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High salinity seriously affects the production of chrysanthemum, so improving the salt
tolerance of chrysanthemum becomes the focus and purpose of our research. The
WRKY transcription factor (TF) family is highly associated with a number of processes
of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum,
and a protein encoded by this new gene contains two highly conserved WRKY
domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that
DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum
resulted in increased tolerance to high salt stress compared to wild-type (WT).
Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde,
hydrogen peroxide (H2O2), and superoxide anion (O−2 ) than WT, accompanied by more
proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a
stronger photosynthetic capacity and a series of up-regulated stress-related genes
were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4
is a positive regulatory gene responding to salt stress, via advancing photosynthetic
capacity, promoting the operation of reactive oxygen species-scavenging system,
maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating
transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate
gene for salt-tolerant plant breeding.

Keywords: WRKY transcription factor, DgWRKY4, salt stress, transgenic chrysanthemum, gene expression

INTRODUCTION

High salinity significantly limits the growth and productivity of plants worldwide. To adapt to high
salinity environment, plants have developed a set of elaborate and intricate mechanisms. At the
molecular level, the induced transcription factors (TFs) such as AP2/EREBP, WRKY, MYB, and
bHLH play an important role in activating downstream stress-responsive genes to protect plants
from salt stress persecution (Chinnusamy et al., 2006; Hennig, 2012). The WRKY TF is a big and
valuable family of regulatory proteins in plants (Rushton et al., 2012). Since the first WRKY TF
was identified in sweet potato (Ishiguro and Nakamura, 1994), some of the other WRKY genes
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were also been successively characterized in other species.
All the WRKY proteins contain one or two DNA-binding
domains consisting of 60 amino acid regions with the highly
conserved sequence WRKYGQK at its N-terminus and a zinc-
finger motif (C-X4−5-C-X22−23-H-X-H or C-X7-C-X23-H-X-C)
at C-terminus (Eulgem et al., 2000; Rushton et al., 2010).
WRKYGQK motif may be replaced by WRKYGKK, WRKYGEK,
WRKYGSK, or WRKYDQK in some plant species (Xiu et al.,
2016). The WRKY proteins can fall into three groups, group I
proteins contain two WRKY domains with C-X4−5-C-X22−23-H-
X-H zinc-finger motifs, group II proteins just contain one WRKY
domain with a C-X4−5-C-X22−23-H-X-H motif, and group III
proteins contain one WRKY domain with a C-X7-C-X23-H-X-C
motif.

WRKY TFs can positively or negatively regulate downstream-
related genes and play roles in multiple processes of plants,
such as seed development (Johnson et al., 2002), leaf senescence
(Miao et al., 2004), and confrontation with stresses (Xie
et al., 2005; Ryu et al., 2006; Eulgem and Somssich, 2007;
Pandey and Somssich, 2009; Sun et al., 2013). According to
previous reports, genes encoding WRKY TFs can be induced
by NaCl, cold, drought, salicylic acid (SA), ethylene (ET),
abscisic acid (ABA), methyl jasmonate (MeJA), and hydrogen
peroxide (H2O2) (Wang et al., 2013; Zhou et al., 2015; Xiu
et al., 2016). So far, overexpression of some WRKY genes
has successfully enhanced plants tolerance to several abiotic
stresses. For example, overexpressing OsWRKY11 improved high
temperature and salt tolerance of overexpressed lines (Wu et al.,
2009). Overexpressing cotton genes GhWRKY17, GhWRKY34,
and GhWRKY41 increased salt and drought tolerance of
transgenic Nicotiana benthamiana (Yan et al., 2014; Chu et al.,
2015; Zhou et al., 2015). Moreover, overexpressing wheat
genes TaWRKY19 and TaWRKY93 in Arabidopsis enhanced
its tolerance to salt and drought (Niu et al., 2012; Qin
et al., 2015). These genes conferred plants tolerance to
abiotic stresses primarily through scavenging reactive oxygen
species (ROS), improving the osmotic adjustment, maintaining
membrane stability, maintaining the Na+/K+ homeostasis,
regulating ABA signaling, and activating the stress-related
genes.

