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Advances in sequencing and genotyping methods have enable cost-effective
production of high throughput single nucleotide polymorphism (SNP) markers, making
them the choice for linkage mapping. As a result, many laboratories have developed
high-throughput SNP assays and built high-density genetic maps. However, the number
of markers may, by orders of magnitude, exceed the resolution of recombination for a
given population size so that only a minority of markers can accurately be ordered.
Another issue attached to the so-called ‘large p, small n’ problem is that high-density
genetic maps inevitably result in many markers clustering at the same position (co-
segregating markers). While there are a number of related papers, none have addressed
the impact of co-segregating markers on genetic maps. In the present study, we
investigated the effects of co-segregating markers on high-density genetic map length
and marker order using empirical data from two populations of wheat, Mohawk ×
Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of
both populations consisted of 85% co-segregating markers. Our study clearly showed
that excess of co-segregating markers can lead to map expansion, but has little effect on
markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage
maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle
Desprez). Using seven machine learning algorithms, we were able to predict with an
accuracy of 0.7 the map expansion due to the proportion of co-segregating markers.
For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the
length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar
× Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating
markers. With the increasing number of markers on SNP-chips, the proportion of
co-segregating markers in high-density maps will continue to increase making map
expansion unavoidable. Therefore, we suggest developers improve linkage mapping
algorithms for efficient analysis of high-throughput data. This study outlines a practical
strategy to estimate the IF due to the proportion of co-segregating markers and outlines
a method to scale the length of the map accordingly.

Keywords: genetic map, high-density, single nucleotide polymorphism, wheat, prediction, map expansion,
inflation factor, machine learning
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INTRODUCTION

Genetic maps also known as linkage maps are constructed for
several purposes (see Semagn et al., 2006 for a review). In
particular, genetic maps:

– Allow identifying genomic regions that control the
expression of qualitative and quantitative trait loci (QTL)
(Mohan et al., 1997; Doerge, 2002; Yim et al., 2002).

– Help in marker-assisted selection by facilitating the
introgression of desirable QTL.

– Allow phylogenetic analyses between different species for
evaluating similarity between genes (Ahn and Tanksley,
1993; Paterson et al., 2000).

– Help in the identification of chromosomal rearrangements
(Tanksley et al., 1992; Agresti et al., 2000; Bansal et al.,
2007).

– Help in anchoring physical maps (Yim et al., 2002).
– Facilitate de novo genome assembly and validation by

enabling the identification of chimeric scaffold constructs
(Rastas et al., 2013; Fierst, 2015).

– Where high-density maps are required, constitute the first
step toward positional or map-based cloning of genes
responsible for economically important traits, (Mohan
et al., 1997; Vuylsteke et al., 1999).

Genetic maps indicate the position and relative genetic
distances between markers along chromosomes, which is
analogous to signs or landmarks along a highway where the
genes are “houses” (Paterson, 1996; Collard et al., 2005).
Genetic maps are constructed using different types and
sizes of mapping populations, laboratory techniques, marker
systems, mapping strategies, statistical procedures and computer
packages. These factors can affect the efficiency of the mapping
process (Liu, 1998; Paterson et al., 2000). Map length and
marker orders are impacted by various factors, including the
type and size of the population (Ferreira et al., 2006), the
type of markers (dominant or codominant), genotyping or
scoring errors, distortion segregation (Hackett and Broadfoot,
2003; Oliveira et al., 2004) and the frequency of double
recombinants.

Advances in sequencing and genotyping technologies
have enabled the massive production of single nucleotide
polymorphism (SNP) markers in a cost-effective way, making
SNP markers the choice for linkage mapping. As a result,
many laboratories have developed high-throughput SNP
assays with continuously increasing marker numbers. For
wheat, there are the 9K (Cavanagh et al., 2013), the 90K
(Wang et al., 2014) and the 820K (Winfield et al., 2016)
SNP assays. Similar efforts have been made for other crops,
including rice with the RICE6K (Yu et al., 2014) and the
RiceSNP50 (Chen H. et al., 2014), and maize with the
MaizeSNP50 (Ganal et al., 2011) and the 600K (Unterseer
et al., 2014).

Indeed, a high number of markers are needed to build high-
density genetic maps that are suitable for positional or map-based
cloning of genes. However, the disproportion between the high

number of markers and the relatively small population size,
the so-called ‘large p, small n’ problem, markedly impact the
resolution of recombination so that only a minority of markers
can be actually ordered (Ronin et al., 2010). On the other
hand, high-density genetic maps usually result in many markers
clustering at the same position (co-segregating markers) on the
linkage map; e.g., (Liu et al., 2013; Iehisa et al., 2014; Talukder
et al., 2014; Zhou et al., 2015; Di Pierro et al., 2016; Liu Z.
et al., 2016; Ren et al., 2016; Tyrka et al., 2016). In spite of
the availability of several papers on genetic mapping, specific
studies related to the impact of high throughput SNP data on
genetic maps have not yet been conducted. It is therefore timely
to consider how the increasing number of markers can impact
genetic map features in the era of high throughput sequencing
technologies.

