'," frontiers
in Plant Science

MINI REVIEW
published: 08 August 2017
doi: 10.3389/fpls.2017.01376

OPEN ACCESS

Edited by:
Giampiero Cai,
University of Siena, ltaly

Reviewed by:

Petronia Carillo,

Universita degli Studi della Campania
“Luigi Vanvitelli” Caserta, Italy
Stefano Del Duca,

Universita di Bologna, Italy

*Correspondence:
Sergio Esposito
sergio.esposito@unina.it

Specialty section:

This article was submitted to
Plant Nutrition,

a section of the journal
Frontiers in Plant Science

Received: 22 May 2017
Accepted: 24 July 2017
Published: 08 August 2017

Citation:

Landi S and Esposito S (2017) Nitrate
Uptake Affects Cell Wall Synthesis and
Modeling. Front. Plant Sci. 8:1376.
doi: 10.3389/fpls.2017.01376

Check for
updates

Nitrate Uptake Affects Cell Wall
Synthesis and Modeling
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Napoli, Italy

Nowadays, the relationship(s) about N assimilation and cell wall remodeling in plants
remains generally unclear. Enzymes involved in cell wall synthesis/modification, and
nitrogen transporters play a critical role in plant growth, differentiation, and response
to external stimuli. In this review, a co-expression analysis of nitrate and ammonium
transporters of Arabidopsis thaliana was performed in order to explore the functional
connection of these proteins with cell-wall related enzymes. This approach highlighted
a strict relationship between inorganic nitrogen transporters and cell wall formation,
identifying a number of co-expressed remodeling enzymes. The enzymes involved in
pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate
carriers, suggesting a connection between nitrate assimilation and cell wall growth
regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed
with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium
transporters show little or no connection with those genes involved in cell wall synthesis.
Different aspects related to plant development, embryogenesis, and abiotic stress
response will be discussed, given the importance in plant growth of cell wall synthesis and
nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns
both these processes indicating the importance in sensing the environmental constraints
and mediating a response. These evaluations could help to identify candidate genes for
breeding purposes.

Keywords: abiotic stress, Arabidopsis, ammonium, tomato, xyloglucane synthesis, pectin synthesis, cellulose
synthesis, nitrogen assimilation

INTRODUCTION

Cell wall development and remodeling are crucial processes for plants. The molecular and
biochemical modifications of cell wall play critical roles in various aspects of plant physiology
such as, differentiation, senescence, abscission, plant-pathogen interactions, abiotic stress response,
plant growth, and others (Marowa et al., 2016). Cell wall is a necessary plant characteristic,
mainly composed by polysaccharides, such as, cellulose and hemicellulose; pectins; lignin, and
structural proteins (Guerriero et al., 2014, 2016). A major feature of the cell wall is its dynamic and
active structure, remodeled during key stages of development, and in response to external stimuli.
Therefore, during the plants life there is an incessant assembly, disassembly, and re-arrangement
of the cell wall (Marowa et al., 2016). These processes are critical for plant development and
acclimation, because the cell wall loosening is a direct cause of cells expansion and plant growth
(Fukuda, 2014).
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An interesting example is the cell wall remodeling during
the stress response, by the activation of a wide range of
enzymes involved in cell wall loosening (Tenhaken, 2015).
This regulation represents a crucial point for tolerance to
drought and salinity in crops (e.g., tomato; rice), when huge
number of genes was differentially expressed upon stress
(Iovieno et al.,, 2011; Landi et al., 2017b). Furthermore, cell
wall is differently modified by biotic stress and pathogen
attacks, revealing its functional plasticity (Bellincampi et al,
2014).

Among the mechanic modifications required for cell wall
remodeling, the enzymes mainly involved include xiloglucan
endotransglucosylase/hydrolase, expansine, enzymes involved
in pectin modification (e.g., pectinesterase; pectin lyase),
peroxidase (Tenhaken, 2015; Franciosini et al., 2017; Landi
et al., 2017b). These enzymes are consistently regulated during
nutrient deficiency (as nitrogen and/or sulfur deprivation),
in order to allow the correct uptake of these elements
(Fernandes et al., 2013). Particularly, N deficiency induces cell
wall loosening: N is mainly assimilated in plants as nitrate
(NO3) by specific transporters (Fan et al., 2017). This family
includes a number of carriers generally described as low or
high affinity transporters, playing different roles depending on
the soil availability of N. In addition, plants can assimilate
N as ammonium (NHI) by specific channels (Glass et al,
2002).

