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Whole Genome Shotgun (WGS) sequences of plant species often contain an abundance
of reads that are derived from the chloroplast genome. Up to now these reads have
generally been identified and assembled into chloroplast genomes based on homology
to chloroplasts from related species. This re-sequencing approach may select against
structural differences between the genomes especially in non-model species for which
no close relatives have been sequenced before. The alternative approach is to de novo
assemble the chloroplast genome from total genomic DNA sequences. In this study, we
used k-mer frequency tables to identify and extract the chloroplast reads from the WGS
reads and assemble these using a highly integrated and automated custom pipeline.
Our strategy includes steps aimed at optimizing assemblies and filling gaps which are left
due to coverage variation in the WGS dataset. We have successfully de novo assembled
three complete chloroplast genomes from plant species with a range of nuclear genome
sizes to demonstrate the universality of our approach: Solanum lycopersicum (0.9 Gb),
Aegilops tauschii (4 Gb) and Paphiopedilum henryanum (25 Gb). We also highlight the
need to optimize the choice of k and the amount of data used. This new and cost-
effective method for de novo short read assembly will facilitate the study of complete
chloroplast genomes with more accurate analyses and inferences, especially in non-
model plant genomes.

Keywords: chloroplast genome, de novo assembly, Solanum, Aegilops, Paphiopedilum, DNA sequencing, whole
genome shotgun sequencing, k-mer analysis

INTRODUCTION

Chloroplast genomes are frequently used in systematics and phylogeography because of the
simplicity of the structure of its circular genome, its predominantly clonal inheritance along the
maternal line, as well its high copy number in the cell (Palmer and Stein, 1986; Moore et al.,
2006; Ma et al., 2013). The chloroplast genome is often perceived to have a low amount of
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sequence variation, and the use of the genome has therefore been
mostly confined to studies at the interspecific and interfamilial
levels (Jansen et al., 2007; Moore et al., 2007; Xi et al.,
2012; Barrett et al., 2013). Recently comparative analyses of
complete chloroplast sequences showed that the perception of
low variation of chloroplasts within species is wrong when
looking at the genomic scale (Whittall et al., 2010; Besnard
et al., 2011; Kane et al., 2012). Kane et al. (2012) suggested
that the whole chloroplast genome could be used as an ultra-
barcode for identifying plant varieties. Furthermore, using one
or few regions of the chloroplast genome is not the appropriate
approach to describe the level of variability of the chloroplast
genome. Therefore, using the complete chloroplast genome will
undoubtedly be the best way to exploit the information in this
organelle genome.

Chloroplast DNA can traditionally be obtained by a
chloroplast enrichment strategy using a sucrose gradient (Moore
et al., 2006) or high salt method (Bookjans et al., 1984). These
strategies require large amounts of starting materials (∼5 g
tissue), which may be challenging for endangered plant species or
herbarium samples. Some plant groups may have a high content
of polysaccharides, polyphenols, and/or terpenoids, which also
poses a challenge to obtain high quality cpDNA (Vieira Ldo
et al., 2014). Using PCR the complete chloroplast genome
can be amplified in the form of a series of long, overlapping
PCR fragments. This approach requires appropriate primer
design as well as high quality DNA to ensure successful long
range amplifications. The primers for these reactions have been
designed on conserved gene sequences (Goremykin et al., 2003;
Jansen et al., 2005), which work reasonably well across species.
The implementation suffers from differences in gene organization
among plant species (Atherton et al., 2010).

Next generation whole genome ‘shotgun’ (WGS) sequences
of plant species often contain 5% or more reads that are
derived from the chloroplast (Bakker et al., 2016). This offers an
alternative way to obtain chloroplast genomes. The chloroplast
reads are generally identified from the WGS reads and aligned
into a chloroplast genome from a reference species. Such an
alignment-based method has been a method of choice to do
the sequence comparison during recent years. A comprehensive
review about this method was Vinga et al. (2012). However,
as structure and function in a genome may diverge over
evolutionary time, such alignment-based methods may become
unreliable for taxa for which no close relative exists with
a high quality chloroplast genome. They may also become
computationally unaffordable when dealing with very large
datasets of sequences (Vinga et al., 2012 but see Bakker et al.,
2016). Several alignment-free methods have been proposed to
tackle those limitations and one of them is an approach based
on k-mer frequency tables. The k-mer based approach may be the
most developed alignment-free method (Chan and Ragan, 2013).
A k-mer is an exact substring of DNA sequence of defined length
(k), whose frequency in a set of DNA sequences can simply be
counted (Marçais and Kingsford, 2011). Applying statistics on
the sharing of k-mers between samples provides an estimate of
genetic distance (Bonham-Carter et al., 2013). K-mer frequency
tables are also used to distinguish sequencing errors from genuine

sequences (Kelley et al., 2010) as sequencing errors are presumed
to be random in nature thereby generating unique or low-
frequency k-mers, while genuine sequences occur at a certain
k-mer frequency, depending on the frequency of sequences in the
target genome and the depth of sequencing in the WGS dataset.
K-mer frequency tables have also been used to detect repeated
sequences in the genomes (Kurtz et al., 2008), exploiting the fact
that k-mers derived from a particular repeat of a certain copy
number in the genome will have a similar frequency.

