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The Arcto-Tertiary relict genera, Camptotheca, Davidia, and Nyssa represent deep
lineages in the asterid order Cornales. Recent phylogenetic studies suggested that these
genera should be placed in a newly circumscribed family, Nyssaceae. However, because
these analyses were based upon a few genes, it is prudent and necessary to examine
further evidence before adopting this taxonomic treatment. In this study, we determined
the complete chloroplast (cp) genomes of Camptotheca acuminata, Davidia involucrata,
and Nyssa sinensis. Their cp genomes ranged from 156,672 to 158,409 bp, which
included 115 genes, and their genome features were highly similar to those of other
species within the order Cornales. The phylogenetic relationships among the genera
Camptotheca, Davidia, Nyssa, and 23 related taxa in the asterids were analyzed based
on 73 protein-coding genes from the cp genomes. All of the previously recognized major
clades (namely Cornales, Ericales, Campanulids, and Lamiids) in the asterids, as well as
their relationships, were recovered with robust support. A clade including the genera
Davidia, Nyssa, Camptotheca, and Diplopanax, was resolved as a well-supported
monophyletic group, which was fully separated from the family Cornaceae by the family
Hydrangeaceae. Our results provide novel evidence to support the acceptance of the
family Nyssaceae outlined by the updated Angiosperm Phylogeny Group.

Keywords: Camptotheca acuminata, chloroplast genome, Cornales, Davidia involucrata, Nyssa sinensis,
Nyssaceae, phylogenomics

INTRODUCTION

The woody dioecious genera, Camptotheca, Davidia, and Nyssa are very likely to be deep branches
within the asterid order Cornales (Xiang et al., 2011). Davidia and Camptotheca have, respectively,
only one and two extant species native to subtropical China (Qin and Chamlong, 2007), whereas
Nyssa (approximately eight species) has a disjunct distribution in the middle latitudes of East
Asia and North America (Wen and Stuessy, 1993). However, all three genera have extensive fossil
records throughout the northern hemisphere during the Paleocene and Neogene (Eyde, 1997;
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Manchester, 2002; Manchester et al., 2009, 2015). Their current,
relatively narrow distributions may have, in part, resulted from
a range contraction triggered by the Neogene climate cooling
and the Pleistocene glaciations (Axelrod, 1959; Qian and Ricklefs,
2000; Manchester et al., 2009). The extant species of Camptotheca,
Davidia, and Nyssa are thus excellent examples of Arcto-
Tertiary relicts. Their phylogenetic profiles would deepen our
understanding of the evolution of the Arcto-Tertiary flora in the
northern hemisphere.

The phylogenetic position of the genera Camptotheca,
Davidia and Nyssa, has long been contentious. Historically,
they were placed into either the family Cornaceae (Harms,
1898; Angiosperm Phylogeny Group, 1998, 2003, 2009), or
the family Nyssaceae (Wangerin, 1910; Hutchinson, 1967;
Cronquist, 1981; Angiosperm Phylogeny Group, 2016), or the
families Davidiaceae (Davidia) and Nyssaceae (Camptotheca and
Nyssa) (Takhtajan, 1980). The family Nyssaceae outlined by
the Angiosperm Phylogeny Group (2016) contains the genera
Camptotheca, Davidia, and Nyssa, as well as two other genera
(Diplopanax and Mastixia) that were previously placed in the
family Cornaceae. This taxonomic treatment was supported
by prior phylogenetic analyses based on single or multi-
locus DNA sequence data (Xiang et al., 1998, 2002, 2011;
Fan and Xiang, 2003). Nonetheless, these studies were based
on just a few genes, and the use of a limited number of
informative loci may significantly increase the errors in the
inferred phylogeny (Rokas and Carroll, 2005; Philippe et al.,
2011). It is therefore, necessary to seek further evidence
to test the delimitation of the newly circumscribed family
Nyssaceae.

Chloroplast (cp) genome sequencing, by providing more
genetic information, has proven itself as a method offering great
potential for the resolution of historically difficult problems in
phylogenetics (Jansen et al., 2007; Moore et al., 2007, 2010;
Barrett et al., 2013, 2014; Ma et al., 2014; Stull et al., 2015;
Attigala et al., 2016; Huang et al., 2016). Here, we present the
complete cp genomes of Davidia involucrata, Nyssa sinensis,
and Camptotheca acuminata through Illumina sequencing and a
reference-guided assembly of the de novo contigs. The primary
aim of this study was to evaluate the circumscription of the
family Nyssaceae (Angiosperm Phylogeny Group, 2016) with a cp
genome-based dataset. Together with the previously reported cp
genome sequences that represent a wide phylogenetic diversity in
the asterids, the phylogenetic relationships of the genera Davidia,
Nyssa, and Camptotheca with related taxa were investigated.

