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Genetic improvement in sorghum breeding programs requires the assessment of

adaptation traits in small-plot breeding trials across multiple environments. Many of these

phenotypic assessments are made by manual measurement or visual scoring, both

of which are time consuming and expensive. This limits trial size and the potential for

genetic gain. In addition, these methods are typically restricted to point estimates of

particular traits, such as leaf senescence or flowering and do not capture the dynamic

nature of crop growth. In water-limited environments in particular, information on leaf area

development over time would provide valuable insight into water use and adaptation to

water scarcity during specific phenological stages of crop development. Current methods

to estimate plant leaf area index (LAI) involve destructive sampling and are not practical

in breeding. Unmanned aerial vehicles (UAV) and proximal-sensing technologies open

new opportunities to assess these traits multiple times in large small-plot trials. We

analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral

camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes

randomized within 3 blocks). Due to variable emergence we were able to assess the utility

of these vegetation indices to estimate canopy cover and LAI over a large range of plant

densities. We found good correlations between the Normalized Difference Vegetation

Index (NDVI) and the Enhanced Vegetation Index (EVI) with plant number per plot, canopy

cover and LAI both during the vegetative growth phase (pre-anthesis) and at maximum

canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data

to assess the senescence pattern of sorghum genotypes known as fast (senescent)

or slow senescing (stay-green) types. The Normalized Difference Red Edge (NDRE)

index which estimates leaf chlorophyll content was most useful in characterizing the
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leaf area dynamics/senescence patterns of contrasting genotypes. These methods to

monitor dynamics of green and senesced leaf area are suitable for out-scaling to enhance

phenotyping of additional crop canopy characteristics and likely crop yield responses

among genotypes across large fields and multiple dates.

Keywords: crop cover, mosaics, UAV, leaf area dynamics, water use, sorghum breeding

INTRODUCTION

Sorghum is the dominant dry-land summer crop in the north-
eastern Australian grain belt. The growing environments of this
area are characterized by high temperatures and variable rainfall,
although many of the soils have sufficient water-holding capacity
to allow crops to grow on stored sub-soil moisture (Pratley,
2003). As sub-soil moisture is depleted, mild or severe drought
stress frequently develops toward the end of the growing season
(Chapman et al., 2002), reducing crop yield. In the next decades,
this situation is expected to occur even more frequently with
increasing climate variability and weather patterns becoming
more extreme (Lobell et al., 2015a) as was seen during the last
two decades globally as well as in Australia (IPCC, 2014).

With changes in climate, quantitative breeding for specific
traits that enhance yield in water-limited environments, will
become even more important. One such trait is leaf area
index (LAI), as the size of the crop canopy has important
consequences for water use (Borrell et al., 2014a,b). Being able
to accurately characterize leaf area would greatly enhance the
selection of sorghum genotypes that are well adapted to water-
limited environments. For example, in environments with mild
to severe terminal drought stress, crops with smaller leaf area per
plant have been found to have a yield advantage, as their reduced
water use before flowering conserves sub-soil moisture that can
be accessed during the critical grain-filling period (He et al.,
2016). The stay-green trait in sorghum, which is associated with
reduced leaf senescence and yield benefits under post-anthesis
drought is thought to operate via this mechanism by conferring
reduced tillering and smaller plant leaf areas before flowering
(Borrell et al., 2014a,b). Stay-green has been an important trait
in Australia’s sorghum breeding programs, which has partly
contributed to significant increases in sorghum yield trends in
dry environments compared to moderate and wet environments
over the last three decades (Potgieter et al., 2016). Up to now,
breeders have positively selected for stay-green by visually rating
leaf senescence after flowering. However, this only works in trials
in which the right drought conditions develop for the trait to be
expressed.

Apart from these links to evapotranspiration (George-Jaeggli
et al., 2017), LAI is also useful to evaluate the fraction of
absorbed photosynthetically active radiation, which is required to
model canopy photosynthesis (Weiss et al., 2004). Being able to
measure leaf area development over time would therefore allow
the estimation not only of the water use pattern of a genotype, but
also its likely photosynthetic output.