In the present study, an overview of the relationship between
cell wall remodeling and nitrogen uptake will be provided.
The co-expression analysis of Arabidopsis thaliana nitrate and
ammonium transporters will be explored, in order to identify
how cell wall enzymes relate to N assimilation, and clarify the
concurrent processes involved in cell wall re-organization. A final
survey with a perspective on the importance of N assimilation
and cell wall modification upon abiotic stress will be given.

N UPTAKE AND CELL WALL
REMODELING: A CO-EXPRESSION
ANALYSIS

The relationships between N accumulation and plant cell
wall remodeling are argument of debate. The molecular
cross-interactions between these processes are still unclear:
therefore, nitrogen and ammonium transporters were identified
in A. thaliana, and co-expression analysis was made using the
ATTED-II software version 8.0 at http://atted.jp (Aoki et al,
2016).

In detail, six low affinity nitrate transporters (Atlgl2110,
Atlg69850, Atlg32450, Atlg27080, Atlg69870, Atdg21680),
two “major facilitator super family” proteins (At1g52190,
At3g16180), seven high affinity nitrate transporters (At1g08090,
At1g08100, At5g60780, At5g60770, Atlgl2940, At3gd5060,
At5g14570), and six ammonium transporters (At4gl13510,
Atlg64780, At1g64780, At4g28700, At3g24290, At2g38290) were
selected at this purpose.

The chloride channel A (CLCA-At5g40890) was chosen based
on its capability of 2 NO; /1H™T exchange.

It should be noted that ammonium transporter 1.3
(AMT1.3-At1g64780); and 1.5 (AMT1.5-At3g24290) showed no
co-expression in the database utilized, and thus these carriers
were excluded in the present analysis.

Intriguingly, several cell wall related genes are co-expressed
with nitrate and ammonium transporters (Table 1). Particularly,
it is worth noting the presence of a number of enzymes involved
in cell wall loosening: during nitrogen assimilation, a disassembly
of the cell wall could be necessary for an enhanced N uptake,
allowing a correct cell and plant growth. Furthermore, this
behavior suggests that a right balance of cell wall loosening and
thickening is desirable during plant growth, in order to correctly
supply nutrients for biosynthesis of both primary and secondary
cell walls. This balance could be enhanced by adequate nitrogen
assimilation.

Consistent with these considerations, Fernandes et al. (2016)
showed a diversified molecular expression of the cell wall
loosening related genes in Vitis viniferae callus subjected to
nitrogen, sulfur, and phosphorus deficiency, highlighting that N
affects the cell wall responses more severely than other nutrients.

As shown in Table 1, low affinity and high affinity nitrate
transporters showed similar number and type of cell wall related
co-expressed genes. Otherwise, ammonium transporters showed
a lower co-expression with cell wall related genes; this would
probably suggest minor, or absent relationship(s) with cell wall
remodeling.

Examples of cell wall remodeling genes which appear
related to nitrogen transport are pectinase, involved in
pectin degradation, such pectin lyase (At4g23820, At3g07010,
At3g16850, At5g48900, At5g14650, At3g57790, At3gl6850),
pectinacetylesterase  (At1g09550, At5g23870), or pectin
methylesterase (At3g14310). Particularly, the cleavage of
homogalacturonans by pectinesterases produces substrates for
polygalacturonase and pectin lyase, acting in the cleavage of the
polygalacturonic acid (Sun and Nocker, 2010).

These genes are important members of fruits’ maturation
network (Marin-Rodriguez et al., 2002), and previous studies
described their involvement in the abiotic stress response (Hong
et al.,, 2010; Tenhaken, 2015; Landi et al., 2017b). It has been
proposed that pectins are able to form gel structures that increase
cell wall consistency (Fernandes et al., 2016).