MATERIALS AND METHODS

Sample Preparation, DNA Extraction,
Sequencing, and Genome Assembly
Fresh leaves of Davidia involucrata, N. sinensis, and C. acuminata
were collected from the Botanical Garden of Kunming Institute
of Botany, Chinese Academy of Sciences; voucher information
is presented in Supplementary Table S1. Total genomic DNA
was extracted from 100 mg of fresh leaves using a modified
CTAB (cetyltrimethylammonium bromide) method (Doyle and

Doyle, 1987), whereby 4% CTAB was used instead of 2%
CTAB, and approximately 1% polyvinyl polypyrrolidone and
0.2% DL-dithiothreitol was added. Next, the complete cp genome
sequences were amplified by using the nine primer pairs
and protocols developed by Yang et al. (2014). Purified DNA
(approximately 6 µg) from the resulting PCR products was
fragmented and used to construct short-insert (500 bp) libraries
according to the manufacturer’s manual (Illumina, San Diego,
CA, United States). Paired-end sequencing was performed on the
Illumina HiSeq 2000 platform at BGI (Shenzhen, Guangdong,
China).

The Illumina raw data were filtered by using the NGS QC
Toolkit (Patel and Jain, 2012), with an 80% read length and a
cut-off value of 30 for the PHRED quality score. High-quality
reads were assembled into contigs by using the software CLC
Genomics Workbench v8.0 (CLC Bio), with k-mer = 63 and
a minimum length of 1000 bp. Contigs were aligned with a
reference cp genome of Diplopanax stachyanthus (NC_029750),
which was the most similar genome identified via BLAST1. The
assembly of the cp genome of each species was performed in
Geneious version 7.0 (Kearse et al., 2012), by using the algorithm
MUMmer. The validated complete cp genome sequences were
deposited in GenBank (Supplementary Table S2).

Genomic Annotation and Comparison
The annotation of the cp genomes was initially done with the
Dual Organellar Genome Annotator database tool (Wyman et al.,
2004). Start and stop codons and intron/exon boundaries were
manually checked. All tRNAs were further confirmed by tRNA
scan-SE 1.21 (Schattner et al., 2005) set to the default parameters.
The functional classification of the cp genes was determined by
referring to the CpBase2. The graphical maps of the circular cp
genomes were drawn using OrganellarGenome DRAW3 (Lohse
et al., 2007).

To compare the cp genome structure and sequence divergence
among members of the order Cornales, the complete cp
genomes of Diplopanax stachyanthus, Hydrangea serrata,
and Swida controversa were downloaded from the NCBI
GenBank database (Supplementary Table S2). Multiple sequence
alignment was performed in the MAFFT software program
(Katoh et al., 2002), and manually edited whenever necessary.
The boundaries of large single-copy (LSC) regions, inverted
repeated (IR) regions, and small single-copy (SSC) regions
in the cp genomes were compared among the six species
by using Geneious v7.0 (Kearse et al., 2012). The sequence
divergence among the six cp genomes was compared by the
mVISTA tool (Frazer et al., 2004), for which S. controversa
was set as a reference. To identify the single nucleotide
polymorphisms (SNPs) across the six species, the Shuffle-
LAGAN model in Geneious v7.0 (Kearse et al., 2012) was used
with the parameter setting of “Only Find SNPs.” The divergent
frequencies of SNPs across these species were calculated
manually.

1http://blast.ncbi.nlm.nih.gov/
2http://chloroplast.ocean.washington.edu/
3http://ogdraw.mpimp-golm.mpg.de/
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FIGURE 1 | Gene map of the Camptotheca acuminata, Davidia involucrata, and Nyssa sinensis chloroplast genomes. Genes shown outside of the outer layer circle
are transcribed counterclockwise, whereas genes inside of this circle are transcribed clockwise The colored bars indicate the known protein-coding genes, tRNA,
and rRNA. The dashed darker gray area of the inner circle denotes the GC content, while the lighter gray area indicates the AT content of the genome. LSC, large
single-copy; SSC, small single-copy; IR, inverted repeat.

TABLE 1 | Features of the Cornales chloroplast genomes.