While visual scores of stay-green during grain-filling can be
reasonably accurate when assessed at the right time and under
the right level of water limitation, it is difficult to estimate plant

leaf area or leaf area index (LAI) earlier in the season, and actual
measurements of leaf area are time-consuming. Measurement of
leaf area on thousands of plots at one time point, let alone several
time points throughout the growing season is impractical. A low-
cost high-throughput method for phenotyping canopy size of
sorghum genotypes is needed.

The first application of remotely-sensed multi-spectral
imagery and the development of vegetation indices to monitor
crops goes back to the first NASA LANDSAT series in
the 1970’s (Tucker, 1979). The application of remote-sensing
technology, in particular, hyperspectral imaging (Goetz, 2009),
in vegetation mapping and yield forecasting has been steadily
developing since then, and many different indices using specific
wavelengths have been developed that can be used to assess
plant growth parameters (Beeri and Peled, 2006; White et al.,
2012). More recently this has been extended to predicting crop
and vegetation biophysical attributes like net primary production
(NPP), fraction of absorbed photosynthetically active radiation
and LAI. This was done through the use of spectral indices (e.g.,
NDVI, EVI) derived from visible and near infrared reflectance
spectra at moderate to high spatial resolutions across large scales
(Huete et al., 2002; Hanes, 2014).

While the use of a digital camera attached to an Unmanned
Aerial Device Unmanned aerial vehicles (UAV) was first
proposed as a cost-effective way to monitor small wheat plots
nearly a decade ago (Lelong et al., 2008) it was not until very
recently that cheap, but highly precise positioning and digital
imaging technologies and unmanned aerial device technology
have become mainstream so that their use has become practical
for farmers and research programs alike (Haboudane et al., 2004;
Chapman et al., 2014; Candiago et al., 2015). The combination
of these technologies provides the potential for high-throughput
phenotyping to allow plant breeding programs to undertake
quantitative screens of large breeding populations.

This paper presents results from a pilot study using a multi-
rotor UAV fitted with a narrow-band multispectral camera
(five bands of 10–40 nm width) to capture images of sorghum
breeding lines with diverse canopy attributes across seven dates.
We evaluated three narrow-band vegetation indices i.e., the
normalized difference vegetation index (NDVI), the enhanced
vegetation index (EVI) and the normalized difference red edge
index (NDRE) to estimate traits, such as canopy cover, leaf area
index and leaf chlorophyll content that are of particular interest
to sorghum breeders in the northern grain belt of Australia.

Previous studies have demonstrated the utility of such
vegetation indices to estimate LAI in soybean and maize (Viña
et al., 2011) and wheat (Haghighattalab et al., 2016), but no such
studies previously existed for sorghum. The objective of our study
was to assess the suitability of vegetation indices calculated from
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spectral data captured with a multi-spectral camera mounted on
a UAV to estimate canopy cover, leaf area and leaf chlorophyll
content of a diverse set of sorghum genotypes grown in breeding
plots. We also discuss the utility of such an approach to assess
sorghum breeding lines for differences in canopy size and leaf
chlorophyll content during critical crop stages, such as around
flowering and during grain fill.

MATERIALS AND METHODS

Experiment and Genotypes
An experiment was conducted to test the ability of multi-spectral
sensing technologies on-board a UAV platform to calculate
various vegetation indices to estimate canopy characteristics,
such as plant cover, leaf area, leaf greenness or chlorophyll
content and biomass of single plots sown to different sorghum
genotypes. This paper only focuses on the outcomes related to
plant cover, LAI and chlorophyll content.

Ten grain sorghum genotypes known for differences in
canopy traits, such as plant height, leaf angle and leaf area were
selected, including 4 genotypes with contrasting senescence type
(i.e., rapid senescence after flowering = senescent type, or slow
senescence= stay-green type).

The 10 sorghum genotypes were arranged in a randomized
complete block design with 3 blocks (10 genotypes × 3 rows),
resulting in 30 plots (Figure 1). Plots were 4 rows wide with
0.76m row spacing by 10 meters long (i.e., 30.4 m2) and planted
in an east-west direction.