The activation of pectinase(s) together with nitrogen
transporters could induce the relaxation of the cell wall.

Other important actions associated with nitrogen uptake
are the modification of xyloglucans. A number of enzymes
involved in this process were co-expressed with nitrate
transporter such xyloglucan-endotransglucosylases/hydrolases
(XTH—e.g., At3g44990, At3g48580, At2g06850), xyloglucan-
endo/transglycosilase (XTR—e.g., At4g25810), and expansins
(e.g., At1g20190-At2g40610). Xyloglucans are the major
hemicellulosic polymers of dicot plants, playing a critical role
in cellulose fibrils connection. Modification in their content
is an important process regulating several physiological plant
responses by the cell wall remodeling (Tenhaken, 2015; Marowa
et al, 2016). It was proposed that xyloglucan regulation by
expansins could improve the efficiency of nutrient uptake. In
fact, several types of expansins respond to different nutrient
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The co-expression degree was estimated as Mutual Rank (MR), as described by Aoki et al. (2016), and shown on the right side of each column. Cell wall related genes (yellow highlighting genes) were identified by Gene Onthology

categories.

The identification of the main interesting cell wall related genes is as follow: At3g52500 (Eukaryotic aspartyl protease); Bifunctional inhibitor (Bifunctional inhibitor/lipid-transfer protein/Seed storage 25 albumin protein); CESA and CSLB

(Cellulose synthase); CSY (Citrate synthase); DGR2 (Protein with unknown function); DUF (Protein with unknown function); Dirigent (Disease resistance-responsive dirigent like protein); Endopeptidase (Substilin-like serine endopeptidase

family protein); EXPA (Expansin); EXP3 (Barwin like endoglucanase protein); FRUCTS5 (Beta-fructofuranosidase 5); GASA (GAST1 protein homolog); GDSL hydrolase (GDSL-like Lipase/Acryhydrolase protein); GSR (Glutamine syntethase);
HAD (HAD superfamily, subfamily IlIB acid phosphatase); Plant invertase (Plant invertase/pectin methylesterase inhibitor superfamily); PME (Pectin methylesterase 3); PRX (Peroxidase); SS3 (Strictosidine synthase 3); TBL (Protein with
unknown function); TIP2:1 (Tonoplast intrinsic protein); TUB5 (tubulin beta-5 chain); UGE (UDP-D-glucose/UDP-D-galactose 4-epimerase 1); XTR (Xyloglucan endo-transglycosylase); XTH (xyloglucan-endotransglucosylases/hydrolases).

deficiencies including nitrogen, phosphorus, potassium, and iron
ones (Lietal, 2014).

Furthermore, expansins have been proved to play a pivotal
role in several aspects such fruit ripening and softening, abiotic
stress tolerance, and crops yield (Zhou et al., 2014; Minoia et al.,
2015; Marowa et al., 2016).

Interestingly, the major facilitator superfamily genes
Atl1g52190-AtNT  1.11 and  At3gl6180-AtNTI1.12  are
consistently co-expressed together with several cell wall
relaxation genes; it must be underlined that these transporters
play an important role in plant physiology translocating nitrate
from phloem to xylem.

Particularly, their action appears critical for high-nitrate-
enhanced shoot growth, and for nitrate translocation from old
to young leaves. These processes represent key points affecting
biomass production, and crop yield (Hsu and Tsay, 2013).

Finally, nitrate transporter and cell wall related processes
are connected also during embryogenesis. The AfNRTI.6 is
expressed in reproductive tissues, namely vascular tissue of the
silique and funiculus. This transporter plays a critical role during
early embryogenesis phase (Almagro et al., 2008): interestingly,
this gene was co-expressed with cellulose synthase A (CESA-
At2g25540). Previous studies reported that several members of
this family are necessary for a correct embryogenesis (Beeckman
et al., 2002; Goubet et al., 2003). This evidence corroborated
the idea of a strict connection between nitrogen uptake and
cell wall regulation in various aspects of plant development and
morphogenesis.