From the k-mer frequency tables, k-mer frequency
distribution histograms can be derived (Chikhi and Medvedev,
2014) which show the volume of k-mers occurring at each
frequency in the dataset. These are used as a basis for assemblies
of, e.g., bacterial plasmids [plasmidSPAdes (Antipov et al., 2016)
and Recycler (Rozov et al., 2015)] and may be used for plant
mitochondrial and plastid genomes as well. If a particular, highly
abundant (extrachromosomal) sequence occurs at a certain
frequency in the dataset, this leads to a (broad) peak in this
histogram. If another highly abundant sequence occurs at twice
that frequency in the dataset, then there will be another peak in
the histogram – at twice the frequency. Chloroplasts generally
contain an Inverted Repeat (IR) region, and naturally k-mers
obtained from reads in this IR region will occur at twice the
frequency of k-mers obtained from Single Copy (SC) regions
of the chloroplast, so we expect chloroplast-derived k-mers to
be contained in two peaks in the histogram – the second at
exactly twice the frequency of the first. In this study we have
used k-mer frequency histograms to identify the two peaks
corresponding to chloroplast-derived k-mers, and used their
approximate frequencies to select the corresponding k-mers
from the underlying k-mer frequency table. These k-mers were
subsequently used to select reads containing them, which were
then used in a first round of assembly. After the first round of
assembly, subsequent rounds of assembly and refinement lead to
an automated semi-finished assembly of a chloroplast genome.

This study demonstrates the feasibility of a procedure that
employs a k-mer frequency histogram to extract the chloroplast
sequences from whole genome sequencing data without the use
of a reference genome prior to de novo assembly of shotgun
sequences obtained with the Illumina platform. We used NGS
data obtained from three species notably a solanaceous species,
a grass species and an orchid species with a range of nuclear
genome sizes (950 Mb–25 Gb) to demonstrate the universality
of our approach. One of our cases is a novel chloroplast genome
for an orchid species from the genus Paphiopedilum, which have
a very large nuclear genome size (25–25 Gb).

MATERIALS AND METHODS

Source of Sequencing Data Sets
Whole genome paired-end sequences of Solanum lycopersicum
and Aegilops tauschii were downloaded from the sequence
read archive of Genbank1. The WGS dataset for Paphiopedilum
henryanum was generated for this study (Table 1) using fresh

1http://www.ncbi.nlm.nih.gov/sra
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leaves of P. henryanum obtained from Hortus Botanicus in
Leiden, the Netherlands. The DNA isolation was carried out by
combining a DNA extraction using the protocol as described
in Fulton et al. (1995) with a DNEasy Plant Mini Kit (Qiagen),
using the kit’s DNA binding column to bind and clean-up DNA.
A barcoded sequencing library was constructed by BGI, China,
who also performed the 100 bp paired-end sequencing on an
Illumina Hiseq2000 platform in a single lane along with 10 other
samples from a separate experiment. For simplicity, from here
onward we will refer to the analysis of WGS datasets obtained
from S. lycopersicum, Ae. tauschii and P. henryanum as case
studies 1, 2, and 3, respectively.

Bioinformatic Analyses
Overview of the Approach
Our assembly approach comprises five stages as illustrated in
Figure 1. As the nuclear genome complement of different
genomes results in differently shaped k-mer frequency
distribution histograms, and as chloroplast DNA concentrations
in WGS samples vary considerably, a visual inspection of k-mer
frequency histograms is required between stages 1 and 2, where
the user decides which k-mer frequency range to include in the
analysis. While no human intervention is explicitly required
between the other stages (2–5) of the pipeline, many optional
parameters can be varied should the user require so, and
the staging offers a convenient way for the user to monitor
progress and output (assemblies) after each stage of the pipeline.
Each stage is implemented as a separate PERL script, calling
upon a large library of secondary PERL scripts, compiled C
programs and external software (e.g., SOAPdenovo, BLAST) to
perform its tasks. The pipeline software can be downloaded from
http://secure.plantbreeding.nl/chloroplast/software/.

Data Preparation
Prior to stage 1 the user has to prepare the dataset by putting
all sequence reads in fastq format files in a single directory.
In order to allow the program to figure out which files
contain matching paired-end reads and which files contain single
end reads, the user has to adhere to a simple file naming
convention.

Stage 1: Obtaining K-mer Frequency Tables and
K-mer Frequency Histograms from WGS Datasets
The script implementing stage 1 produces alphabetically sorted
k-mer tables with k-mer size 31 by default. In these k-mer tables,
k-mers and their exact reverse complement are counted as a
single ordinal k-mer. This ordinal k-mer is chosen from the two
options in such a way that the middle nucleotide is always either

TABLE 1 | Species used in the study and their SRA number.

Haploid genome NCBI SRA

Species (n) size (bases) Group number

(1) Solanum lycopersicum (2n) 950 Mb Dicot SRR404081

(2) Aegilops tauschii (2n) 4–5 Gb Monocot SRR124187

(3) Paphiopedilum henryanum (2n) 25–35 Gb Monocot Own data

‘A’ or ‘C’ – if it isn’t then the k-mer is reverse complemented before
being counted. After counting, a k-mer frequency histogram is
produced from the tables. The k-mer frequency histograms are
converted to histograms representative of the underlying data
volume by multiplying the number of different k-mers occurring
at each frequency with the frequency itself. We will refer to these
histograms as k-mer volume histograms. To aid visualization, a
series of binned histograms is produced with frequency bin sizes
of 10, 25, 100, and 250.

Visual Inspection of K-mer Frequency Histograms
As each plant cell contains multiple chloroplasts, unless special
precautions are taken during DNA sample preparation, molar
concentration of chloroplast DNA in the WGS sample will be
higher than that of nuclear DNA. Moreover, because chloroplasts
most often contain an exactly duplicated Inverted Repeat (IR), the
chloroplast DNA derived k-mers will produce a pair of peaks in
the k-mer frequency histogram that can be easily distinguished
from any other peaks because of their fundamental relation:
The second (IR) peak occurs at twice the frequency of the first
Single Copy (SC) region peak. The user then imports these k-mer
frequency histograms into his/her favorite graphing package,
and on the basis of the location of the peaks representing
chloroplast sequence read derived k-mers decides where to set
k-mer frequency boundaries.