The study site was located at the Hermitage Research Facility
(28◦12′ S, 152◦06′ E; 480m above sea level) in north-eastern
Queensland. The soil of the trial area was conditioned 6 months
prior to planting via incorporation of 3.5 t ha−1 of Gypsum,
350 kg ha−1 of NatraMin (AgSolutions, Australia) and 6 t ha−1

feedlot manure. One month prior to planting the trial area was
fertilized with 220 kg ha−1 of GRAN-AM (20% Nitrogen, 24%
Sulfur, Incitec Pivot, Australia) and 100 kg ha−1 of Urea (46%
Nitrogen). The plots were sown with a precision planter on the
19th of November 2015. The trial was planted on a near-level
site on a self-mulching alluvial clay with a high montmorillonite
clay content (McKeown, 1978) that had a full sub-soil moisture
profile at sowing. The trial was not irrigated, but regular in-crop
rainfall and the sub-soil reserves prevented the development of
significant water limitation. Crop establishment was variable due
to surface flooding just after sowing. However, data are compared
at the sample quadrat level (see details below) so that 30 sample

quadrats at each harvest can essentially be considered as samples
of potential leaf area for a diverse set of genotypes.

Data Capturing Missions
At sowing time, accurate ground control points (GCP) were
collected using a 1 cm resolution handheld GPS (Global
Positioning System) unit (Trimble XT, Trimble, Sunnyvale
California). Each of these GCPs was marked with a square
concrete paver painted with blue triangles so that they were easily
identifiable from above.

Data capturing missions were conducted at different critical
times during the crop growth period (Table 1). Sample quadrat
cuts of evenly established areas of two central rows (1 lineal
meter from each) were taken within each plot at two different
stages: pre-anthesis (ca. 8 weeks after sowing, or 3 weeks prior to
anthesis) and at or within 1 week of anthesis.

To reduce effects of ambient light condition, we limited data
capturing missions to clear and cloudless days and conducted
them around the middle of the morning.

UAV Platform
The UAV platform used was a 3D Robotics X8+ multi-rotor
(Berkeley, California). The X8+ has the advantage of being able
to fly at very low altitudes and at low speeds, which is critical for

TABLE 1 | Experiment details, dates and variables collected.

Experimental design 10 genotypes × 3 replicates (blocks),

randomized complete block design

Genotypes R55637 (senescent), MR Buster (senescent),

R931945-2-2 (stay-green), R931945-2-2TM

(stay-green), 84G22, 85G56, FF_B963676,

A1*F_B010054/F9_R04377-31,

A1*F_B02055-9/R986087-2-4-1, R974443-1-2

UAV flights (2016) 12 January, 26 January, 3 February, 10 February, 16

February, 25 February, 31 March

Crop stages Sowing—19 November 2015; Flowering—9

February 2016; Final Harvest—11 May 2016

Leaf area index (LAI)

quadrat cuts

Pre-Anthesis (13 January) and Anthesis (9 February)

Number of culms per

m2
Total number of culms (main stems and tillers

together) at anthesis

MR Buster and the two A1 genotypes are hybrids while the remaining genotypes are

inbred lines.

FIGURE 1 | Experimental layout of plots at the Hermitage site as shown in aerial photo mosaic taken on 3 February. Plots were arranged in three rows and ten

columns per row. Numbers in figure refer to the Column-Row position of each plot. Rows were treated as blocks and genotypes were completely randomized within

each block (row).
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creating accurate and high-resolution mosaics (Corrigan, 2015).
Flight altitudes for each flight were set at 20m resulting in a
ground sampling distance (GSD) or pixel size of∼0.5 cm.

Multi-Spectral Camera
A RedEdgeTM narrow-band multispectral camera (MicaSense,
Seattle, Washington) (http://www.micasense.com/rededge/)
simultaneously capturing 5 bands at specific nanometre (nm)
wavelength peaks was fitted to the UAV platform. The bands
captured were Blue (B: 475 nm center wavelength, 20 nm
bandwidth), Green (G: 560 nm, 20 nm), Red (R: 668 nm, 10 nm),
Red Edge (RE: 717 nm, 10 nm), and Near Infrared (NIR: 840
nm, 40 nm) (Figure 2). The camera captured the images and
GPS information to a local digital card in 16-bit raw GeoTIFF
files. This allowed for post geo-rectification and mosaicking. The
horizontal field of view was 47.2 degrees with a 5.5 mm focal
length producing an image resolution of 1,280× 960 pixels.