Species Total LSC SSC IRs Coding sequence Non-coding

sequence

Length GC Length GC Length GC Length GC Length GC Length GC

(bp) (%) (bp) (%) (bp) (%) (bp) (%) (bp) (%) (bp) (%)

Camptotheca acuminata 157,877 37.90 87,361 36.10 18,760 31.90 25,878 43.00 91,358 40.30 66,519 34.50

Nyssa sinensis 156,672 37.90 86,184 36.00 18,260 32.20 26,114 43.00 91,279 40.30 65,393 34.50

Davidia involucrata 158,409 37.80 87,611 36.10 18,856 31.60 25,971 43.00 90,949 40.30 67,460 34.50

Diplopanax stachyanthus 157,522 37.80 87,640 36.00 18,182 31.70 25,850 43.00 89,793 40.30 67,729 34.50

Hydrangea serrata 157,730 37.90 86,789 36.10 18,711 31.70 26,115 43.10 91,292 40.20 66,438 34.70

Swida controversa 158,674 37.80 87,850 36.00 18,696 31.90 26,064 43.00 91,006 40.30 67,668 34.40
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TABLE 2 | List of genes identified in the chloroplast genomes of Davidia involucrata, Camptotheca acuminata, and Nyssa sinensis.

Gene category Gene group Gene name

Self-replication Ribosomal RNA genes rrn4.5 × 2, rrn5 × 2, rrn16 × 2, rrn23 × 2

Transfer RNA genes trnA_UGC∗ × 2, trnC_GCA, trnD_GUC, trnE_UUC, trnF_GAA,
trnfM_CAU, trnG_GCC, trnG_UCC∗, trnH_GUG, trnI_CAU × 2,
trnI_GAU∗ × 2, trnK_UUU∗, trnL_CAA × 2, trnL_UAA∗, trnL_UAG,
trnM_CAU, trnN_GUU × 2, trnP_UGG, trnQ_UUG, trnR_ACG × 2,
trnR_UCU, trnS_GCU, trnS_GGA, trnS_UGA, trnT_GGU, trnT_UGU,
trnV_GAC × 2, trnV_UAC∗, trnW_CCA, trnY_GUA

Small subunit of ribosome rps2, rps3, rps4, rps7 × 2, rps8, rps11, rps12, rps12∗ × 2, rps14,
rps15, rps16∗, rps18, rps19

Large subunit of ribosome rpl2∗ × 2, rpl14, rpl16∗, rpl20, rpl22, rpl23 × 2, rpl32, rpl33, rpl36

DNA-dependent RNA polymerase rpoA, rpoB, rpoC1∗, rpoC2

Translational initiation factor infA

Genes for photosynthesis Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3∗∗, ycf4

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL,
psbM, psbN, psbT, psbZ

Subunits of cytochrome petA, petB∗, petD∗, petG, petL, petN

Subunits of ATP synthase atpA, atpB, atpE, atpF∗, atpH, atpI

Large subunit of Rubisco rbcL

Subunits of NADH dehydrogenase ndhA∗, ndhB∗ × 2, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ,
ndhK

Other genes Maturase matK

Envelope membrane protein cemA

Subunit of acetyl-CoA accD

C-type cytochrome synthesis gene ccsA

Protease clpP∗∗

Component of TIC complex ycf1

Genes of unknown function Conserved open reading frames ycf2 × 2, ycf15#
× 2

∗Genes containing one intron.
∗∗Genes containing two introns.
#Pseudogene in the Davidia involucrata chloroplast genome.

Phylogenomic Analysis
The phylogenetic analysis included six complete Cornales
cp genomes, of which three were newly generated in the
present study. To investigate the systematic position of the
genera Davidia, Nyssa, and Camptotheca, the 23 cp genomes
encompassing a wide phylogenetic diversity in the asterids
were included in the analyses. Rheum palmatum, from the
order Caryophyllales, was set to root the phylogenetic tree. The
complete genomes reported for each species were downloaded
from the NCBI GenBank database (Supplementary Table S2).