Chrysanthemum is a kind of cut flower with great ornamental
value. However, its production is severely affected by high
salinity. CmWRKY1 and CmWRKY10 were reported to enhance
the drought tolerance of chrysanthemum through an ABA-
mediated pathway (Fan et al., 2016; Jaffar et al., 2016). In contrast,
CmWRKY17 negatively regulates salt tolerance in transgenic
chrysanthemum (Li et al., 2015). We have previously isolated
three WRKY genes (DgWRKY1, DgWRKY3, and DgWRKY5) and
characterized that they could confer salt tolerance to tobacco
or chrysanthemum (Liu et al., 2013, 2014; Liang et al., 2017).
But the study on WRKY family of chrysanthemum is still
incomplete. In order to analyze WRKY family of chrysanthemum
in multiple angles and complement its information, as well
as provide more selections of excellent genes for improving
salt tolerance of chrysanthemum, we isolated and functionally
characterized DgWRKY4 gene. Overexpressing DgWRKY4 in
chrysanthemum resulted in increased tolerance to high salt

stress compared to wild-type (WT), indicating that DgWRKY4
can serve as a new candidate gene for salt-tolerant plant
breeding.

MATERIALS AND METHODS

Plant Materials and Treatments for
Analyses of DgWRKY4 Expression
Pattern
Seedlings of WT Chrysanthemum cv. Jinba were cultured in the
incubator, setting the condition as 25◦C/16 h light and 22◦C/8 h
dark cycles, light intensity of 200 µmol m−2 s−1, and relative
humidity of 70%. Seedlings with six to seven leaves were treated
with 200 mM NaCl solutions, and leaves were harvested at several
times after treatment, frozen in liquid nitrogen immediately, and
stored at −80◦C. Roots, stems, and leaves of the same untreated
seedlings were collected for tissue-specific expression analyses.

Analysis of Gene Expression Levels
DgWRKY4 expression level was monitored by quantitative real-
time polymerase chain reaction (qRT-PCR) using the SsoFast
EvaGreen supermix (Bio-Rad, Hercules, CA, United States)
and Bio-Rad CFX96TM detection system. EF1α as the internal
reference, the 20 µL qRT-PCR reaction mixture was incubated
under the following program: 30 s at 95◦C for 1 cycle, then 15 s at
95◦C and 30 s at 60◦C for 40 cycles, and a single melt cycle from
65 to 95◦C in the end. Each reaction was set with three repetitions.
Final relative expression levels were calculated by the 2−11CT

method. The primers used in qRT-PCR are listed in Table 1.

Salt Treatment of Transgenic
Chrysanthemum and Stress Tolerance
Assays
For salt treatment, two overexpressed lines (OE-4 and OE-6)
and WT of chrysanthemum were planted to a mixture of peat
and perlite, then cultured in a light incubator (25◦C/16 h light
and 22◦C/8 h dark cycles). Soil-grown chrysanthemum seedlings
at six to seven leaves stage were irrigated with an increased
concentration of NaCl solution: 100 mM for 1–5 days (d),
200 mM for 6–10 days, and 400 mM for 11–15 days, using Chen
et al. (2012) as a reference. Under salinity conditions, leaves four
to five from buts were harvested at 0, 5, 10, and 15 days for
physiological and molecular experiments in subsequent. Survival
rates were calculated after 2 weeks of recovery.

Determination of Physiological Indexes
and Leaf Gas Exchange Parameters
Leaves of seedlings were used for measurements. Activities
of superoxide dismutase (SOD), peroxidase (POD), and
catalase (CAT) were measured following Beauchamp and
Fridovich (1971),Ranieri et al. (2000), and Zhang L. et al.
(2011), respectively. Malondialdehyde (MDA) content in
chrysanthemum was measured according to Zhang et al. (2009).
Accumulation of proline was measured following Irigoyen
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TABLE 1 | Primers used in this study.