The RedEdge camera includes factory calibration coefficients
in each image for optics chain properties, such as lens
distortion and optical vignetting. Atlas uses a CMOS sensor
(Complementary metal–oxide–semiconductor) model along
with extracted regions from images of a calibrated Lambertian
reflectance panel to convert raw image digital number (DN)
to reflectance units. These images are then linearly combined
through a photogrammetry process to estimate the surface
reflectance of each pixel in the final reflectance map.

Mosaicking, Ortho Rectification and
Reflectance
After each flight, images for each of the five wavelengths were
uploaded to the ATLAS cloud (MicaSense, Seattle, Washington)
(http://www.micasense.com/atlas/). The cloud service uses
the Pix4d software (PIX4d, Lausanne, Switzerland) (www.
pix4d.com) and proprietary algorithms to stitch images together
to create a geo-referenced multi-layer ortho-mosaic of the flight
for each date. Stitched GEOTIFF format images for each band
were downloaded from ATLAS and imported into ArcGIS

(https://www.arcgis.com/home/index.html) for layer stacking
and geo-rectification to GCP for each date.

To be able to convert DNs into reflectance, an image of a
white reflectance panel was taken at the start and end of each
flight and was uploaded with the images prior to the cloud
processing. During the mosaicking process, the reflectance of
the reference panel was used so that each of the 5 downloaded
GeoTIFF files was a calibrated reflectance map for the respective
band. The pixel values are proportional to % reflectance, with
a pixel value of 32,768 being equal to 100% reflectance (65,535
is equal to 200% reflectance). Once the 5 bands had been layer
stacked for a single flight date, data from each date was geo-
rectified to high-precision GCP. Pixel values were then converted
to reflectance values between 0 and 1 by dividing each pixel by the
max reflectance value of 32,768. Pixels with specular reflectance
(e.g., bright mirror like reflectance) and missing values from the
mosaics were omitted in the analysis by masking.

After adjustment of pixel reflectance, indices per plot and per
quadrat cut from each mosaic were generated in ArcGIS software
and extracted and saved into an ASCII file format for comparison
with measured data. The reflectance of areas of the quadrat
cuts for any single flight could be determined by examining a
subsequent flight (after cutting) to exactly identify where the cuts
were made.

Narrowband Vegetation Indices and
Percent Cover
Two spectral indices were calculated from the reflectance

measured by the RedEdge
TM

sensor. These indices relate to
canopy health and canopy architecture (i.e., leaf area and
biomass). The most widely used vegetation index is the
Normalized Difference Vegetation Index (NDVI). NDVI is a
simple normalized ratio between the NIR and Rwavebands and is
therefore a comparable metric between dates (Rouse et al., 1974):

NDVI = (NIR− R)/(NIR+ R) (1)

FIGURE 2 | Multispectral bands of the MicasenseTM camera across the spectrum of visible and infrared light. Peaks for each band’s transmissivity are shown across

the electromagnetic spectrum at specific nanometer (nm) wavelengths. Blue (B: 475 nm center wavelength, 20 nm bandwidth), Green (G: 560 nm, 20 nm), Red

(R: 668 nm, 10 nm), Red Edge (RE: 717 nm, 10 nm), and Near Infrared (NIR: 840 nm, 40 nm). Source: http://www.micasense.com.
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We used a NDVI threshold of > 0.5 to capture reflectance from
green leaves only and exclude soil background reflectance. This
threshold has the greatest effect when plants are small i.e., at the
time of the pre-anthesis measurement.

The enhanced vegetation index (EVI), which relates to canopy
architecture was computed as follows (Huete et al., 2002):

EVI = 2.5∗[
NIR-R

NIR+ 6∗R− 7.5∗B+ 1
] (2)

NDVI and EVI pixel values were aggregated to generate
individual plot index metrics for each 30.4 m2 sorghum plot
at each flight date. Maximum (NDVImax, EVImax) and average
(NDVIavg, EVIavg) values for each index were derived from this
time series.