Seventy-three protein-coding genes commonly shared
by these 26 taxa were used to reconstruct the phylogeny
(Supplementary Table S3). The alignments of these genes
were concatenated by the MAFFT software (Katoh et al.,
2002). To test the phylogenetic effects of different regions of
the cp genome, we defined the following four datasets based
on various partition schemes: (1) one partition that had all
genes and codons; (2) partitioned by all the first, second, and
third codon positions in each gene (i.e., three partitions in
total); (3) partitioned by each gene (73 partitions); and (4)
partitioned by the first, second, and third codon positions in
each gene (219 partitions). The best-fitting partition scheme
and nucleotide substitution models were screened in the
program PartitionFinder v2.1.1 (Lanfear et al., 2012). For each

analysis, the branch lengths were linked, and the models of
nucleotides substitution were restricted to those available in
either RAxML (Stamatakis et al., 2008; Miller et al., 2010) or
MrBayes (Ronquist and Huelsenbeck, 2003) independently; we
used the “greedy” search algorithm. The partition that was able
to include all genes and codons was selected as the best-fitting
scheme.

The phylogenetic analyses were carried out using two
approaches: Bayesian inference (BI) and maximum-likelihood
analysis (ML). The most suitable nucleotide substitution
model for ML and BI analyses suggested by the program
PartitionFinder v2.1.1 (Lanfear et al., 2012) was GTR+G.
The BI analyses were performed in MrBayes v3.2 (Ronquist
and Huelsenbeck, 2003). Four Markov chains, each starting
with a random tree, were run simultaneously for one million
generations, with trees sampled every 100th generation. Trees
from the first 250,000 generations were regarded as “burn
in” and discarded. The posterior probability values (PP)
were determined from the remaining 750,000 trees. The ML
analyses were performed in RAxML-HPC BlackBox v8.1.24
(Stamatakis et al., 2008; Miller et al., 2010); 10 independent
ML searches were conducted, and the branch support was
determined by computing 1000 non-parametric bootstrap
replicates.
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FIGURE 2 | Comparison of the borders of the LSC, SSC, and IR regions among the Camptotheca acuminata, Davidia involucrata, Nyssa sinensis, Diplopanax
stachyanthus, Hydrangea serrata, and Swida controversa chloroplast genomes. LSC, large single-copy; SSC, small single-copy; IR, inverted repeat.

RESULTS

Chloroplast Genome Features
The average depths of sequencing coverage were 1154,
1169, and 1123× for N. sinensis, Davidia involucrata, and
C. acuminata, respectively. Their complete cp genome sizes
were 156,672–15,8409 bp. All three genomes, consisting
of a pair of IRs (25,971–25,878 bp) separated by the LSC
(86,184–87,611 bp) and SSC (18,260–18,856 bp) regions,
showed a typical quadripartite structure that is similar to the
majority of land plant cp genomes (Figure 1 and Table 1).
The cp genomes of the three relict species contained 115
unique genes (81 protein-coding genes, 30 tRNA, and 4 rRNA)
arranged in the same order, of which 18 were duplicated
in the IR regions. Among these unique genes, 18 genes
contained introns, 12 of which were protein-coding genes
(atpF, ndhA, ndhB, petB, petD, rpl16, rpl2, rpoC1, rps12,
rps16, clpP, and ycf3) and six were tRNA (trnA-UGC, trnG-
GCC, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC).
Sixteen of these 18 genes contained a single intron, while
the other two had two introns (clpP and ycf3) (Table 2).
The ycf1 gene at the IRB/SSC border was identified as a
pseudogene in all taxa of the order Cornales. In addition, the
ycf15 gene is likely also a pseudogene in Davidia involucrata
(Table 2).

The IRA/LSC boundary in all the Cornales cp genomes was
located between the rpl2 and trnH genes. Expansion of the
IR regions into the rps19 and ycf1 genes at the IRB/LSC and
IRA/SSC boundaries was detected, respectively, in all six Cornales
species. Although the expansion of the IRB region into the ycf1
pseudogene at the IR/SSC junctions occurred in all species, the
overlap between the ycf1 pseudogene and ndhF was only detected
in C. acuminata, N. sinensis, and H. serrata (Figure 2).