Stage 2: Obtaining Chloroplast Specific Reads and
Initial Assembly
The frequency boundaries set by the user are used in stage 2
to select, from the original k-mer frequency table, those k-mers
occurring in this frequency range. These k-mers will, besides
chloroplast derived k-mers, also contain k-mers derived from
nuclear repeat-regions that coincidentally occur at the same
frequencies. This k-mer table is then used to select, from the full
WGS dataset, those reads that contain them. These selected reads
are then sub-sampled into a series of batches of increasing size
(by default starting at 100,000 read-pairs, with 100,000 read-pair
increments, as the volume of data is known to affect the quality of
the assembly), and automatically assembled using SOAP-denovo
(v1.05) (Luo et al., 2012). SOAPdenovo is a De Bruijn graph-
based assembler that can use a range of values for the k-mer
size (K), and results have previously been found to be highly
dependent on the value of K (Chikhi and Medvedev, 2014).
Therefore we employed a range of different values for K (all odd
values between 63 and 99). This yields a multitude of separate
assemblies which are then filtered (by default using BLAST
against the tobacco chloroplast genome as a representative of
a good quality chloroplast genome) to remove any contig or
scaffold that does not seem to be chloroplast-related (putatively
repeats from the nuclear genome), and size-selected to remove
any contig or scaffold smaller than twice the size of K (as used in
the assembly). The resulting filtered assemblies are subsequently
subjected to a sanity check where excessively short or excessively
long assemblies are discarded. This filter is by default based on
previously observed length ranges for SC and IR regions, and
is user-configurable. The remaining assemblies are then ranked
according to: (a) the number of scaffolds they consist of (fewer is
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FIGURE 1 | Workflow of our assembly pipeline.

better), (b) the number of gaps they contain (fewer is better) and
(c) the total length of the assembly (longer is better). The best
assembly is the one considered optimal for these three criteria at
the same time, as to avoid assemblies that, e.g., satisfy assembly
length at the expense of a low number of scaffolds. The best
assembly is used in the next stage.

Stage 3: Iterative Refinement of Read Selection and
Assembly
As discussed, the selection of k-mers in a set frequency range
means that k-mers derived from nuclear genomic repeats
coincidentally occurring at these frequencies are also selected.
While enrichment of the dataset for chloroplast-derived reads
is certainly achieved, the repeat region-derived reads co-selected
because of this k-mer table contamination can be considered
problematic. In the previous stage we tried to alleviate this by
using BLAST and a size filter, but this carries the risk that
some small fragments of genuine chloroplast sequence or highly
deviant chloroplast sequences are lost. Stage 3 iteratively uses
the putatively pure chloroplast derived assembly obtained in a
previous iteration (or stage 2 for the first round) to select reads
and re-assemble. To this end, a k-mer table is obtained from
the chosen assembly, which is then used as described in the
description of stage 2 to select reads, which are then assembled
and filtered as described previously. Assemblies are ranked to
produce a new best assembly until either no better assembly

is produced or until a set limit on the number of iterations is
reached. In addition to the assembly performed by SOAPdenovo,
this stage employs its own assembly algorithm that looks for
remaining overlap between scaffolds and contigs produced by
SOAPdenovo, and where possible assembles these, taking into
account the fact that a circular genome with an inverted repeat
is expected (two aspects that existing assembly programs are
unaware of). The final output of stage 3 is a new best assembly
that is used in the next stage, and which may consist of linear or
circular fragments. As the read-pair insert sizes attainable with
current short read technology do generally not span a complete
IR region, the exact relative orientation of the Short Single Copy
(SSC) and Long Single Copy (LSC) regions cannot be determined.
This assembly pipeline can (in case a circular assembly can be
made) output either a set of three linear fragments (putatively
representing LSC, IR, and SSC), two separate assemblies for both
possible circular configurations, or just one (randomly chosen)
circular assembly. Stages 4 and 5 require the last option, and it is
left to the user to find the correct relative orientation of the LSC
and SSC (to be validated for instance using long range PCR).

Stage 4: Scaffold Extension and Spanning-Read
Based Re-scaffolding
The newly assembled genome resulting from stage 3 may or
may not be circular, and if not circular it may or may not
consist of multiple unconnected scaffolds, each of which may
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or may not contain gaps. The purpose of step 4 is to iteratively
connect linear scaffolds remaining from stage 3 by extending
and connecting scaffolds with additional sequence reads until
scaffold ends overlap or by finding read-pairs spanning gaps
between scaffolds. Stage 4 is skipped if stage 3 delivered a circular
assembly. Briefly, all the raw reads are aligned back to the
assembly using BWA and those (paired-end or single) reads
that extended outside the gaps are picked. Each scaffold-end
will produce a separate set of (paired-end) reads which are then
assembled to obtain new scaffolds. These new scaffolds are added
to the previous round best assembly and used as input to the
internal sequence assembly algorithm and subsequently filtered
as described under stage 3, producing a new assembly for use
in the next iteration. Iterations are terminated if either (a) the
resultant assembly is circular OR (b) the quality of the assembly
does not improve (per the same criteria used to find the best
assembly) OR (c) until a set limit on the number of iterations
is reached. After the last iteration, if the resultant assembly is
not circular already, raw reads are mapped back (BWA) against
the resultant scaffolds and any read connecting scaffold-ends is
selected and counted in a scaffold-end connectivity matrix. This
scaffold-end connectivity matrix is combined with the scaffold
sequences and used by the internal sequence assembly algorithm
to produce a new assembly, placing N’s in gaps that are bridged
by gap-spanning reads. Again, this may in some cases lead to
construction of a circular assembly.