In order to assess the degree of crop establishment (i.e.,
number of plants visible after emergence) we calculated the crop
cover (CC, %) for each plot. An RGB image was generated from
the Micasense mosaics. CC was then derived as the proportion
of green pixels per plot. We defined pixels as “green” if their hue
was between 70 and 140 degrees.

Plant Counts and Leaf Area Index
Total number of plants per entire plot area (i.e., 30.4 m2)
were counted 26 days after sowing (DAS). Leaf area (LAI) was
measured destructively (sample quadrats) on the ground during
the vegetative period (pre-anthesis, 54 DAS) and 2 weeks after
the last genotype started flowering (anthesis, 83 DAS). At each
sampling time, all plants within a 1.52 m2 sampling quadrat
(2 × 1m from the middle 2 rows of each 4-row plot), were cut
at ground level and brought up to the laboratory for processing.
Plants were separated into stems, leaves and panicles, main
stems and tillers separately, and dried in a forced draft oven at
80◦C until dry weight reached a minimum and then weighed.
During the anthesis sample, culm numbers (main stem and tillers
together) were recorded.

Crop Senescence
To analyze differences in rate of senescence between genotypes,
we calculated the normalized difference red edge index (NDRE)
(Gitelson and Merzlyak, 1994; Sims and Gamon, 2002):

NDRE = (NIR-RE)/(NIR+RE) (3)

The NDRE index is highly correlated with chlorophyll content
within plants and therefore is a good surrogate for photosynthetic
capacity (Gitelson and Merzlyak, 1994; Sims and Gamon, 2002;
Gitelson et al., 2003). The difference between NDRE at maximum
(peak) canopy cover and the NDRE at maturity (final flight date)
was used as a simple metric for the rate of senescence (RSNDRE).
To test whether this index was useful to differentiate between
genotypes that were known to be senescent (tendency to senesce
rapidly after flowering) or stay-green (tendency to senesce slowly
after flowering), we grouped a subset of 4 genotypes into 2 groups
(Senescent and Stay-green).

Statistical Validation Metrics
All analyses and graphs were done using R (R Core Team, 2016).

We used simple linear regressions or logarithmic functions
depending on best fit between vegetation indices (i.e., NDVI and
EVI) and measured data at sample quadrat levels.

To test for significant genotype or group effects on individual
vegetation indices we used linear mixed models in the lme4
package in R (Bates et al., 2015).

The general form of the mixed models used was:

Y = Xβ + Zµ + ε (4)

where the response (vector y) is modeled by a set of fixed effects
(vector β) and random effects (vector µ) and ε is the random
error term. The design matrices X and Z assign the fixed and
random effects, respectively to the observations.

For the time series of NDVI or NDRE vs. days after sowing
(DAS) for individual genotypes, the mixedmodel included vector
β comprising Genotype (factor with 10 levels) and DAS (factor
with 7 levels) (fixed effects) and vector µ comprising Block
(3 levels) within plot and vector ε comprising error (random
effects).

To test whether Group (senescent or stay-green) had a
significant effect on the difference between NDRE at maximum
canopy cover and NDRE at maturity, we first tested a mixed
model with vector β comprising Genotype (factor with 4 levels)
and Group (factor with 2 levels), µ comprising Block (3 levels)
and vector ε comprising error, but as Genotype had no significant
effect, we only included Group in vector β in the final model.
Assumptions of normality were tested with a quantile-quantile
plot and seemed to have been met. Analysis of covariance was
conducted with Group as variable to test whether the slopes of
the relationship of NDRE vs. days after sowing during the post-
anthesis period were significantly different between the senescent
and stay-green genotypes.

RESULTS

Vegetation Indices Aggregated at Entire
Plot Level
Averaged across all plots, NDVI (>0.5) and EVI values
aggregated over the entire 30.4 m2 plot areas were 0.75 and 0.37,
respectively, at the first flight date (Figure 3). Maximum values
for NDVI occurred between 68 and 83 DAS and ranged from 0.72
to 0.86, depending on genotype. After this time, NDVI decreased
due to crop senescence and reached values of between 0.62 and
0.67 by the end of the experiment (133 DAS) (Figure 3). Average
EVI values remained relatively consistent for all, but the last flight
date, when EVI was significantly lower (Figure 3).