Forward primers Reverse primers

Primers used for cloning of DgWRKY4

DgWRKY4 TAAATATAACTTTCTCAAACACATCCT GACCCTACATATATGTACATCAACAC

Primers used to qRT-PCR

DgWRKY4 CTCAAACACATCCTACAAATTCCC AGAAATGGGAAGTGAAGGTGG

EF1a TTTTGGTATCTGGTCCTGGAG CCATTCAAGCGACAGACTCA

DgCuZnSOD CCATTGTTGACAAGCAGATTCCACTCA ATCATCAGGATCAGCATGGACGACTAC

DgCAT TACAAGCAACGCCCTTCAA GACCTCTGTTCCCAACAGTCA

DgAPX GTTGGCTGGTGTTGTTGCT GATGGTCGTTTCCCTTAGTTG

DgP5CS TTGGAGCAGAGGTTGGAAT GCAGGTCTTTGTGGGTGTAG

DgDREB1A CGGTTTTGGCTATGAGGGGT TTCTTCTGCCAGCGTCACAT

DgDREB2A GATCGTGGCTGAGAGACTCG TACCCCACGTTCTTTGCCTC

DgCSD1 TTCGTCCATCAGTCTAGTATCAAG ATCACCACCACCACCACCTC

DgCSD2 AGTGAAGATGGACGAAAAAAGG CTAGCAAAATGACCAACCCG

et al. (1992) and soluble sugar following Wang et al. (2013).
The chlorophyll content was detected following Huang et al.
(2010). Leaf gas exchange parameters were measured following
Mguis et al. (2013), setting the endogenous light intensity was
600 µmol m−2 S−1, the concentration of CO2 was 360 µL L−1,
and the temperature was 25◦C.

Histochemical Detection of Reactive
Oxygen Species (ROS)
Leaves of chrysanthemum plants were performed with
histochemical staining to detect the accumulation of H2O2
and superoxide anion (O−2 ) using 3,3′-diaminobenzidine (DAB)
and nitroblue tetrazolium (NBT), respectively. Detached leaves
were soaked in 1 mg mL−1 DAB or NBT solution under
illumination. When brown or blue spots appeared, leaves
were bleached by 95% ethanol. Finally, photos were taken. In
addition, the H2O2 and O−2 concentration were determined
by detection kits (Nanjing Jiancheng Bioengineering Institute,
China).

Expression of Stress-Response Genes in
DgWRKY4 Transgenic Chrysanthemum
The RNA of both transgenic chrysanthemum and WT
was extracted and reversed to cDNA as described above.
Then expressions of stress-response genes in transgenic
chrysanthemum were detected by qRT-PCR. DgCuZnSOD,
DgCAT, DgAPX, DgP5CS, DgDREB1A, DgDREB2A, DgCSD1,
and DgCSD2 were monitored, using EF1α as the internal
reference. All relevant primers of qRT-PCR are listed in
Table 1.

Statistical Analysis
All experiments were performed for three biological repeats,
and means and standard errors were calculated for the variables
comparison. All data were analyzed by SPSS version 20.0 (IBM
Corporation) at a significant level of 0.05.

RESULTS

DgWRKY4 Cloning and Generation of
Transgenic Chrysanthemum
Using high-throughout sequencing technique, we obtained
the transcriptome database of chrysanthemum under salinity
condition. From the database, a large number of salt-induced
transcripts were identified, and DgWRKY4 is one of them
with significantly induced by salinity. Total RNA extraction
of chrysanthemum leaves was performed by TRIzol Reagent
(Mylab, Beijing, China). The full-length cDNA of DgWRKY4 was
obtained by PCR, then inserted into pCAMBIA 2300 with the
control of cauliflower mosaic virus (CaMV) 35S promoter. The
vector was transformed into chrysanthemum by Agrobacterium
tumefaciens (strain LBA4404) (An et al., 1988). DgWRKY4 high
expression lines OE-4 and OE-6 were selected for subsequent
experiments.

