 5 | Spectral index based on spectral position and area.

Supplementary Table 6 | Published spectral indices∗.

Supplementary Table 7 | Comparison of performance between models using all

of the indices and models using original indices.

Supplementary Table 8 | Details of the multiple-variable models for 4 pigments.
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