Stage 5: Gap Filling
After stage 4 gaps may remain in the sequence. These gaps
are putatively caused by systematic (sequence dependent) low
coverage in such regions, which should be considered an artifact
of the Illumina sequencing technology used (Minoche et al.,
2011). As we have used variable sized batches and various settings
for K during the assembly, sufficient reads covering these low
coverage areas may still remain unused in the dataset. Stage 5
attempts to fill the gaps by focussing only on reads covering
such gaps, again assembling (using SOAPdenovo) variable sized
batches of reads with a range of values for K. To this end, gap-
context sequences (default 500 bp on either side of the gap) are
extracted from the previous best assembly (either the previous
iteration or stage 4), and used to produce a k-mer table for
positive selection of reads. The regions of the previous stage best
assembly scaffolds that are outside the defined gap-context are
used to produce a second k-mer table that, after comparison
with the positive selection k-mer table, is exported as a negative
selection k-mer table. Raw reads are filtered using the positive
selection k-mer table, retaining any read containing a k-mer from
this set. Subsequently this subset is filtered using the negative
selection k-mer table, discarding any read containing a k-mer
from this set. The resulting set of reads is then assembled in
variable sized [default 1000 read (-pair)s, with 1000 read (-pair)s
increment] batches with SOAPdenovo using a range of values for
K (odd values between 63 and 99). This delivers a number of
scaffolds, which are then re-scaffolded using the internal assembly
algorithm before being size filtered, discarding any scaffold
shorter than K base-pair. The remaining scaffolds are then, one
by one, combined with each separate gap context sequence using

the internal sequence assembly algorithm, and ranked (for each of
the gaps separately) to find the best gap-closing assembly. Finally,
the best gap-closing assemblies (if any) are used to replace the gap
context sequences in the original assembly, and the whole process
repeats iteratively until either (a) all gaps are closed OR (b) until
assemblies do no longer improve OR (c) a set limit on the number
of iterations is reached.

RESULTS

Determining Chloroplast-Derived K-mers
Based on the K-mer Frequency
Distribution
Figures 2a–c show k-mer volume histograms (binned per 25
frequencies) of the raw reads of case studies 1, 2, and 3. The two
expected peaks for k-mers derived from the chloroplast genome
sequences are clearly visible as sharp peaks in case study 1 (at
1200× and 2400× coverage), they were flatter in case 3 (at 170×

and 350× coverage) (Figures 2a,c), while in case 2 only one
peak (at 1500× coverage) could be discerned (Figure 2b). To
see the effect of k-mer based read selection for chloroplast reads,
we overlaid the k-mer volume histogram from the raw reads
with the k-mer volume histogram of the reads picked out using
the selected k-mers in the left part of Figure 2. In all datasets
the volume of k-mers specific to erroneous sequences and to
the nuclear genome were significantly reduced while the volume
of k-mers in both chloroplast peaks essentially remained the
same. This indicates that our selection enriches for chloroplast
sequences.

Extracting Chloroplast Reads and
De Novo Assembly
Each case study contained between 15 million and 198 million
raw read pairs. Following the k-mer based extraction of
chloroplast reads from the raw reads of the case study, significant
read reductions were seen across the stages. Table 2 presents the
total number of read-pairs in a dataset as well as the number of
read-pairs used in stages two and three. Across three case studies
a reduction by almost 40% of the number of read pairs is seen in
stage two.

To investigate the optimum assembly for each case study,
de novo assemblies with different batches of subsampled read
pairs and k-sizes were performed. Basically, the pipeline gave a
candidate best assembly at the end of stage 3 based on (1) the
lowest number of scaffolds, (2) the fewest gaps and (3) the longest
assembly length (within the allowed range). In case studies 1 and
2, inspection of the assembly statistics of all assemblies produced
in stage 2 revealed that the automatically chosen assembly with
the fewest number of scaffolds was either too long or contained an
excessive number of gaps. Therefore, in these cases we manually
selected an alternative best assembly based on minimal number
of scaffolds plus gaps, with the longest length in the allowed
range. In contrast, the automatically selected best assembly was
a reasonable choice in case study 3 and thus did not need
manual selection. In addition, we also investigated the efficacy
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FIGURE 2 | K-mer frequencies distribution of case studies 1, 2, and 3 before and after the k-mer selection. (a) In case study 1 (tomato) the nuclear haploid genome
size is 950 Mbp, (b) in case study 2 (Aegilops tauschii) it is 4–5 Gbp, (c) in case study 3 (Paphiopedilum henryanum) it is 25–35 Gbp.

of stages 4 and 5 for scaffold expansion or re-scaffolding and
the gap filling. Table 3 shows the statistics of the best assembly
after stages 4 and 5. From our observation, all case studies
showed that the stages 4 and 5 helped to merge scaffolds and
fill the gaps. As example, in case study 3, eight scaffolds were
merged and two gaps resolved in stages 4 and 5 compared
to the underlying SOAPdenovo assembly (12 scaffolds with 3
gaps).

Mummer Analysis of Reference and
De Novo Genomes
To detect any large structural variants such as inversions,
insertions or deletions in the de novo assembled genomes,
dot plot analyses were using MUMmer (Delcher et al., 2003).
Figure 3 displays the dotplots comparing all three de novo
genomes as well as three reference genomes in all 15 possible
combinations. Appropriate reference chloroplast genomes were

TABLE 2 | Summary statistics before and after the fetching of the chloroplast
reads.

Case Case Case

study 1 study 2 study 3

Genome size 950 MB 4–5 GB 25–35 GB

Total no of raw reads (pairs) 198 264 041 86 067 571 15 142 939

Total no of reads after stage 2 (pairs) 32 701 410 51 717 173 6 172 495

Total no of reads after stage 3 (pairs) 14 855 294 1 582 279 213 669

TABLE 3 | Comparison of the SOAPdenovo assembly and de novo assembly
derived after stages 4 and 5 from the proposed pipeline.