Sequence Analysis of DgWRKY4
DgWRKY4 contained a complete open-reading frame (ORF) of
1534 bp encoding a putative protein of 482 amino acids with
a predicted protein molecular weight of 53.6 kDa (Figure 1).
Multiple alignment between DgWRKY4 and other four WRKY
proteins by DNAMAN showed that DgWRKY4 contained two
WRKY domains of WRKYGQK and two C2H2 zinc-finger motifs
(C-X4-C-X22-H-X-H and C-X4-C-X23-H-X-H) (Figure 2). Based
on the classification method (Rushton et al., 2010; Figure 3),
phylogenetic analysis showed that DgWRKY4 was clustered
into group I of the WRKY family and most closely related
to AtWRKY25, AtWRKY26, AtWRKY33, DgWRKY5, and
TaWRKY2.

Expression of DgWRKY4 Is Regulated by
Salt Stress
DgWRKY4 expression of different tissues was measured by qRT-
PCR to figure out its expression pattern in chrysanthemum.
As shown in Figure 4A, there was higher transcript abundance
of DgWRKY4 in leaves than in stems and roots. In addition,
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FIGURE 1 | Nucleotide and deduced amino acid sequences of DgWRKY4. The WRKY domain is underlined. The two cysteines and two histidines in the zinc-finger
motifs are boxed.
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FIGURE 2 | Sequence alignment of the deduced DgWRKY4 protein with known homologs. The comparison was conducted by DNAMAN (version 6.0). Amino acid
residues conserved in all five sequences are shaded in black, and those conserved in four sequences are shaded in light gray. The completely conserved WRKYGQK
amino acids are boxed. The cysteines and histidines in zinc-finger motifs are indicated by arrowheads (H). Arabidopsis thaliana (AtWRKY25, NP_180584;
AtWRKY26, AAK28309; AtWRKY33, NP_181381) and Triticum aestivum (TaWRKY2, EU665425).

Frontiers in Plant Science | www.frontiersin.org 5 September 2017 | Volume 8 | Article 1592

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01592 September 11, 2017 Time: 14:57 # 6

Wang et al. DgWRKY4 Enhances Chrysanthemum Salt Tolerance

FIGURE 3 | Phylogenetic tree analysis of DgWRKY4 and WRKY proteins from different species. The amino acid sequences of the conserved WRKY domain region
were subjected to the Bootstrap test of phylogeny by the MEGA program (ver. 5). DgWRKY4 is boxed. The plant WRKY proteins used for the phylogenetic tree are
as follows: DgWRKY1 (KC153303), DgWRKY3 (KC292215), DgWRKY5 from Dendranthema grandiflorum; VpWRKY1 (GQ884198), VpWRKY2 (GU565706),
VpWRKY3 (JF500755) from Vitis pseudoreticulata; VvWRKY11 (EC935078) from Vitis vinifera; BcWRKY46 (HM585284) from Brassica campestris; TcWRKY53
(EF053036) from Thlaspi caerulescens; TaWRKY2 (EU665425), TaWRKY19 (EU665430) from Triticicum aestivum; GmWRKY13 (DQ322694), GmWRKY54
(DQ322698) from Glycine max; OsWRKY11 (AK108745), OsWRKY30 (NP_001062148), OsWRKY45 (AY870611) from Oryza sativa; AtWRKY11 (NP_849559),
AtWRKY15 (NP_179913.1), AtWRKY17 (NP_565574.1), AtWRKY18 (NP_567882), AtWRKY22 (AEE81999), AtWRKY25 (NP_180584), AtWRKY26 (AAK28309),
AtWRKY27 (NP_568777), AtWRKY28 (NP_193551), AtWRKY29 (AEE84774), AtWRKY31 (NP_567644), AtWRKY33 (NP_181381), AtWRKY36
(NP_564976), AtWRKY40 (NP_178199), AtWRKY41 (NP_192845), AtWRKY42 (NP_192354), AtWRKY53 (NP_194112), AtWRKY60 (NP_180072), AtWRKY61
(NP_173320) from Arabidopsis thaliana.
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the expression of DgWRKY4 in WT chrysanthemum leaves was
gradually increased up to 12 h after treatment with 200 mM NaCl
(Figure 4B). This demonstrated that the DgWRKY4 was induced
by salinity.