Sequence Divergence in the Cornales
Chloroplast Genomes
Regions containing SNPs were identified by the cp genome-wide
comparison (Figure 3). A total of 4,886 SNPs were found in the
matrix of the six cp genomes, and the average variant frequency
was 3.01%. For all of these SNP mutations, 69.18% of the SNP
sites were detected in the LSC region, 21.88% in the SSC region,
and 8.94% in the IR region. The corresponding average variant
frequency of LSC, SSC, and IR regions was 3.71, 5.08, and 0.87%.
In addition, 1994 SNPs (average variant frequency = 2.19%)
were detected in the coding regions, while 2,892 SNPs (average
variant frequency = 4.05%) were detected in the non-coding
regions (Table 3). The divergent frequencies of the exons varied
from 0.00 to 6.79% (Supplementary Table S4), whereas those
of the non-coding regions varied more, from 0.18 to 11.11%
(Supplementary Table S5). According to the sequence divergence
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FIGURE 3 | Visualized alignment of the six Cornales chloroplast genomes. The mVISTA-based identity plots show the sequence identity among the six cp genomes,
with S. controversa serving as a reference. Gray arrows indicate the position and direction of each gene. Genome regions are color-coded as protein-coding, rRNA,
tRNA, or conserved non-coding regions. Black lines define the regions of sequence identity shared with S. controversa (by using a 50%-identity cutoff).
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TABLE 3 | Summary of the single nucleotide polymorphisms (SNPs) found in the
six Cornales cp genomes.

Data type Number of
SNPs

Characters
(bp)

Divergence
proportion

(%)

Complete cp genome 4,886 162,516 3.01

Protein-coding genes 1,994 91,113 2.19

Non-coding regions 2,892 71,403 4.05

LSC region 3,380 91,213 3.71

SSC region 1,069 21,039 5.08

IR regions 437 50,264 0.87

analysis, we screened 10 protein-coding regions (rps15, ccsA,
rpl22, rps19, ndhG, clpP, ndhD, rps8, psbI, and rps3), with lengths
ranging from 250 to 1,500 bp that could be utilized as potential
molecular markers to reconstruct the phylogeny in the order
Cornales. The percentage of SNPs in these divergence hotspot
regions exceeded 3.5%.

Phylogenetic Analysis
The phylogenetic relationships of the asterids were reconstructed
through the BI and ML analyses. The resulting ML and
BI tree topologies were identical to each another. Figure 4
shows the phylogenetic tree generated by these BI and ML
analyses, including the two types of support values: BI posterior
probabilities (PP) and ML bootstrap values (MLBS). The
asterids was resolved as four fully supported monophyletic
lineages: Cornales, Ericales, Campanulids, and Lamiids. The
order Cornales was recovered as the earliest diverged clade in
the asterids; the Campanulids and Lamiids formed two sister
clades (PP = 1.00, MLBS = 100%), which had diverged from
the order Ericales (PP = 1.00, MLBS = 100%). The evolutionary
relationships among these clades were consistent with those
reported by Stull et al. (2015) and Angiosperm Phylogeny Group
(2016).

Within the order Cornales, the four genera Nyssa,
Camptotheca, Davidia, and Diplopanax formed a strongly
supported monophyletic group (PP = 1.00, MLBS = 100%).
This clade corresponds to the family Nyssaceae that was
circumscribed by the Angiosperm Phylogeny Group (2016).

Among the four genera, Nyssa is sister to Camptotheca
(PP = 1.00, MLBS = 100%), and these two genera, in turn, are
sister to Davidia (PP= 1.00, MLBS= 100%); Diplopanax is sister
to the Nyssa+Camptotheca+Davidia Clade. In addition, the tree
topologies clearly indicated that Nyssaceae circumscribed by the
Angiosperm Phylogeny Group (2016) was fully separated from
the family Cornaceae by the family Hydrangeaceae (Figure 4).

DISCUSSION

Comparison of Chloroplast Genomes in
the Cornales
Although several protein-coding genes (i.e., accD, ycf1, ycf2,
rpl22, rps16, rpl23, infA, and ndhF) have been independently
lost over the course of angiosperm evolution (e.g., Millen et al.,
2001; Jansen et al., 2007), these genes were often detected in
the six representatives of the Cornales (Table 2). In addition,
no significant structural rearrangements, such as inversions or
gene relocations, were observed in any of these six Cornales cp
genomes (Figure 1). Taken together, these results suggest that the
gene contents and arrangements of the cp genome are likely to be
highly conserved in the Cornales.

The pseudogenization or loss of the ycf15 gene has been
observed in a wide diversity of lineages in the angiosperms (e.g.,
Chumley et al., 2006; Raubeson et al., 2007). Previous studies
proposed that, in the asterids, this mutation occurred only in the
lineages that were diverged later (Chumley et al., 2006; Raubeson
et al., 2007; Shi et al., 2013). However, our study indicates that this
gene was pseudogenized in Davidia involucrata (Table 2), which
is a member of the basally branching order (Cornales) in the
asterids. This result suggests that the pseudogenization of ycf15
may have originated independently during the evolution of the
asterid lineages; hence, it may not provide relevant phylogenetic
information.