THE RELATIONSHIP BETWEEN NITROGEN
TRANSPORTER AND CELL WALL UPON
ABIOTIC STRESS

It is worth to point out that both nitrate transporters and cell
wall remodeling enzymes play crucial roles in response to various
abiotic stresses (Tenhaken, 2015; Fernandes et al., 2016; Fan et al.,
2017; Landi et al., 2017b).

Among nitrate transporters, AtNRT1.I (Atlgl2110) was
identified as a salt and drought stress responsive gene (Guo
et al., 2003; Alvarez—Aragén and Rodriguez-Navarro, 2017). This
gene is expressed in guard cells and plays an important role
in stomata opening: AfNRTI.I. mutants showed an enhanced
drought tolerance (Guo et al., 2003).

Further, AfNRT.1.I plays a major role in Na® and CI~
assimilation in both normal and high salinity conditions,
suggesting its role in salt stress tolerance (Alvarez-Aragén and
Rodriguez-Navarro, 2017). Interestingly, co-expression analysis
showed this gene less co-expressed with cell wall related genes
(Table 1): this confirms that cell wall remodeling genes were
diversely down-regulated during abiotic stress in order to limit
the damage (Leucci et al., 2008). Intriguingly, AtNRT1.1. showed
a number of stress-related coexpressed genes such as, tonoplast
intrinsic protein (TIPs-At4g17340), glucose-6P dehydrogenase
(G6PDH-At5g13110), heat shock proteins (HSP-At5g02480),
late embryogenesis proteins (LEA-At3g52470; Boursiac et al.,
2005; Ma et al., 2006; Basile et al., 2011; Esposito, 2016; Landi
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et al., 2017a), thus highlighting its role in abiotic stress response
(Table 1).

Another interesting nitrate transporter involved in abiotic
stress response is AtNRT1.8 (At4g21680): cadmium (Cd*™)
stress strongly stimulated the accumulation of this transporter
in roots, and A. thaliana plants with mutated AtNRT1.8 showed
increased sensibility to Cd™ stress (Gojon and Gaymard,
2010). Intriguingly, as showed in Table 1, AtNRTI1.8 is co-
expressed with a number of cell wall related genes, namely
XTHI1 (xyloglucan-endotransglucosylases/hydrolases), XTR6
(xyloglucan-endo/transglycosilase), and PRX52 (peroxidase
superfamily). Particularly, peroxidase activity was assisted
by a number of antioxidant enzymes such as, glutathione
S-transferase ~ (GSTU4), NAD(P)-linked oxidoreductase
(AKR4C8), and others (Table 1). This could be necessary to
regulate the increased of reactive oxygen species (e.g., HO3),
enhancing the mechanical stability of the cell wall, and thus
stress tolerance (Tenhaken, 2015).

Further, CLCA (At5g40890) is a chloride channel that
plays a role as NO;/HT exchanger, useful to accumulate
nitrate in vacuoles (De Angeli et al, 2006). Recently,
this transporter was reported as related to PP2A-C5
(At1g69960) during salt stress response (Hu et al, 2017);
the co-expression analysis showed a relationship with cell
wall related proteins such as, pectin lyase (At3g57790 and
At3g16850); cellulose synthase C; and with aquaporines
such TIPs (tonoplast intrinsic proteins) and PIPs (Plasma
membrane intrinsic proteins). The co-expression of TIP2
(At3g26520) and TIP2.1 (At3gl6240) confirms the critical
role of CLCA in nitrate translocation into the vacuoles as
well. Interestingly, NTRI.I is co-expressed with tonoplast
intrinsic protein TIP2.2 (At4g17340). Particularly, nitrate
allocation from/to vacuoles suggested a central role during
plant adaption in N-rich and N-deficient environments
(Fan et al, 2017). Recent evidence indicated the role of
phosphatidylinositol-3,5-bisphosphate as signal for nitrate
translocation in vacuoles by the activation of CLCA (Carpaneto
etal., 2017).