Case Number of Number Total assembly Total reference

study scaffold of gap length length

Case study 1

SOAPdenovo 3 0 130 181∗ 155 461a

Our approach 1 0 155 461

Case study 2

SOAPdenovo 9 4 114 806∗ 135 685b

Our approach 2 2 135 760

Case study 3

SOAPdenovo 12 3 122 051∗ 174 417c

Our approach 4 1 156 087

∗Contained only one copy of IR.
aSolanum lycopersicum chloroplast, complete genome (accession number
NC007898.3).
bAegilops tauschii cultivar AL8/78 chloroplast, complete genome (KJ 614412.1).
cCypripedium japonicum chloroplast, complete genome (KJ 625630.1).

downloaded from Genebank, NCBI with accession number
NC007898.3, KJ614412.1 and KJ625630.1, respectively. As no
reference genome is available for case study 3, we used a complete
chloroplast genome from a related species.

From the dotplot analyses of only the reference genomes
against each other (sub-figures a, b, and c), we note that the
chloroplast of Ae. tauschii (KJ614412.1) has an inversion in the
LSC region of about 13 860 bp length. The structure of the other
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FIGURE 3 | Dotplot analyses against reference genome and de novo assembled genome for case study 1 (C1, tomato), 2 (C2, Ae. tauschii), and 3 (C3,
P. henryanum).

two reference genomes was comparable without large structural
variants. The inversion in the Ae. tauschii reference genome
was also detected in our de novo assembly of case study 2 (as
shown in sub-figure k). Moreover, we concluded the inversion in
Ae. tauschii chloroplast genome was a genuine event as it was also
supported by read mapping of the raw reads against the de novo
assembled genome.

Interestingly, we also found two large structural changes
in the de novo chloroplast assembly of case study 3 (sub-
figure m). These structural variants in the Paphiopedilum species
chloroplast genome are reported here for the first time. The
first structural variation is an inversion in the LSC region. This
inversion is absent in the reference genome of a related orchid
species (Cypripedium japonicum). Secondly, we observed an IR
expansion into the whole SSC region. Both these structural
variations are absent in the other genomes including the orchid
species C. japonicum. In addition, we conclude that all inversions
are genuine events as they are supported by the read mapping
(not shown).

Mapping and De Novo Assembly of
Sequence Reads
The raw reads were aligned against the de novo assembled
genomes to verify the detected structural variation as well as to
detect any miss-assemblies in the de novo assembled genomes.
The read alignments were performed using BWA with default
parameters. The mean coverage of the reads varied considerably
among these three case studies (17822, 4396, and 497 times
coverage for case studies 1, 2, and 3, respectively) illustrating that
different DNA sequencing datasets contain different numbers

of chloroplast reads. Figure 4 shows comparison coverage
plots of genomes assembled using our pipeline and unaltered
assembly from the SOAPdenovo assembler. The assembly
that SOAPdenovo produced only contained one copy of IR.
The read coverage (y-axis) was plotted against the genome
position and has been averaged using a window of 100 bp
(x-axis).

In general, read coverage was sufficient to detect any miss-
assemblies. Coverage plot comparison between the genome
assemblies in each case study also demonstrated that our pipeline
successfully assembled the scaffold across the low coverage
regions. In contrast, SOAPdenovo assembler left gaps in the
scaffolds (black boxes). This illustrated the power of the scaffold
expansion, re-scaffolding and gap filling implemented in our
pipeline leading to better quality of chloroplast genome assembly.
Worth to mention, the zero coverage at the start and end of
the genome (circular) of scaffolds (linear) characterized by red
arrow was due to the pseudo-circularization – addition of a copy
of the first N basepairs to the end of the assembly. This was
done to facilitate the read mapping of the overhanging reads,
which were used to connect two scaffolds. Beside the artifact
because of pseudo-circularization, we also found, there were
several positions pointed by the yellow arrow in the assembly of
case studies 2 and 3 with zero read coverage, representing gaps
in the genome assembly. This also suggests that the assembly will
not improve anymore with this particular dataset.

Variant Calling
Pairwise alignments for de novo assembled genome with their
reference genome were conducted to call for variants. The result
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FIGURE 4 | Comparison of read coverage between the assembly from SOAPdenovo and the curated assembly.

TABLE 4 | Variant calling for case studies 1 and 2.

Position in the

Case study Type Variants assembled genome

Case study 1 Mismatch G (ref) > T (ass) 127404

Case study 2 Insertion AGGTACCTAA 7653–7662

Insertion Homopolymer T region 18272–18274

Insertion Homopolymer A region 18614

Insertion Homopolymer A region 34160

Insertion CT 43329–43330

Insertion Homopolymer A region 56672–56673

Mismatch CTCTC (ref) > TCTCT (ass) 76298–76302

Deletion Homopolymer A region 78860

Insertion TTTACTTTTATGTTTTATTTG 107322–107342

Insertion GCAATAATCTACTAAAAAAA 109678–109697

Mismatch G (ref) > N (ass) 109894

Mismatch T (ref) > N (ass) 109893

of variant calling is represents in Table 4. We do not present
the pairwise alignment from case study 3 because we encounter
a large number of variants across the genome, including two
large structural variations. This large difference is due to the
fact that the reference was from a related species and clearly the
two species were too far diverged. We investigated the pairwise
alignment from both other case studies and variants that were
called included insertions or deletions (INDEL) and mismatches
(SNP;s). Remarkably, we only found only one mismatch in the
alignment of case study 1 at the position 127 404 bp which is
located in the IR region. On the other hand, we successfully called

13 variants in the case study 2 consisting of 10 INDELs and three
mismatches. Looking at those locations, we found five length
variants of a homopolymer region.