The IR expansions often lead to size variations in the
angiosperm cp genomes (e.g., Cosner et al., 1997; Plunkett and
Downie, 2000; Chumley et al., 2006). For example, a significant
expansion of IR regions (ca. 4 kb) may be responsible for the
relatively large cp genome of both Tetracentron sinense and
Trochodendron aralioides (Sun et al., 2013). The IR/LSC junctions

FIGURE 4 | The Bayesian inference (BI, left) and maximum-likelihood (ML, right) trees of 26 taxa reconstructed using 73 chloroplast protein-coding genes.
Numbers indicate the posterior probabilities from the BI analyses and bootstrap values from the ML analyses.
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among the six Cornales cp genomes were highly conserved:
the IRA/LSC boundaries were located between the rpl2 and
trnH genes, while the IRB regions expanded into rps19 at the
IRB/LSC junction (Figure 2). It is notable that this type of IR/LSC
boundary has not been detected in the other asterid orders (Kim
and Lee, 2004; Huang et al., 2014; Downie and Jansen, 2015;
Stull et al., 2015; Yao et al., 2016); this suggests it could serve
as a potential molecular marker for Cornales. In contrast to the
IR/LSC junctions, the IR/SSC boundaries among the six Cornales
cp genomes were variable, yet this variability may contribute little
to the overall size variations in the chloroplast genomes of these
plants. For instance, the largest overall cp genome size among the
six Cornales species was observed in S. controversa (Figure 2),
but this plant has the shortest expansion of the IR/SSC junction
to ycf1 among the six species investigated (975 bp; Figure 2).
Although Diplopanax stachyanthus has the longest expansion of
the IR/SSC junction to the ycf1 gene (1,437 bp; Figure 2), its cp
genome size is notably smaller than that of S. controversa, Davidia
involucrata, C. acuminata, and H. serrata.

Phylogenetic Inferences
The key objective of our study was to evaluate the circumscription
of the family Nyssaceae (Angiosperm Phylogeny Group, 2016)
by using a cp genome-based dataset. Our phylogenomic analyses
recovered a fully supported monophyletic clade that included
the genera Camptotheca, Nyssa, Davidia, and Diplopanax in the
order Cornales, which was separated from the family Cornaceae
by the family Hydrangeaceae with substantial empirical support
(Figure 4). This result provides additional evidence to accept the
newly circumscribed family Nyssaceae (Angiosperm Phylogeny
Group, 2016). It is notable that these genera share a distinct
morphological similarity: their fruits have germination valves on
the fruit stones. This can be the synapomorphy to recognize the
family Nyssaceae.

Our analyses also resolved well the evolutionary relationships
among the genera Camptotheca, Nyssa, and Davidia (Figure 4),
which are consistent with other phylogenetic analyses (Xiang
et al., 2002, 2011; Fan and Xiang, 2003). Several lines of evidence
support the affinity between Camptotheca and Nyssa. Firstly, the
fossil evidence suggests that Camptotheca and Nyssa may be
derived from a common ancestor in the Eocene (Eyde, 1997;
Manchester et al., 2009). Secondly, the two genera share similar
fruit and inflorescence morphologies (Eyde, 1968), as well as
wood anatomy (Titman, 1949). Finally, the basal chromosome
number of Camptotheca and Nyssa is same (x= 22), whereas that
of Davidia is x = 21 (Goldblatt, 1978). This last consideration

further suggests that Camptotheca is more closely related to
Nyssa than to Davidia. In this respect, it is noteworthy that the
earliest fossil record for the Davidia, Camptotheca, and Nyssa
belongs to the extinct species, Davidia antique, which occurred
in the Paleocene of North America (Manchester, 2002). This is
consistent with the basally branching position of Davidia among
the three genera in the tree topologies we inferred.

A question that remains unresolved by our study is the
phylogenetic position of the genus Mastixia. Previous molecular
phylogenetic analyses indicated that this genus is closely related
to Diplopanax (Xiang et al., 2002, 2011), and both genera
produce flowers with hooked petals that are arranged in
paniculate inflorescences (Zhu and Xiang, 1999). However, its
basal chromosome number (x = 11) is far lower than that of
Camptotheca, Nyssa, and Davidia (Goldblatt, 1978). Since we did
not obtain a sample of Mastixia, clarifying its relationship(s) to
the other genera in the family Nyssaceae will require further
investigation.
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