Machine learning (ML) is the study of data-driven,
computational methods for making inferences and predictions
(Breiman, 2001b) and may be seen as the intersection of
Computer Science and Statistics (Cunningham, 1995). ML
methods have been applied in diverse fields, including face
recognition, speech processing (e.g., Google voice, Apple’s
Siri), prediction of consumers preferences (e.g., Netflix movie
recommender system), text mining (Witten and Eibe, 2005),
bioinformatics [e.g., drug design and genome annotation (Yip
et al., 2013) or transcription networks (Li et al., 2006)], cell
biology (Sommer and Gerlich, 2013), medical diagnosis (Kukar
and Groselj, 2005) and disease tissue classification in medicine
(Guyon et al., 2002; Zacharaki et al., 2009). Due to their high
generalization capabilities and distribution-free properties, ML
algorithms are presented as a valuable alternative to traditional
statistical techniques (Maenhout et al., 2010). Moreover, ML
algorithms can deal with heterogeneity of the data, redundancy
and presence of interactions and non-linearity (Ornella et al.,
2012).

In animal and crop breeding, ML algorithms have been
widely used in the framework of genomic selection (GS),
e.g., (Bernardo and Yu, 2007; Goddard and Hayes, 2007;
Gianola and van Kaam, 2008; Gonzales-Recio et al., 2008;
Jannink et al., 2010; Heslot et al., 2012; Grinberg et al., 2016).
GS (Meuwissen et al., 2001) uses all available DNA marker
information across the genome to estimate genetic values
(Bernardo, 2008; Jannink et al., 2010) for improved selection
of quantitative trait. GS uses a training population (set of
individuals having genotypic and phenotypic data) to develop a
model to predict genomic estimated breeding values (GEBVs)
of non-phenotyped individuals. There is an increasing interest
in ML for use in other aspects of crop breeding, including
high throughput phenotyping (Mahlein, 2015; Singh et al., 2016;
Wahabzada et al., 2016) and determining the most important
features that contribute to agronomic traits of interest (Ornella
et al., 2012; Shaik and Ramakrishna, 2014; Shekoofa et al.,
2014).

The objective of our study is to investigate the effects of co-
segregating markers on high-density genetic map length and
marker order using empirical data from durum and bread wheat.
Ultimately, we aim to predict the inflation factor (IF) of the
linkage maps, using ML algorithms.

Frontiers in Plant Science | www.frontiersin.org 2 August 2017 | Volume 8 | Article 1434

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01434 August 21, 2017 Time: 15:12 # 3

N’Diaye et al. Effect of Co-segregating Markers and Map Expansion

MATERIALS AND METHODS

Plant Material
Two doubled haploid mapping populations described elsewhere
were used in this study: the durum wheat Mohawk × Cocorit
(Maccaferri et al., 2014) and the bread wheat Norstar× Cappelle
Desprez (Fowler et al., 2016). The Mohawk×Cocorit and Nortar
× Cappelle Desprez populations consisted of 177 and 256 lines,
respectively.

Genotyping
As described in earlier publications (Maccaferri et al., 2014;
Fowler et al., 2016), DNA of the mapping populations was
extracted from young leaves using the DNeasy 96 Plant
Kit (QIAGEN Science, Germantown, MD, United States).
DNA was quantified using NanoDrop ND-1000 UV-vis
spectrophotometer (Thermo Fisher Scientific Inc., Madison,
WI, United States). Genotyping was performed at the Crop
Development Centre, University of Saskatchewan using the
Illumina Infinium wheat 90K iSelect assay (Illumina Inc.,
San Diego, CA, United States) as reported previously (Wang
et al., 2014). The raw intensity data were processed with
the GenomeStudio v2011.1 software (Illumina). Genotypic
data were curated to correct for scoring errors, filter out
monomorphic and highly distorted markers according to
the expected 1:1 ratio for DH populations using chi-square
(χ2) test as implemented in the MapDisto software (Lorieux,
2012).