DgWRKY4 Overexpression Enhances
Chrysanthemum Salt Tolerance
DgWRKY4 transcript levels of two transgenic lines were
measured through qRT-PCR. The result showed that the
DgWRKY4 transcript level of lines OE-4 and OE-6 was distinctly
(P < 0.05) higher than that of WT (Figure 5A), therefore these
two lines were selected for further salt-tolerance researches.
Under normal conditions, all chrysanthemum showed no
obvious phenotypic difference at the seedling stage (data not
shown). Under salt stress, leaves of WT plants were yellowed
and wilted, while transgenic chrysanthemum’s remained green
(Figure 5C). Moreover, after 2 weeks of recovery from salt
stress, the survival percentage of OE-4 and OE-6 was 73.4%
and 79.6%, respectively, whereas WT plants’ was 35.23%
(Figure 5B).

Analyses of Chlorophyll Content and
Photosynthesis Under Salt Stress
When exposed to salt conditions, the chlorophyll content of
overexpressed lines was remarkably (P < 0.05) higher than
WT (Figure 6A), suggesting that transgenic chrysanthemum
was better able to maintain their chlorophyll than WT. In
addition, we measured leaf gas exchange parameters. With
the increase of NaCl concentration, the net photosynthetic
rate (Pn), stomatal conductance (Gs), and transpiration
rate (Tr) decreased in all lines, while intercellular CO2
concentration (Ci) increased, but reduction and increase
degree of overexpressed lines were clearly (P < 0.05) smaller
than WT (Figures 6B–E). It suggested that photosynthesis
of transgenic chrysanthemum was less inhibited by salt stress
than WT.

Overexpression of DgWRKY4 Reduces
ROS Accumulation and Oxidative
Damage
To intuitively understand the oxidation status of
chrysanthemum, the accumulation of two major ROS (H2O2
and O−2 ) was detected with DAB staining and NBT staining.
Histochemically, staining showed that WT accumulated more
H2O2 and O−2 than two overexpressed lines (OE-4 and OE-6),
as less brown or blue spots were observed in overexpressed lines
(Figures 7C,D). In addition, quantitative analysis also showed
that H2O2 and O−2 levels in leaves of all lines were increased
after exposure to salt condition, whereas WT significantly
(P < 0.05) accumulated more H2O2 and O−2 than transgenic
chrysanthemum (Figures 7A,B). Similarly, under salt stress,
the MDA (the end product of lipid oxidation) accumulation
level was significantly (P < 0.05) lower in overexpressed
lines than in WT (Figure 8A). As a result, the accumulation
of ROS in DgWRKY4-overexpression chrysanthemum was
less than WT, indicating that DgWRKY4 reduced the ROS

levels and alleviated the oxidative damage under salinity
condition.

Physiological Changes in DgWRKY4
Transgenic Chrysanthemum
To investigate the underlying cause of the decreased ROS
(H2O2 and O−2 ) accumulation in transgenic chrysanthemum
under salinity condition, activities of three symbolic antioxidant
enzymes (SOD, POD, and CAT) were monitored at various
time points. Under normal condition, no significant difference
of these three enzymes activities was observed between WT
and overexpressed lines. Upon exposure to salt stress, there
was a certain degree of increases in all lines; furthermore,
these increases were remarkably (P < 0.05) greater in
overexpressed lines than in WT (Figures 8B–D). The above
showed that overexpressing DgWRKY4 conferred transgenic
chrysanthemum higher antioxidant enzyme activities to against
ROS persecution.