DISCUSSION

Chloroplast Genomes from Next
Generation Sequencing Datasets
A chloroplast genome sequence provides information for
addressing various biological questions, including phylogenetic
analysis (Oxelman et al., 1997; Goremykin et al., 2003; Capella-
Gutierrez et al., 2014). Furthermore, since the chloroplast
genome is inherited uniparentally and is not subject to
recombination during gametogenesis like the nuclear genome,
it is an ideal locus for barcode analyses (Austerlitz et al., 2009;
Hollingsworth et al., 2009; Li et al., 2015). The present study
shows that it is possible to assemble high quality complete
chloroplast genomes from whole genome shotgun (WGS)
sequencing datasets using a largely automated pipeline. As next
generation sequencing technology advances, more WGS data will
become available to the researcher. Those data could be exploited
using the approach outlined here in order to provide an easy and
cost-effective way to construct complete chloroplast genomes. In
this way it will be possible to reliably mine these resources for
information on the chloroplast genome.

We also hope that our approach can help to increase the
number of available chloroplast genomes. This will open up the
possibility to do comparative analyses. In spite of the small size of
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the chloroplast genome, many fundamental characteristics such
as functional sequences outside the coding sequences (promoter,
terminator, replication origin), detection of selective signatures in
gene sequences as well as mutational rates and their mechanism
(Raubeson et al., 2007) are poorly described. Those hypotheses
can be critically addressed by comparative studies.

Comparison with Existing Pipelines
Our newly developed approach enables us to fetch chloroplast
sequences from WGS sequencing reads without prior knowledge
about the sequence and without additional effort during DNA
isolation, and subsequently use those in a de novo assembly.
This approach is different from existing protocols and tools to
assemble chloroplast genomes, which require either a physical
enrichment (e.g., specific isolation of chloroplast DNA) (Dong
et al., 2013; McPherson et al., 2013; Vieira Ldo et al., 2014) or
an in silico enrichment (alignment of WGS reads to a chloroplast
reference) of the dataset for target sequences (Nock et al., 2011;
Zhang et al., 2011; Kane et al., 2012). Our approach takes
advantage of the known (LSC-IR-SSC-IR) chloroplast structure
and the resulting, predicted, structure in the k-mer frequency
distribution. In comparison to for instance the PlasmidSPAdes
(Antipov et al., 2016) pipeline, selecting chloroplast reads based
on the k-mer frequency distribution pattern of WGS instead
of blastn (as used in PlasmidSPAdes) produced a better dataset
with low coverage of reads from the nuclear genome of the
plant, which reduced fragmentation and miss-assemblies in the
de novo assembly process using SOAPdenovo. In addition, our
pipeline illustrates the power of scaffold expansion, re-scaffolding
and gap-filling as we implemented it, leading to better quality
chloroplast genome assembly. Indeed, our approach detected
structural rearrangements regardless of the availability or the
quality of a reference genome. The strategy is not limited to
Illumina data, but the current pipeline makes use of both pairs
of the paired-end reads during the assembly, so it will need some
adjustments when using long read technologies. Furthermore, the
approach is indifferent to the ploidy level of the species or the
level of heterozygosity as we assemble a chloroplast genome, not
a nuclear haplotype.

Our approach employs some publicly available software in
combination with custom-made scripts, which are available on
request. The merits of the strategy we followed is discussed below
in general terms, as it may also be implemented using other
software. For instance, there are many alternatives for the script
producing k-mer tables. One may use GenomeTester4 (Kaplinski
et al., 2015) or any of the tools reviewed and compared by Pérez
et al. (2016), including Jellyfish (Marçais and Kingsford, 2011)
and Tallymer (Kurtz et al., 2008).

K-mer Frequency Distribution,
Sequencing Error, Coverage Bias, and
Genome Size
The distribution of k-mer frequencies in a whole genome
DNA sequence dataset includes information on the underlying
genomes as well as on characteristics of the sequencing run. As
there is a large inverted repeat in the chloroplast, a bimodal k-mer

frequency distribution is expected, with one peak (representing
the inverted repeat) occurring at exactly twice the frequency
of the other peak. This allows identification of these peaks in
a k-mer frequency distribution. However, as there are other
(e.g., genomic) sequences present in the dataset, there may be
a significant background present of k-mers derived from these
other sequences at similar frequencies as the choloroplast derived
k-mers, and the amount of background is clearly influenced
by the nuclear genome size, as can be observed in our three
case studies. Several studies investigating the link between k-mer
frequency distribution and sequencing errors have been carried
out (Kurtz et al., 2008; Kelley et al., 2010; Liu et al., 2013).
Random sequencing errors will generate a high peak with low
coverage, and as the rate of sequencing errors increases, this
“error-peak” on the left side of the frequency plot will increase
in size, while other peaks will become smaller and also decrease
in frequency, thus move to the left. Of course, if there are
highly repetitive regions in the genome, with correspondingly
higher k-mer frequencies, errors in the sequences generated
from these repetitive regions will also occur at a larger rate,
consequently giving rise to a widening of the error-peak. For
large, complex, genomes it is expensive to generate sufficient
coverage of the nuclear genome to be able to easily separate
the peak corresponding with genomic DNA (“nuclear genome
peak”) in the k-mer frequency histogram from the error-peak,
and as a consequence, the “nuclear genome peak” may overlap
the “error peak” and become an inseparable, very wide combined
peak, even overlapping the “chloroplast peaks,” as can be seen
in case study 3, and to a lesser degree in case study 2. On the
other hand, for case study 1 the “nuclear genome-peak” is well
separated from both the “error peak” and the “chloroplast peak.”
Case study 1 is an excellent example of the desired separation
of the sequencing error, while the datasets of case studies 2 and
3 might benefit from more sequencing data – better separation
between the desired “chloroplast peaks” and the undesired “error
peak” and “nuclear genome peak” would improve the selectivity
of the k-mer frequency based filtering of reads. As was intended,
we noticed in all cases that the coverage of k-mers specific to
error and nuclear genome were reduced significantly after the
k-mer selection while the coverage of peaks belong to chloroplast
sequences remained the same or slightly reduced as seen in case
study 3.