Mapping Procedure
Our approach consisted of two phases with the following steps:

Phase I
– For each population, all curated SNP data was used to

build linkage maps using the MSTMap software (Wu
et al., 2008) with a stringent cut off p-value of 1E−10

and a maximum distance between markers of 15.0 cM
for clustering SNPs into linkage groups (LGs). Double
recombinants were corrected using the functions ‘Show
double recombinants,’ ‘Show error candidates’ and ‘Replace
error candidates by flanking genotype’ as implemented
in the MapDisto software (Lorieux, 2012). The LGs were
assigned to chromosomes based on existing high-density
SNP maps (Cavanagh et al., 2013; Maccaferri et al., 2014;
Wang et al., 2014).

– For each LG, a skeleton map was built by keeping
only one of the most informative (highest polymorphism
information content, lowest number of missing data)
markers randomly selected per cluster (group of markers
located at the same position).

– Then, using an in-house Ruby script, we built as many
maps (hereafter referred to sequential maps) as there were
co-segregating markers on each LG (see step 1) by adding
one marker at a time (one after another), selected randomly
from the list of co-segregating markers.

Phase II
– Because LGs had different sizes and the number of co-

segregating markers varied among them, we computed the
proportions of co-segregating markers relative to the total
number of markers on each LG.

– Eight levels of proportion, ranging from 10 to 80%
were sampled for all LGs having ≥80% of co-segregating
markers.

– Each proportion level had 50 replicates. For example, for
LG 1A we randomly selected 10% of co-segregating markers
50 times to build 50 ‘sequential’ maps. Then, we repeated
the same process for 20, 30, 40, 50, 60, 70, and 80% of
co-segregating markers. However, LGs 2A, 4A and 5A
in Mohawk × Cocorit and 1D, 4D and 7D in Norstar
× Cappelle Desprez had less than 80% of co-segregating
markers and only six proportion levels (10–60%) with 20
replicates were used.

– The length of these sequential maps and markers order were
compared to those of the skeleton map.

– Finally, for each sequential map the IF was estimated as:
IF = ((Lseq – Lsket)/ Lsket) ∗ 100,
Lseq and Lsket being the length of the sequential map and the
skeleton map, respectively.

Prediction
Seven ML algorithms implemented in the Caret R package (Kuhn
et al., 2012) were used to predict the inflation of the map lengths
relative to the proportion of co-segregating markers:

– Linear regression model (LR): LR was developed in the
field of statistics, but has been borrowed by ML. The LR
algorithm is a family of model-based learning approaches
that assume a linear relationship between the input
variables (x) and the single output variable (y). The LR
equation is built and trained, using different techniques, the
most common of which is called Ordinary Least Squares
(OLS). The OLS is a method for estimating the unknown
parameters in a LR while minimizing the sum of the squares
of the differences between the observed responses (values
of the variable being predicted) in the given dataset and
those predicted by a linear function of a set of explanatory
variables.

– Generalized linear model (GLM): The GLM provides
flexible generalization of ordinary linear regression for
response variables with error distribution models other
than a Gaussian (normal) distribution. GLM unifies various
other statistical models, including binomial, gamma,
Poisson and logistic regression. Each serves a different
purpose, and depending on distribution and link function,
GLM can be used for prediction or classification.

– Polynomial regression with degree 2 (POLY2) and 3
(POLY3): Polynomial regression is a form of linear
regression in which the relationship between the input
variables (x) and the output variable (y) is modeled as a
polynomial. Although polynomial regression fits a non-
linear model to the data, it is considered as a special case of
multiple linear regression since it is linear in the regression
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coefficients. We only tried quadratic (POLY2) and cubic
(POLY3) models to avoid overfitting.

– K-nearest neighbors (KNN): The KNN algorithm is an
instance-based learning where new data are classified based
on stored, labeled instances. The rationale behind the KNN
algorithm is learning by analogy. The distance between
the stored data and the new instance is calculated using
similarity measures such as the Euclidean distance, cosine
similarity or the Manhattan distance. The similarity value
is used to perform predictive modeling for classification or
regression. In both cases, the input consists of the k closest
training examples in the feature space. For classification, the
output is a class membership while for regression, it is the
property value for the object. This value is the average of the
values of its k nearest neighbors.

– Support vector machine (SVM) (Vapnik, 1995): SVM uses
a non-linear mapping function to map samples from the
predictor space to a high-dimensional feature space and
perform linear regression in the latter space (Witten and
Frank, 2005).

– Classification and regression trees (CART) (Breiman et al.,
1984): CART is a decision tree algorithm for both
classification and regression. It is a recursive algorithm,
which partitions the training data set by doing binary
splits. In their simplest form, decision tree algorithms are
hierarchical if-else statements that can be applied to predict
a result based upon data. The if-else statements are chosen
to maximize a notion of information gain and reduce
the variability in the underlying (two) children nodes. In
contrast with general tree-based methods that may allow
multiple child nodes, CART always creates a binary tree.
A large tree is first generated, then pruned to a size that has
the lowest cross-validation estimate of error (Loh, 2014).