Subsequently, we monitored changes of proline and
soluble sugar content to explore the regulation of osmotic
mechanism in DgWRKY4 transgenic chrysanthemum under salt
stress. Compared with WT, overexpressed lines accumulated
remarkably (P < 0.05) higher levels of proline and soluble
sugar (Figures 8E,F) under salinity condition. These data
suggested that overexpression of DgWRKY4 conferred
transgenic chrysanthemum higher osmotic pressure to cope
with the dehydration stress evoked by salt stress.

The Molecular Mechanism of DgWRKY4
Overexpression Promoting Salt
Tolerance
To reveal the molecular mechanism of enhanced salt tolerance
in DgWRKY4-overexpression chrysanthemum, expressions of
eight abiotic stress-response genes were detected by qRT-PCR.
Under normal condition, these eight gene expression levels
were not different in all lines. Under salt treatment, the
transcript accumulation of DgCuZnSOD, DgCAT, and DgAPX,
which encode ROS-scavenging enzymes, and DgP5CS, which
functions in osmotic adjustment, was increased remarkably
(P < 0.05) in overexpressed lines compared to WT. The
transcription levels of above four genes in overexpressed
chrysanthemum reached a maximum by day 15, as they
were about 1.39-, 1.89-, 6.54-, and 2.57-fold greater than in
WT (Figures 9A–D). Moreover, the other four genes, such
as DgDREB1A, DgDREB2A, DgCSD1, and DgCSD2, were all
significantly (P < 0.05) up-regulated in overexpressed lines
than WT under salinity condition. Especially by day 10, the
transcription levels of above four genes in overexpressed lines
were averagely 2.08-, 7.27-, 2.67-, and 2.28-fold greater than
in WT (Figures 9E–H). Our data suggested that DgWRKY4
overexpression may promote salt tolerance via up-regulating
expression levels of genes which involved in controlling signaling
pathways and function in scavenging excess ROS and relieving
osmotic stress.
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FIGURE 4 | Expression of DgWRKY4 in different organs of WT chrysanthemum and under salt stress. (A) Expression patterns of DgWRKY4 in roots, stems, and
leaves of WT chrysanthemum under normal condition. (B) DgWRKY4 expression of WT chrysanthemum leaves in response to 200 mM NaCl treatment. CK means
non-stress conditions. Data represent means and standard errors of three replicates. The different letters above the columns indicate significant differences
(P < 0.05) according to Duncan’s multiple range test.

FIGURE 5 | Overexpression of DgWRKY4 in transgenic chrysanthemum resulted in enhanced tolerance to salt stress. (A) Transcript levels of DgWRKY4 in WT and
transgenic chrysanthemum. EF1α serves as the internal reference and error bars based on three replicates. (B) The survival rates of overexpressed lines and WT
after 2 weeks recovery. (C) Phenotypic comparison of DgWRKY4 overexpressed lines (OE-4 and OE-6) and WT under salt stress. (D) PCR analysis of DgWRKY4
transgenic chrysanthemum lines. Data represent means and standard errors of three replicates. The different letters above the columns indicate significant
differences (P < 0.05) according to Duncan’s multiple range test.
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FIGURE 6 | Assay of leaf gas exchange parameters in overexpressed lines and WT under salt stress. (A) Chlorophyll content. (B) Pn. (C) Gs. (D) Ci. (E) Tr.
Data represent means and standard errors of three replicates. The different letters above the columns indicate significant differences (P < 0.05) according to
Duncan’s multiple range test.

DISCUSSION

Chrysanthemum is an ornamental flower widely used in China,
but its production is severely affected by salt stress. For improving
the salt tolerance of chrysanthemum, we over expressed a salt-
induced gene DgWRKY4 in chrysanthemum. And the final
experimental results proved that overexpression of DgWRKY4
could enhance salt tolerance of chrysanthemum without growth
abnormality. Currently, our study on chrysanthemum seedlings
is temporarily limited to the laboratory, and whether the
production of transgenic chrysanthemum can be improved under
salt stress needs to be further explored and verified in field
experiments.