Wherever frequencies of k-mers obtained from the nuclear
genome overlap the “chloroplast peaks,” reads derived from the
corresponding, evidently repetitive regions, from the nuclear
genome will also be selected and included in the assembly
process. The effect that this might have on the chloroplast
assembly depends on several factors. First of all it depends on
the lengths of the repeating units – if these are small (e.g.,
<500 bp), the resulting assemblies will be also be small, and
may be removed on the basis of their size alone. If the repeating
units are large (e.g., >10 K) and high frequency, then this would
be a novelty and mean that a large proportion of the nuclear
genome would be contained in such repeats. Such long repeats
are also very easy to remove as long as they don’t bear any
resemblance to known chloroplast genomes. Insertions of parts
of a chloroplast genome into the nuclear genome might be an
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interesting problem if these insertions would happen be large
and would happen within repetitive regions – in such cases
chimeric scaffolds may be expected. Outside the repetitive regions
the non-repetitive nuclear genome will give rise to relative low
frequency k-mers, which would therefore not be selected, and
which would therefore not lead to inclusion of larger regions
of nuclear genome derived reads into the assembly process.
While this may, depending on overall sequence coverage, lead to
some confusion in the assembler, this should not lead to many
problems in the downstream analysis. Incidental insertion of
parts of a chloroplast genome into the nuclear genome should
also not lead to detection of SNP’s in the chloroplast – the SNPs
will give rise to k-mers occurring at frequencies corresponding to
the nuclear genome, and the underlying reads will either not be
selected on the basis of their k-mer frequencies or, if they happen
to be selected, add little coverage in the assembly process, and be
consequently treated as sequencing errors and be removed.

The relative positions in the k-mer frequency histograms
of the peaks corresponding to the nuclear genome and the
chloroplast, in combination with their respective genome sizes
can give us some insights into the number of chloroplast
genomes per cell. From the perspective of chloroplast genome
assembly, a fixed ratio between the number of nuclear genomes
(Palmer and Stein, 1986) and chloroplast genomes is a worst
case scenario: in WGS datasets of larger genomes the percentage
of chloroplast derived reads would then be lower, necessitating
disproportionally more sequencing in larger genomes to obtain a
usable coverage of the chloroplast genome. In some cases it may
even be appropriate to combine our method with a chloroplast
DNA enrichment strategy.

Our data seem to indicate that the percentage chloroplast
reads in a WGS dataset is not constant, but decreases when
the nuclear genome size increases. This could be expected if
the number of chloroplasts per cell is more or less constant, or
regulated between tissues in the same way regardless of nuclear
genome size, but it was not what Bakker et al. (2016) observed.
This may be related to the fact that they only tested a limited range
of genome sizes. On the other hand, the anecdotic case studies
that we present here may be the ones deviating from the general
trend.

K-mer Size and Assemblies
The SOAPdenovo assembler is based on a De Bruijn-based
graph which breaks the reads into k-mers of defined size before
assembling them into contigs (Pevzner et al., 2001). After initial
k-mer based graph construction, several steps refer back to the
original underlying data to resolve some of the issues caused by
the short length of K – most notably resolution of knots caused by
repeat units smaller than the length of the reads yet larger than K.
SOAPdenovo performed better for the chloroplast assembly than
some other assemblers we tested (not shown). The robustness of
the SOAPdenovo assembler relies on several competing effects
that are difficult to quantify.

One important parameter is the k-mer size K. For instance,
K smaller than some repeat sequences may cause tangling up in
the De Bruijn graph, which, if very complex and unresolvable
with the raw-read-data, may lead to contigs being broken up.

Thus, we need large K. However, larger K will reduce the number
of k-mers that can be extracted from a given sequence read –
and as a consequence lead to fewer k-mers being extracted
from a dataset overall and hence lowering of k-mer frequencies.
Lower k-mer frequencies may make it difficult to distinguish
good sequence from sequencing errors, and may eventually lead
to problems in De Bruijn graph construction. Also, assuming
random distribution of sequencing errors, the probability of a
longer k-mer containing a sequencing error is larger, which will
lead to more k-mers being included in the error-peak. Another
effect is that if two contigs overlap by less than k−1 characters,
this will create a coverage gap resulting in the break-up of a contig
(Chikhi and Medvedev, 2014).

Another factor influencing the assembly process is the amount
of data being used. More data does not necessarily improve
assembly quality. Especially for extreme coverage data, and
for non-random sequencing errors, assembly of larger datasets
may give rise to alternative assemblies, one with the “proper”
sequence, and one containing an “SNP.” Having alternatives for
regions is not easily representable in FASTA format assembly
output, and in SOAPdenovo it generally leads to fragmentation.

In the algorithm of the pipeline presented here we employed
a range of different values for K in order to minimize the
trade-off effects. We also employed a range of dataset sizes
by including different numbers (“batches”) of reads in the
assembly process. This yields a multitude of separate assemblies
which are then filtered out using some filters. The remaining
assemblies are then ranked accordingly and putatively best
assembly was selected automatically. As seen in case studies
1 and 2 the automatic selection of a best assembly based on
maximum assembly length and minimal (number of scaffolds
plus gaps) may be more appropriate than maximum assembly
length and minimal number of scaffolds alone. In contrast, in
case study 3 the automatic selection of a best assembly based on
maximum assembly length and minimal (number of scaffolds and
gaps) was sufficient. This indicates that intelligent inspection of
intermediary results for every stage in the pipeline is useful.