– Random forest (RF) (Breiman, 2001a): RF is an ensemble
algorithm based on randomized regression trees. In RF,
each tree is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. Each tree
individually predicts the target response and the ‘forest’ (i.e.,
the ensembles of ‘trees’) predicts the target response as an
average of individual tree predictions.

To evaluate the map expansion, only maps generated using
different proportion levels (10–80%) of co-segregating markers
were used, 4800 and 7580 maps for Mohawk × Cocorit and
Norstar × Cappelle Desprez, respectively. Two types of partition
designs were used to build the prediction models. In the first
partition design, the whole set of sequential maps for each
population was split into training and test sets containing 80
and 20% of the maps, respectively. The second partition design
was a 10-fold cross-validation scheme with 5 replicates (Kohavi,
1995). The data was divided into 10 sets to which maps were
assigned randomly so that all sets consisted of equal number of
maps. One subset (testing set) was omitted to test the predictive
ability of the model, whereas the other nine subsets were used
as training samples (training set) to estimate model parameters.
During cross-validation runs, each of the 10 subsets served as a
testing set in one round, with missing values.

The models were fitted using the training sample, and the
fitted models were used to predict outcomes in the test set. The
goodness-of-fit of the models was evaluated using the root mean
square error (RSME). The prediction accuracy was estimated as a
Pearson correlation between the predicted and the observed map
length in the test set.

RESULTS

Description of the Linkage Maps
A total 24,473 linkage maps were built for this study: 8,203 maps
for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle
Desprez populations.

The features of Mohawk × Cocorit and Norstar × Cappelle
Desprez maps that were built in step 1 of phase I are presented
in Table 1 and Table 2, respectively. For Mohawk × Cocorit,
the map using the whole curated data set consisted of 3,999
SNPs spanning 2421.1 cM. Markers were distributed on the
14 chromosomes of the durum wheat genome. The number
of markers per chromosome varied from 76 (chromosome 4A)
to 529 (chromosome 6B). In total, 85% (3,389/3,999) of the
markers co-segregated across the genome. The proportion of co-
segregating markers of genome A was lower than that of genome
B (81 vs. 87%).

For Norstar × Cappelle Desprez, 10,154 markers spanning
3335.6 cM were mapped on the 21 chromosomes of the bread
wheat genome. The genome-wide proportion of co-segregating
markers was 85% (8,669/10,154), ranging from 53 (chromosome
7D) to 92% (chromosomes 2D and 3D). Genome A displayed
84% of co-segregating markers while genomes B and D showed
86% of co-segregating markers.

Markers order analysis revealed a very high collinearity
between sequential maps and the skeleton map for all
chromosomes in both Mohawk × Cocorit and Norstar ×
Cappelle Desprez (Table 3). The average Spearman correlation
coefficient ranged from 0.94 to 0.99 and 0.97 to 0.99 for Mohawk
× Cocorit and Norstar× Cappelle Desprez, respectively.

Maps Expansion
The length of the sequential maps expanded in proportion
to the co-segregating markers for both Mohawk × Cocorit
(Figure 1) and Norstar × Cappelle Desprez (Figure 2). For a
given proportion of co-segregating markers genome-wide, there
was a relatively wide range variation of the IF, e.g., with 80%
co-segregating markers IF ranged from 8 to 25% and 7 to
21% in Mohawk × Cocorit and Norstar × Cappelle Desprez,
respectively.

The overall variation in IF was similar among genomes
in Mohawk × Cocorit (Figure 3) and Norstar × Cappelle
Desprez (Figure 4). However, a few outliers were observed in
genomes A and D in Norstar × Cappelle Desprez. Despite of
the relatively wide variation of IF within chromosome, the higher
proportion of co-segregating markers the larger the IF for both
Mohawk × Cocorit (Figure 5) and Norstar × Cappelle Desprez
(Figure 6). For example in Mohawk× Cocorit, the average IF on
chromosome 3B for 10, 50, and 80% of co-segregating markers
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TABLE 1 | Features of the Mohawk × Cocorit linkage map.

Full map Skeleton map Co-segregating markers

Chromosomes Markers Map size (cM) Markers Map size (cM) Number Proportion (%)

1A 348 154.4 58 137.3 290 83

1B 277 205.9 46 197.2 231 83

2A 90 183.6 28 148.7 62 69

2B 334 161.1 51 145.0 283 85

3A 269 90.3 27 82.2 242 90

3B 323 231.8 55 180.3 268 83

4A 76 141.7 24 128.9 52 68

4B 340 156.9 40 119.9 300 88

5A 91 71.7 36 63.7 55 60

5B 323 207.8 36 178.4 287 89

6A 300 200.5 63 165.7 237 79

6B 529 215.7 53 188.9 486 92

7A 330 247.2 64 192.6 276 84

7B 369 152.5 49 123.2 320 87

Genome A 1504 1089.4 300 919.1 1214 81

Genome B 2495 1331.7 330 1132.9 2175 87

Total 3999 2421.1 630 2052.0 3389 85

TABLE 2 | Features of the Norstar × Cappelle Desprez linkage map.