Percent Cover at Plot Level
Due to surface flooding in the first week after sowing affecting
emergence, crop cover varied from as low as 7 and 18% to as
high as 57 and 77% 54 days after sowing (DAS) (12 January)
and 76 DAS (3 February), respectively (Figure 4). Actual plant
counts ranged from 36 to 204 plants per plot (30.4 m2). This
variability gave us an opportunity to test the validity of using
NDVI to estimate crop cover across a broad range of plant covers.
When aggregated over the entire plot area, NDVI (>0.5) was
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FIGURE 3 | Boxplots showing NDVI (—) and EVI (—) values aggregated over

entire 30.4 m2 plot areas and averaged across all 30 plots at seven flight

dates. Flight dates were: 12 January or 54 days after sowing (DAS), 26

January (68 DAS), 3 February (76 DAS), 10 February (83 DAS), 16 February

(89 DAS), 25 February (98 DAS), 31 March 2016 (133 DAS).

significantly and strongly correlated with plants per plot (R2 =

0.58, RMSE= 0.03, Figure 5).
Maximum crop cover at entire plot level was mostly >30

and 50% at the pre-anthesis (January image) and anthesis stages
(February image), respectively (Figure 4).

Correlation of Vegetation Indices with LAI
Measured by Sampling Quadrats
Leaf area index (LAI) values derived from the quadrat cut
sampling areas ranged from 0.71 to 4.01 (m2/m2) at pre-
flowering and increased to between 1.31 and 4.71 2 weeks after
flowering in all plots.

Vegetation indices derived from pixels aggregated over the
entire plot area at both the pre-flowering and the anthesis
sampling dates were strongly linearly correlated with LAI from
quadrat cuts (Table 2). The correlations were better for NDVI
than for EVI as can be seen from greater regression coefficients
(R2) and smaller root mean square errors (RMSE). NDVImax also
correlated well with LAI at the anthesis sampling date.

When just aggregating the pixels over the actual sample
quadrat areas the vegetation indices explained more of the
variation in LAI as indicated by larger R2, but the RMSE did not
always improve (Table 2).

When leaf area index data from quadrat cuts and NDVI
aggregated over the entire plots was combined for both pre-
anthesis and anthesis sampling dates (60 samples in total)
a logarithmic function fitted the data slightly better than a
linear one (RMSE of 0.038 vs. 0.041 for logarithmic and linear,
respectively) (Figure 6).

Temporal Dynamics of NDVI and NDRE
Normalized Difference Vegetation Index (NDVI) (aggregated
over the entire plot) gradually increased and reached maximum

values (>0.9; blue colored) by the anthesis sampling date
(83 DAS or 10th February) (Figure 7). After this date, NDVI
values decreased to around 0.5 (light green) due to progressive
senescence of leaves as genotypes approached maturity.

NDRE values were much lower, but showed a similar pattern
of slowly increasing up to about 2 weeks after flowering (83 DAS)
and then decreasing as NDVI (Figure 8). As NDRE is related
to chlorophyll, differences in NDRE values from peak canopy
NDVI (i.e., NDVImax) to maturity (last flight date) are associated
with the rate of senescence. The trial included genotypes that
are known to senesce quickly (senescent genotypes; MR Buster
and R955637) and others that have the stay-green trait meaning
they have a slower rate or senescence and retain more green leaf
area during grain fill compared with senescent types, particularly
when water is limited (stay-green genotypes; R931945-2-2 and
R931945-2-2TM) (Figure 8).

When these genotypes were grouped (i.e., stay-green group:
R931945-2-2 and R931945-2-2TM and senescent group: MR
Buster and R955637), RS NDRE (the difference between NDRE
at maximum canopy cover and NDRE at harvest maturity),
was significantly greater for the senescent group (0.19 vs. 0.13,
p < 0.05, n = 12), indicating that these genotypes senesced at
a faster rate compared with genotypes classified as stay-green
genotypes. Consistent with this, the slope of the relationship
between NDRE and DAS from maximum NDRE until maturity,
was significantly steeper (−0.003 units per day) for the senescent
group, compared with the stay-green group (−0.002 units per
day) p < 0.01, indicating that the senescent genotypes lost
chlorophyll significantly faster than the stay-green genotypes
(Figure 9).