Assemblies and Sequencing Bias
Compared to other studies that use reference sequences to
extract chloroplast reads, the approach proposed here extracts
the reads derived from the chloroplast solely based on the fact
that they occur at the certain frequency in the k-mer frequency
distribution of WGS data. By utilizing such an approach, we
obtained reasonably high coverage of chloroplast genome across
the case studies. Nevertheless, there are several gaps in the de
novo assembled genome compared to the reference genome in
case studies 2 and 3. Those gaps in the assembled genome may be
caused by sequencing bias in the sequencing library. For instance,
bias in the pre-sequencing amplification step could result in poor
or no sequencing coverage in certain regions of the genome.
Generally, a CG content sequencing bias has been observed. In
accordance with our results, several studies, e.g., Dohm et al.
(2008), Li et al. (2010), and Minoche et al. (2011) claim that even
though there is sufficient average depth of sequence coverage
within sequencing datasets, sequencing bias leads to region of
no sequence coverage within sequencing datasets, resulting in

Frontiers in Plant Science | www.frontiersin.org 10 August 2017 | Volume 8 | Article 1271

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01271 July 29, 2017 Time: 15:41 # 11

Izan et al. De novo Chloroplast Genome Assembly

multiple gaps in the assemblies, and hence a larger number of
contigs and scaffolds even in small sized genomes such as bacteria
and the chloroplast genome.

Structural Differences, INDEL Detection
and Homopolymers Length
Polymorphism
The selected reads were assembled de novo instead of taking
an alignment or reference guided de novo assembly approach.
A de novo assembly offers additional possibilities for detecting
structural differences that may be missed in other approaches.
Moreover, our pipeline uses read coverage information, which
provides for detection of sequence variation. We detected several
structural differences in two out of three case studies. Even
considering the general conservation of chloroplast genome,
several structural differences were reported for nine grass species
(Golenberg et al., 1993), Korean ginseng (Kim and Lee, 2004),
and Pinus (Parks et al., 2009). Hence, it may be inappropriate
to assemble the chloroplast genome for non-model species by
alignment to a reference sequence of a related species because
it may miss important structural differences but also because
reads from repeated or homologous regions can generally not
be distinguished in a mapping based approach – which may
lead to identification of false SNPs in such regions. Another
issue to be aware of is that half of variants detected in case
study 2 were homopolymer length polymorphisms. This may
be due to the fact that the reference genome of Ae. tauschii
(KJ614412.1) was sequenced on the SOLiD platform while WGS
dataset of case study 2 was sequenced by Illumina. It is known
that Illumina sequencing is less affected by homopolymer length
variation (Harismendy et al., 2009). It is also a known issue that
SOLiD shows low coverage of AT-rich regions, while Illumina
sequencing has been observed to have more problems with
CG-rich regions (Morozova and Marra, 2008; Harismendy et al.,
2009).

Possible Enhancements
As is, the pipeline is configured to use a fairly naive in-
house developed k-mer counting tool as part of the pipeline.
Replacement by one of the available more performant alternatives
[e.g., GenomeTester4 (Kaplinski et al., 2015) or any of the tools
reviewed and compared by Pérez et al. (2016), including Jellyfish
(Marçais and Kingsford, 2011) and Tallymer (Kurtz et al., 2008)]
is straightforward – requiring the user to provide a simple
wrapper script that takes FastQ files as input and produces
a sorted k-mer table as output, and pointing the pipeline to
this wrapper script. While replacement of the provided FastQ
k-mer counting tool would undoubtedly result in immediate
performance gains, it would also lead to additional external
dependencies for the software, without changing the outcome, as
k-mer counting tools essentially produce exactly the same result
from the same input.

An assembler is vastly more complex than a k-mer counting
tool, with many design choices that may affect the outcome.
Replacement of SOAPdenovo by any other assembler is possible,
and can be as easy as providing a simple wrapper script if there is

a simple relationship between the data structures, configuration
files, parameters and output of the alternative assembler and
those of SOAPdenovo. If one considers that the parameter sweeps
for K and dataset size that we do for SOAPdenovo may not be
appropriate optimizations for other assemblers, implementing
proper support for a different assembler may be more work
(replacing the parameter sweeps), and require careful validation
of results. Given that SOAPdenovo, in combination with our
pipeline, produces adequate chloroplast assemblies we have not
felt the need to implement different assembler options yet,
however, we cannot rule out that other assemblers with other
optimizations may produce better assemblies on datasets that are
more challenging to SOAPdenovo.

Many k-mer counting tools and assemblers currently support
multi-processing. From the perspective of our pipeline, this
k-mer counting and assembly component multiprocessing is
irrelevant as it is completely implemented at the component
level and opaque to the pipeline. Given that the pipeline itself
performs a multitude of similar tasks (n.b. parameter sweeps), it
would be possible to make the pipeline itself multi-processing.
While performance benefits are immediately evident, this would
be a complex undertaking – requiring extensive changes and a
framework to control resource (CPU, memory, disk) usage of
components and maintain synchronization between sub-tasks.

Overall, there is potential for (particularly computational
performance-related) improvements, however, for our
purposes – generating finished or nearly finished chloroplast
assemblies from WGS data with little user interaction – the
current pipeline is adequate.

CONCLUSION

The chloroplast genome certainly is a great resource of
molecular markers in many studies including parentage
analysis, hybridization, population and genetic structure and
phylogeography. The pipeline described here provides a tool
to extract chloroplast sequences from WGS sequences of plant
species. Our newly developed pipeline was able to efficiently
assemble the chloroplast genome across a range of nuclear
genome sizes, and using it we discovered several structural
rearrangements compared to published reference chloroplast
genomes. This cost-effective approach will be particularly useful
for exploring in the increasing number of WGS sequences from
non-model species. In principle, our pipeline in combination
with high throughput short read sequencing can greatly expand
the scope of comparative genomics of the chloroplast genome in
plants.
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