Full map Skeleton map Co-segregating markers

Chr Markers Map size (cM) Markers Map size (cM) Number Proportion (%)

1A 909 107.1 85 90.6 824 91

1B 673 235.9 122 217.9 551 82

1D 102 110.8 31 103.0 71 70

2A 483 228.5 95 212.9 388 80

2B 864 230.7 96 216.2 768 89

2D 498 198.8 42 185.9 456 92

3A 593 246.2 94 219.3 499 84

3B 681 253 129 226.1 552 81

3D 76 18.7 6 17.8 70 92

4A 398 188.6 70 179.0 328 82

4B 424 130.1 68 127.9 356 84

4D 29 15.3 8 14.4 21 72

5A 636 281.4 117 278.9 519 82

5B 1049 225.9 126 211.6 923 88

5D 107 27.9 13 19.8 94 88

6A 437 170.6 66 156.7 371 85

6B 937 185.0 101 170.3 836 89

6D 103 47.5 15 15.8 91 88

7A 641 216.9 114 200.7 527 82

7B 471 144.6 70 133.6 401 85

7D 43 72.1 20 71.6 23 53

Genome A 4097 1439.3 641 1338.1 3456 84

Genome B 5099 1405.2 712 1303.6 4387 86

Genome D 958 491.1 135 428.3 826 86

Total 10154 3335.6 1488 3070.0 8669 85

was 2.1, 12.7, and 21.6%, respectively. Similarly, in Norstar ×
Cappelle Desprez the average IF on 3B for 10, 50, and 80% of
co-segregating markers was 3.6, 9.8, and 11.8%, respectively.

Prediction of Map Expansion
The prediction accuracies of the models are shown in Table 4.
All of the models resulted in similar performance (RMSE,
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TABLE 3 | Spearman correlation coefficient of markers order between sequential
maps and skeleton map in Mohawk × Cocorit and Norstar × Cappelle Desprez.

Chromosomes Mohawk × Cocorit Norstar × Cappelle Desprez

1A 0.99 0.99

1B 0.97 0.99

1D 0.99

2A 0.94 0.99

2B 0.99 0.99

2D 0.98

3A 0.99 0.99

3B 0.95 0.99

3D 0.97

4A 0.97 0.99

4B 0.96 0.99

4D 0.98

5A 0.96 0.99

5B 0.99 0.99

5D 0.99

6A 0.97 0.99

6B 0.98 0.99

6D 0.97

7A 0.99 0.99

7B 0.99 0.99

7D 0.99

FIGURE 1 | Genome-wide pattern of map length inflation factor in the
Mohawk × Cocorit population.

accuracy) in both Mohawk × Cocorit and Norstar × Cappelle
Desprez populations. The IF of the linkage maps was predicted
with an accuracy of 0.7 in both populations. However, the
RMSE was lower in Norstar × Cappelle Desprez compared
to Mohawk × Cocorit, 2.2 vs. 4.6. The map length inflated

FIGURE 2 | Genome-wide pattern of map length inflation factor in the Norstar
× Cappelle Desprez population.

FIGURE 3 | Boxplot of map length inflation factor per genome in the
Mohawk × Cocorit population.

relative to the proportion of co-segregating markers: the more co-
segregating markers the larger the map expansion (Table 5). For
example in Mohawk × Cocorit, with 10 and 80% co-segregating
markers the length of the map inflated by 4.5 and 16.6%,
respectively. Similarly, the map of Norstar × Cappelle Desprez
expanded by 3.8 and 11.7% with 10 and 80% co-segregating
markers.
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FIGURE 4 | Boxplot of map length inflation factor per genome in the
Norstar × Cappelle Desprez population.

FIGURE 5 | Pattern of inflation factor for chromosomes and the proportions of
co-segregating markers in the Mohawk × Cocorit population.

DISCUSSION

Linkage Mapping
All of the linkage maps were constructed using MSTMap software
(Wu et al., 2008) due to its good performance compared to
other available tools, especially in the speed and accuracy of
map construction (Cheema and Dicks, 2009). In this study, we
built a total of 24,473 linkage maps by taking advantage of the

FIGURE 6 | Pattern of inflation factor for chromosomes and the proportions of
co-segregating markers in the Norstar × Cappelle Desprez population.