DISCUSSION

Due to variable plant numbers among plots in this pilot study,
we were able to test the suitability of the vegetation indices
to estimate percent cover and LAI over a range of densities.
Actual plant counts per 30.4m plot ranged from 36 to 204
plants. Correlations between actual plant number and percent
cover estimated using NDVI were significant and moderately
strong. The goodness of fit increased when masking was applied
and pixels with NDVI lower than 0.5 (i.e., soil and non-living
materials) were disregarded.

Correlations between vegetation indices and quadrat-
estimated LAI improved when index values were aggregated
over the sample quadrat area only rather than the entire plot
area. Aggregating over the quadrat area alone provided a
more direct correlation between the index and LAI, avoiding
heterogeneity in canopy cover across the plot, associated with
variable establishment. Sample cuts were selected where plant
cover was more homogenous and therefore plot-level cover and
derived vegetation index values differed from values derived
from just sampling cut areas. Hence it is reasonable to assume
that in more uniform trials, the expected relationship should
be similar to that found for the quadrat comparisons (Table 2).
Further experiments are being undertaken to confirm these
relationships.
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FIGURE 4 | Aggregated crop cover calculated for entire plots super-imposed on a visible (narrow band RGB) image of the sorghum breeding experiment taken

pre-anthesis (upper image) or a week before anthesis (lower). PC ranged from low (light green) to high (dark green).

TABLE 2 | Relationships between NDVI (>0.5) and EVI aggregated over entire plots (plot; 30.4 m2) or only the quadrat sampling areas (quadrat; 1.5 m2) with leaf area

index (LAI) at 54 (pre-anthesis) and 83 (anthesis) days after sowing.

Stage Pixel aggregation level Formula R2 RMSE P-value

Pre-anthesis NDVI_plot NDVI = 0.025 * LAI + 0.703 0.55 0.019 <0.001

NDVI_quadrat NDVI = 0.034 * LAI + 0.690 0.85 0.011 <0.001

EVI_plot EVI = 0.027 * LAI + 0.316 0.19 0.045 <0.05

EVI_quad EVI = 0.139 * LAI + 0.138 0.81 0.056 <0.001

Anthesis NDVI_plot NDVI = 0.037 * LAI + 0.679 0.59 0.024 <0.001

NDVImax_plot NDVI = 0.035 * LAI + 0.685 0.56 0.025 <0.001

NDVI_quadrat NDVI = 0.050 * LAI + 0.664 0.66 0.053 <0.001

EVI_plot EVI = 0.089 * LAI + 0.153 0.33 0.099 <0.001

EVI_quadrat EVI = 0.110* LAI + 0.360 0.70 0.247 <0.001

R2, Regression Coefficient; RMSE, Root Mean Square Error.

FIGURE 5 | Aggregated NDVI for entire plots at anthesis against total plant

number for each 30.4 m2 plot. Linear function: EVI = 0.0006*Plants + 0.71;

R2: regression coefficient; RMSE, root mean square error; p, statistical

significance level. Solid line is the fitted linear function through the sampling

points (open circles).

Likely limitations could exist when out-scaling this approach
to other locations and crops. For example, the threshold used
showed significant improvement in statistical analysis, similar
to that of the EVI metric, but its utility requires further

FIGURE 6 | Aggregated NDVI for entire plots vs. LAI from quadrat cuts within

each plot at both the pre-anthesis and anthesis sampling dates combined.

Logarithmic function NDVI = 0.15 ln (x) + 0.71; R2: regression coefficient;

RMSE, root mean square error; p, statistical significance level. Solid line is the

fitted function through the sampling points (open circles).

investigation. In addition, capturing data multiple times during
the pilot study demonstrates the potential of these methods to
study canopy dynamics. A likely constraint of comparing indices
from different dates is that ambient light conditions may vary

Frontiers in Plant Science | www.frontiersin.org 7 September 2017 | Volume 8 | Article 1532

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Potgieter et al. Leaf Area Dynamics from UAVs

FIGURE 7 | Normalized difference vegetation index (NDVI) for each date across the study area during the main growing period. Black dividing lines indicate plot

boundaries, while white mask-out areas represent the areas where sample quadrat cuts were taken.

between flights. This was limited here by flying only on clear
days with no clouds and during the middle of the morning.
Furthermore, NDVI is less sensitive to such changes since it is
a ratio index.