Further, the regulation of the nitrate allocation into the
vacuoles was assisted by peptide transporters (PTRs), such as,
AtPTR4 (At2g02020) and AtPTR6 (Atlg62200); these proteins
showed vacuole specific localization, thus playing a role in nitrate
storage in the plant cell (Weichert et al., 2012). Fan et al.
(2017) reported that NRT2.1 plays an important role in resistance
to drought. This action was reported in different species
such as, Arabidopsis and Brassica, together with NRTI.1 and
NRT1.5 (Goel and Singh, 2015; Fan et al., 2017). Other authors
reported that NRT2.1 regulated root hydraulic conductivity, by
altering NO3  accumulation (Li et al., 2016). Furthermore, this
nitrate transporter positively regulates the translational levels
of PIPs; the bioinformatic analysis highlights the co-expression
of this transporter with cell wall related genes, such pectin
lyase and peroxidase; and with abiotic stress related genes
such protein phosphatase 2C (PP2C), glutathione S-transferase
(GST), G6PDH, and others, thus confirming that nitrogen
transporters, cell wall remodeling enzymes, and others genes
together contributes for abiotic stress tolerance.

TRANSCRIPTOMIC MODIFICATION IN
ADVERSE ENVIRONMENT: NITRATE AND
CELL WALL CANDIDATES GENES FOR
TOLERANCE IN CROPS

Nowadays, next generation sequencing (NGS) provides for new
insight into crops genetic breeding, generating huge amount of
data, mapping across crops population, and discovering useful
genes, QTL and genomic traits (Cobb et al., 2013).

The improvement of tolerance in crops vs. abiotic
stress remains today an important focus for plant biology
researchers because this reduces plant growth, development, and
productivity (Reynolds and Tuberosa, 2008; Cardi et al., 2015;
Ruggiero et al., 2017). This promising strategy can be prosecuted
by applying modern molecular and -omics techniques, together
with the study and the analysis of traditional landraces (Van
Oosten et al., 2016; Landi et al,, 2017a,b). In the last years,
many researchers investigated this topic using NGS; in tomato
(Solanum lycopersicum), 966 differential expressed genes (DEGs)
have been identified upon drought; among these, at least 50
genes involved in cell wall remodeling and nitrate transport were
identified. Particularly, 20 clusters of genes were grouped, and
their transcripts show similar expression trends (Iovieno et al.,

2011).

Some clusters showed interesting correlations: in
cluster 4, expansin (Solyc06g049050), nitrate transporter
(Solyc12g006050),  cellulose  synthase  (Solyc04g071650),
and XTH (Solyc02g091920); in cluster 5, cellulose synthase
(Solyc04g077470),  expansin  (Solyc02g088100),  nitrate

transporter (Solyc03g113250), and XTH (Solyc07g052980).

Similarly to other abiotic stress, nutrient deprivation
negatively influences crops yield. Nitrogen deficiency is a critical
cause of yield loss, but N fertilizer consumption has become one
of the major costs of crop production (Zhao et al., 2015).

A huge transcriptomic modification in durum wheat
(Triticum turgidum) upon nitrogen starvation highlighted 4,626
DEGs in different organs such as, roots, leaves, stems, and spikes
(Curci et al., 2017). An interesting enrichment of GO categories
related to “Cell Wall Biogenesis” and “Cellulose metabolism”
in leaves was reported, highlighting the relationship between
nitrogen nutrition and regulation of the integrity of cell wall.
Also, a number of up-regulated high affinity nitrate transporters
in root and flag leaf (e.g., NT2.3 and NT2.5) were found, while
numerous cell wall related genes showing a transcriptional
regulation induced by nitrogen starvation. Examples of these
are pectin lyase, expansin, and wall associated kinase (WAK).
Particularly, WAKSs play critical roles in root growth under N
limitation (Kiba and Krapp, 2016). Intriguingly, the correlation
among WAKSs and nitrogen deficiency was also observed in two
lines of Tibetan barley (Hordeum vulgare) expressing nitrogen
transporter with genomic variants (Quan et al,, 2016).