TABLE 4 | Prediction accuracy of different models in the Mohawk × Cocorit and
Norstar × Cappelle Desprez populations.

Populations Models1 RMSE2 Accuracy

Mohawk × Cocorit LR 4.631 0.654

GLM 4.631 0.654

KNN 4.577 0.664

POLY2 4.584 0.664

POLY3 4.578 0.664

SVM 4.632 0.661

CART 4.694 0.638

RF 4.577 0.664

Norstar × Cappelle Desprez LR 2.234 0.737

GLM 2.234 0.737

KNN 2.225 0.742

POLY2 2.234 0.737

POLY3 2.229 0.739

SVM 2.227 0.743

CART 2.389 0.667

RF 2.225 0.742

1Models: LR, linear regression model; GLM, generalized linear model; KNN,
K-nearest neighbors; POLY2, quadratic regression; POLY3, cubic regression; SVM,
Support vector machine; CART, Classification and regression trees; RF, Random
forest. 2RMSE: Root mean square error.

fast algorithm of MSTMap combined with an in-house Ruby
script that generated the appropriate data sets, parameter files
and ran MSTMap in batch mode. A wide range of algorithms
and software for constructing genetic maps are available (see
Cheema and Dicks, 2009; Ott et al., 2015 for a review). In
particular, many algorithms have been designed for high-density
maps (van Os et al., 2005a,b; Rastas et al., 2013; Liu et al., 2014).
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TABLE 5 | Map inflation factor (mean ± standard deviation) relative to the proportion of co-segregating markers in the Mohawk × Cocorit and Norstar × Cappelle
Desprez populations.

Mohawk × Cocorit Norstar × Cappelle Desprez

Co-segregating markers (%) Number of maps Inflation factor (%) Number of maps Inflation factor (%)

10 700 4.48 (±3.63) 990 3.77 (±1.99)

20 700 6.85 (±3.94) 990 5.43 (±2.02)

30 700 9.34 (±3.79) 990 6.71 (±2.02)

40 700 11.11 (±4.08) 990 7.39 (±1.95)

50 700 13.78 (±4.95) 990 8.24 (±2.34)

60 700 14.86 (±5.06) 970 9.35 (±2.46)

70 650 16.59 (±5.52) 970 10.85 (±2.65)

80 650 16.62 (±5.58) 950 11.70 (±2.28)

Algorithms usually try to solve specific mapping problems such
as correcting genotyping errors (van Os et al., 2005b; Liu et al.,
2014), producing accurate marker order in a relatively limited
time (van Os et al., 2005a), handling populations with highly
heterozygous loci (Margarido et al., 2007; Tong et al., 2010) or
detecting and removing pseudo-linkages (Ronin et al., 2010).

No single software harbors all the desirable features (e.g.,
ultra-fast, accurate in makers order, no map inflation, scalable)
that one could expect for assembling a high quality high-density
map in a relatively short time. Therefore, different combinations
of software have been used to build high-density genetic maps
(e.g., Liu et al., 2014, 2015; Fowler et al., 2016; Kumar et al.,
2016; Perez-Lara et al., 2016). Fowler et al. (2016) and Perez-Lara
et al. (2016) used MSTMap + MapDisto (Lorieux, 2012) while
Liu et al. (2014) used AntMap (Iwata and Ninomiya, 2006) +
MapDisto. In contrast, Kumar et al. (2016) combined the features
of MapMaker (Lander and Botstein, 1989) and CarthaGene (de
Givry et al., 2005) while Liu et al. (2015) built their map using
JoinMap (Stam, 1993) + MSTMap. Several practical strategies
have also been used to tackle the difficulties in constructing
a high-density linkage map, including bin strategy (Sun et al.,
2007; Amores et al., 2011; Ganal et al., 2011; Chen Z. et al.,
2014; Han et al., 2016; Zhou et al., 2016). Bin strategy reduces
computational costs as well as the impact of genotyping errors,
but at the cost of incomplete utilization of genotyping data and
recombination information reducing the application value of
high-density linkage map (Liu et al., 2014). Another approach,
termed ‘selective mapping,’ suggests first building a framework
map with limited number of markers and samples of individuals
bearing complementary recombination breakpoints, then adding
the remaining markers (Vision et al., 2000). Similarly, Ronin
et al. (2010) recommended use of ‘delegate’ markers to build
a reliable skeleton map and eventually remove markers that
create local instability. It’s well known that different mapping
strategies may result in different maps (Ronin et al., 2010).
However, to avoid any potential technical bias in our study,
all of the maps were constructed using the same software and
algorithms.