Previous studies have reported a saturation of NDVI at higher
LAI values (i.e., LAI > 4) and thus in dense vegetation canopies
using EVI might be preferable to NDVI (Huete et al., 2002;
Myneni et al., 2002). Our experimental plots were all planted
at a target population density of 5 plants per square meter and
LAI at anthesis ranged from 1.3 to 4.7. When combining pre-
anthesis and anthesis data we also observed a slight improvement
in prediction power when fitting a logarithmic instead of a linear
function (Figure 6). To assess LAI in sorghum breeding plots
with higher LAI, it might also be better to use EVI instead of
NDVI.

Peak NDVI values varied from 0.72 to 0.86 and end NDVI
values from 0.62 to 0.67. In this trial, the end values were not
greatly lower than maximum values, given that drought stress
was not substantial, with plot yields in the uniform plots being
over 9 t ha−1. Lines with the stay-green trait, R931945-2-2 and
R931945-2-2TM, had a slower decline in NDRE after anthesis,
compared with the two senescent genotypes, MR Buster and
R955637. The stay-green trait has been associated with increased
yield under post-anthesis drought (Borrell et al., 1999, 2000;
Jordan et al., 2012) and due to the frequency of post-anthesis
drought in sorghum growing areas, it has been actively selected

for in Australian sorghum breeding programs. Being able to
monitor senescence over time will assist breeders in selecting for
stay-green under drought.

Breeding for yield under water-limitation has been the focus
of sorghum breeding activities in Australia for the last three
decades. This may well explain why sorghum yield advances in
dry environments are currently more than double those in wet
environments (Potgieter et al., 2016). However, there is potential
to further improve yields in water-limited environments by
improving the matching of leaf area and water-use dynamics to
the temporal characteristics of drought (Chapman et al., 2000).
The approach presented here offers the opportunity to monitor
LAI of different genotypes throughout the crop-growing season,
thus providing breeders with information on canopy dynamics.
This will support the accelerated development and release of
commercial hybrids that are matched to specific environments
types.

In addition to plant breeders, agronomists and growers will
also benefit from having access to information on crop canopy
dynamics as it will allow them to estimate water use and expected
yields for their sorghum crops as the season unfolds. Besides
directly affecting crop water use (George-Jaeggli et al., 2017),
LAI also relates to the fraction of absorbed photosynthetically
active radiation (PAR) and therefore is one of the most important
canopy attributes (Weiss et al., 2004; Sadras and McDonald,
2012; Sibley et al., 2014; Sadras and Calderini, 2015). LAI is
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FIGURE 8 | NDVIavg (A) and NDREavg (B) aggregated over entire plot area from flowering to maturity for four sorghum genotypes contrasting in stay-green

characteristics. MR Buster (brown) and R955637 (yellow) are both senescent types, while R931945-2-2 (light blue) and R931945-2-2TM (dark blue) are lines with the

stay-green trait. Points are least squares means for NDVI and NDRE, respectively, predicted by the linear mixed model. Black vertical bars represent standard errors

for three replicates at each time point.

FIGURE 9 | NDREavg aggregated over entire plot from maximum canopy cover to maturity (final flight) for senescent (MR Buster and R955637; A) and stay-green

genotypes (R931945-2-2 and R931945-2-2TM; B). Points are values for individual plots. Solid lines are the fitted functions through the sampling points (open circles).

an important input variable for crop models, such as APSIM
(Keating et al., 2003) that are used for yield predictions at field
and regional scales (Lobell et al., 2015b). An improvement in
this methodology would be to be able to monitor the LAI as it
increases toward amaximum value, and by accurately accounting
for heads, soil and senescing leaves, to estimate the LAI as

it changes during grain filling. A full-season measurement of
LAI would allow use of these crop models in the estimation of
seasonal crop growth and potential water use.

Apart from the capacity to scale phenotyping up from a few
to thousands of breeders’ plots, the approach presented here will
facilitate the scaling-out of phenotyping from plant to plot to field
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scales and thus enabling industry to maximize yield potential at
both the genetic and the agronomic level.
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