Moreover, nitrogen starvation was studied in rice (Oryza
sativa; Yang et al., 2015). This stress induced the modification
in the expression of 1,158 genes in leaves, and 492 in roots.
Part of these were identified as cell wall related genes: in roots
it has been reported the expression of few genes involved
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in cell wall degradation, such fasciclin-like arabinogalactan
protein (Os10t0524300), and sulfated surface glycoprotein
(0s10t0524300). On the contrary, in leaves a higher number
of DEGs related to various aspects of cell wall regulation
was reported, such fasciclin-like arabinogalactan protein
(Os01t0668100), beta-galactosidase (Os06t0573600), UDP-
glucuronic acid decarboxylase (Os03t0278000), and expansin
(0s10t0555900, Os10t0556100).

Recently, Zhao et al. (2015) reported interesting results
about the response of cucumber (Cucumis sativus) at early
nitrogen shortage. Among the top enriched GO categories, the
presence of genes encoding for proteins and enzymes involved
in xyloglucan transferase activity were reported, underlining
their role(s) in cell wall synthesis and remodeling. Further,
a number of genes involved in cell wall loosening, cell
expansion or cell wall component synthesis, including pectin
lyases (CsalG049960), XTH (CsalG188680), pectinesterases
(Csa7G447990; Csa7G343850), and expansin (Csa5G517210)
were grouped in different expression clusters, and regulated
during the early stage of N deficiency response. Thus, pectins
breakdown under N deficiency would provide substrates to
other biological processes, compensating for the depressed
photosynthetic carbon assimilation. In addition, a connection
between cell wall degradation and ascorbic acid metabolism can
be hypothesized, in order to provide an improvement of fruit
quality upon N deficiency (Zhao et al., 2015).

Interestingly, cell wall related and nitrate transporter
genes interact also during heavy metal stress such as,
aluminum excess (Li et al, 2017). It has been reported a

critical role for the STOPI/ARTI, a zinc finger transcription
factor, which induced the expression of a number of
genes related to the aluminum toxicity tolerance in crops
(Yamaji et al., 2009).

The effectors of STOPI/ARTI suggest a correlation in tea
plants (Camelia sinensis) among cell wall related enzymes
(e.g., expansine and polygalacturonase); membrane proteins
(e.g., magnesium transporter, UDP-glucosyl transferase, and
potassium transporter); detoxification proteins (e.g., Heat shock
protein 20) and nitrate transporters. Therefore, a major role
in the aluminum allocation for tolerance, or accumulation, has
been proposed for this protein network (Li et al., 2017). A
schematic summary, describing the key events during drought,
salt and N starvation responses, and their relationships between
nitrogen uptake and cell wall remodeling, is proposed in
Figure 1.

CONCLUSIONS

This review provided for an updated survey between the
correlation of nitrogen assimilation and cell wall related genes.
These genes contribute together in several aspects of plant
growth, physiology, and response to external stimuli. Evidences
here described strongly support the notion of an involvement
of NT and cell wall remodeling genes (e.g., pectin lyase, XTH,
expansin) as a part of complex machinery involved in abiotic
stress response in crops.

Further, cell wall related genes play a role in N starvation
inducing cell wall relaxation and helping N assimilation.

Favorable environment

Physiological expression and functioning of NT, PE XHT and PL.
N was assimilated: cell wall is remodeled for a correct plant growth.

Drought/Salinity

Different regulation of NT (e.g.
NT1.1,NT1.5,NT2.1). Down-
regulation of PE, XHT and PL
inducing strengthening of the cell
wall. Plant growth slowdown.
Peroxidase and others scavenging
enzymes activation and ROS
detoxification also in cell wall.

Drought/salinity and N starvation

N starvation

Activation of high affinity
NT (e.g. NT2.3 and 2.5), and
high expression of PL, EXP,
WAK, XTH and PE. Using of
C deriving from cell wall for

metabolic pathways.

N deficiency assist abiotic stress response. Photosynthesis and gas
exchange are reduced to limit water loss.

Reduced nitrogen assimilation and activation of cell wall related
genes (PE, XTH...) reduce plant growth.

FIGURE 1 | Main effects induced by drought, salinity and nitrogen starvation on nitrogen assimilation and cell wall remodeling in plants.
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Therefore, these gene families could represent promising traits
for genetic improvement in abiotic stress tolerance.
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