Markers Order
A strong collinearity in markers order (r ranging for 0.94 to 0.99)
was observed between the sequential maps and the skeleton map

for all chromosomes in both Mohawk × Cocorit and Norstar
× Capelle Desprez populations suggesting that co-segregating
markers had little effect on markers order. The ordering of
markers within LGs is considered a special case of the classical
traveling salesman problem (Doerge, 1996; Liu, 1998; Mester
et al., 2003; Tan and Fu, 2006). The problem consists in choosing
the best order among (1/2)∗m! possible orders (m being the
number of markers). When m gets larger, the number of orders
is unwieldy. For example, when m = 100, the total number of
possible orders = 4.6 × 10157, which is not feasible with the
currently available computational power. Algorithms to obtain
approximate optimal solutions are the only practical approach
for large-scale linkage mapping (Liu, 1998). Thus, some small
local discrepancies in marker order might occur when comparing
maps. However, most of the linkage mapping algorithms find
reasonably good markers order (see Wu et al., 2008 for a review).

Map Expansion
“Map expansion is the phenomenon that genetic maps including
a large number of genes are longer than the corresponding actual
genetic distance between the genes involved” (Sybenga, 1996).
Discrepancies between genetic maps and cytological maps have
raised some concerns about map expansion (Hall et al., 1997a,b)
in many species, including mice (Taylor, 1978), maize (Burr et al.,
1988; Burr and Burr, 1991; Anderson et al., 2003), tomato (Paran
et al., 1995) and potato (Tanksley et al., 1992).

Many sources of map expansion have been reported, including
genotyping errors and missing values (Lincoln and Lander, 1992;
Sobel et al., 2002; Hackett and Broadfoot, 2003; Pompanon
et al., 2005; Cartwright et al., 2007; Avni et al., 2014; Ronin
et al., 2014), number and type of markers (Lee et al., 2015; Bai
et al., 2016), tight double recombinant events, and segregation
distortion (Sybenga, 1996) and mapping software (Sybenga, 1996;
Hackett and Broadfoot, 2003; Falque, 2005; Rastas et al., 2016).
Other factors, including an excess of heterozygosity (Knox and
Ellis, 2002; Truong et al., 2014) and the population type and size
(Ferreira et al., 2006; Lee et al., 2015) have also been reported to
inflate the length of linkage maps.

Nonetheless, only the correction of genotyping errors and a
reduction in missing values have led to substantial improvement
of algorithms for the construction of high-density linkage maps
(Lincoln and Lander, 1992; Stam, 1993; Douglas et al., 2000;
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van Os et al., 2005b; Cartwright et al., 2007; Ronin et al., 2010,
2014; Lorieux, 2012). Genotyping errors can unlink markers that
would be identical (absolutely linked) in the ideal situation with
no errors. When the number of markers and the error rate
increase, it becomes more challenging to build a reliable map
(Ronin et al., 2010). As marker density increases, undetected
scoring errors rate of only 1% can lead to incorrect markers
order and map expansion (Buetow, 1991). More precisely, it was
reported that every 1% error rate in a marker data inflates the
map length by 2 cM (Cartwright et al., 2007). While missing
values leads to a poor estimate of the true recombinations that
have occurred along the chromosome. A common practice to
deal with missing data is imputation (Zhao et al., 2008; Marchini
and Howie, 2010; Daetwyler et al., 2011; Schwender, 2012).
However, missing values have a limited negative impact on
the accuracy of the final map, compared to genotyping errors
(Hackett and Broadfoot, 2003; Wu et al., 2008), provided that
the number of missing values remains relatively low. For this
reason, some authors prefer keeping ambiguous genotypes as
missing data rather than inferring the putative alleles (Wu et al.,
2008). Although some authors analyzed data having up to 80%
missing values (e.g., Edae et al., 2016), we kept this rate relatively
low to reduce their impact on the map expansion (Hackett
and Broadfoot, 2003; Wu et al., 2008). Only SNP with less
than 10% missing data were used for our analyses. Therefore,
missing data had limited contribution to the map expansion we
observed.

The effect of co-segregating markers on linkage maps has
received less attention. However, our study clearly showed that
an excess of co-segregating markers leads to map expansion.
The more co-segregating markers, the larger the map expansion.
Using ML approaches, we were able to predict with an accuracy
of 0.7 the map expansion relative to the proportion of co-
segregating markers. Although we used both linear and non-
linear methods, all of the ML algorithms gave similar results
supporting evidence of a linear relationship between map
expansion and the number of co-segregating markers. The
proportion of co-segregating markers ranged from 60 to 92%
in Mohawk × Cocorit (Table 1) and 53 to 92% in Norstar ×
Cappelle Desprez (Table 2), with an average of 85% in both
populations. This relatively high proportion of co-segregating
markers is not exceptional since the ‘large p, small n’ problem,
derived from high-throughput data has not yet been resolved by
any mapping algorithm. Intuitively, all of the high-density genetic
maps in the literature contain a high proportion of co-segregating
markers, regardless of the species. Because this metric is not
reported for published genetic maps, we computed it for some
species where map data are available online. For example, the
genome-wide proportions of co-segregating markers were 75%
(14023/18601) in a wheat MAGIC map (Gardner et al., 2016),
65% (8408/12998) in barley (Zhou et al., 2015), 57% (2948/5138)
in sunflower (Talukder et al., 2014) and 70% (6426/9164) in
Brassica napus (Liu et al., 2013). For pearl millet, it was reported
that only 314 out of 2,156 SNPs showed unique map position,
giving 85% co-segregating markers (Moumouni et al., 2015).

To deal with map expansion, a common practice is to remove
the double recombinants. However, the method of removing

erroneous double recombinants could lead to irrelevant distances
among markers (Ronin et al., 2010). As an example, Ronin
et al. (2010) applied that method to chromosome 1B of a
recombinant inbred line population of wheat and produced a
map of 104 cM, compared to the published map that spanned
432 cM. The relatively small length of the map was attributed
to an artifact introduced during the merging of different marker
data sources, some of which contained high frequencies of
missing data and inappropriate “error correction.” Another
approach is to adjust the length of the map based on the
breeding scheme, in particular for RIL and IRIL (Winkler
et al., 2003). However, some studies have shown that the
IF derived from this method tends to be underestimated
with low marker density (Teuscher et al., 2005; Liu et al.,
2015).

We estimated the IF of each LG with respect to the length of its
skeleton map. Because only a few markers can reliably be ordered
in a context of high-density linkage mapping where the number
of markers exceed by far the size of the population (Ronin et al.,
2010), many authors suggested first building a skeleton map with
‘delegate’ markers, before adding the remaining markers, e.g.,
(van Os et al., 2006; Peleg et al., 2008; Wu et al., 2008; Ronin
et al., 2010; Seetan et al., 2013; Reddy et al., 2014; Strnadová
et al., 2014; Mester et al., 2015). In many studies, only the
skeleton map was used to perform analyses such as QTL detection
(Chutimanitsakun et al., 2011; Vengadessan et al., 2013; Chen Z.
et al., 2014; Liu J. et al., 2016) or as a reference to calculate the
genetic distances between markers (Ren et al., 2012; Moumouni
et al., 2015). Thus, skeleton maps appear to be the backbone of
high-density genetic maps.

Machine learning algorithms are becoming more accepted
in crop breeding and are presented as a worthwhile surrogate
to traditional statistical methods (Maenhout et al., 2010).
The predictive ability of ML algorithms has proven superior
to classical statistics methods in many studies (Drummond
et al., 2003; Gonzalez-Sanchez et al., 2014). In particular, ML
algorithms have been successfully applied to crop yield prediction
(see for Mishra et al., 2016 a review), including wheat (Jeong et al.,
2016; Pantazi et al., 2016), maize (Liu et al., 2001; Marinkovic
et al., 2009; Jeong et al., 2016), potato (Al-Hamed and Wahby,
2016; Jeong et al., 2016) and cotton (Zhang et al., 2008). Due
to their high predictive performance and high generalization
capabilities, ML algorithms are becoming a valuable tool for data
mining.

Because of the continued increase in the size of high
throughput SNP-chips, the disparity between the high
number of markers and the relatively small population size
is more likely to result in poor resolution maps (Ronin et al.,
2010). Intuitively, the proportion of co-segregating markers
in high-density maps will continue to increase, making
map expansion unavoidable. Therefore, there is a need for
improved linkage mapping algorithms to efficiently analyze
the high-throughput data generated by new sequencing
technologies. In particular, developers should build algorithms
capable of computing accurately recombination frequencies
and genetic distances in a context of high-density linkage
mapping.

Frontiers in Plant Science | www.frontiersin.org 9 August 2017 | Volume 8 | Article 1434

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01434 August 21, 2017 Time: 15:12 # 10

N’Diaye et al. Effect of Co-segregating Markers and Map Expansion

CONCLUSION

Our study clearly showed that excess of co-segregating markers
can lead to map expansion with little effect on markers order.
Using various ML algorithms, we were able to predict with
an accuracy of 0.7 map expansion relative to the proportion
of co-segregating markers. Because co-segregating markers are
inevitable in high-density linkage maps, it becomes necessary
to improve linkage mapping algorithms for efficient analysis of
high-throughput data. In the meantime, a practical strategy could
be to estimate the IF related to the proportion of co-segregating
markers and then scale the length of the map accordingly.
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