The members in the same group may have similar functions.
Previous studies have been reported that AtWRKY25 and
AtWRKY33 overexpression could increase plants salt tolerance
(Jiang and Deyholos, 2009); overexpression of TaWRKY2
conferred transgenic Arabidopsis with higher salt and drought
tolerance (Niu et al., 2012); and overexpression of DgWRKY5
enhanced salt tolerance in transgenic chrysanthemum (Liang
et al., 2017). Since DgWRKY4, AtWRKY25, AtWRKY33,
TaWRKY2, and DgWRKY5 all belong to the group I of the
WRKY family, we inferred that DgWRKY4 may have a positive
effect on salt stress. Moreover, our previous researches proved
that DgWRKY1 and DgWRKY3, which, respectively, belong to
group II-c and group III, were also two positive regulator of salt
tolerance (Liu et al., 2013, 2014). It can be speculated that the
WRKY family plays an important role in salt stress resistance.

Transcription factors usually act as “master switches,” since
they mainly enhance plants stress tolerance by activating

and regulating the expression of downstream genes to adapt
to the coercive environment (Liu et al., 1998). DREB1
and DREB2 belong to AP2/EREBP TF family (Shinozaki
and Yamaguchi-Shinozaki, 2000), and overexpressing drought
response element binding (DREB) protein genes has been
reported to positively regulate downstream stress-responsive
genes and confer increased tolerance of drought, high salinity,
or low temperature to transgenic plants (Yamaguchi-Shinozaki
and Shinozaki, 2001; Oh et al., 2005; Cong et al., 2008; Zhang
et al., 2013; Chen et al., 2016). Cold shock domain proteins
(CSDs) ordinarily were regarded as working on conferring cold
tolerance to plants (Chaikam and Karlson, 2008; Park et al.,
2009), however, Kim et al. (2013) reported that overexpression
of AtCSP3 (encoding one member of CSD TF family) could
enhance tolerance to salt and drought stresses in Arabidopsis.
In our study, DgDREB1A, DgDREB2A, DgCSD1, and DgCSD2
were all up regulated greater in overexpressed lines than in WT
(Figures 9E–H), indicating that overexpression of DgWRKY4
could actively promote the expression of these stress-inducible
TFs, then further activate more downstream genes participating
in many vital biological processes. In addition, the DREB family
is mainly responding to drought stress. The up regulation of
DgDREB1A/2A caused by overexpression of DgWRKY4 let us
infer that transgenic chrysanthemum may be conferred the
drought tolerance. And additional work is also needed to
understand the molecular mechanism of DgWRKY4 in drought
stress response.

Photosynthesis is the most important factor in plant
productivity, and chlorophyll is an essential factor in the process
of photosynthesis. Under salinity condition, chlorophyll content
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FIGURE 7 | Analysis of ROS accumulation levels in WT and DgWRKY4 overexpressed chrysanthemum lines (OE-4 and OE-6) under salt stress. (A,B) Quantitative
measurement of H2O2 and O−2 in WT, OE-4, and OE-6 after 0, 5, 10, and 15 days of exposure to salinity. (C,D) Histochemical staining with DAB and NBT for
assessing the accumulation of H2O2 and O−2 , respectively, under non-stress and salt conditions. Data represent means and standard errors of three replicates. The
different letters above the columns indicate significant differences (P < 0.05) according to Duncan’s multiple range test.

of WT reduced more rapidly than transgenic chrysanthemum,
which was consistent with the phenomenon that WT turning
yellowed and wilted was faster than transgenic chrysanthemum.
Decrease of chlorophyll content mainly due to salt stress
increased the chlorophyll enzymes activity and promoted
chlorophyll degradation (Yeo, 1998). Salt stress also could
cause leaf water potential and stomatal conductance decrease,
limiting CO2 to photosynthetic mechanism, thus inhibiting
photosynthesis (Mguis et al., 2013). However, in our study, the
decrease of Pn, Gs, and Tr, and the increase of Ci suggested that
non-stomatal restriction was a major factor in the Pn decline of
chrysanthemum under high salinity conditions (100–400 mM).
Possible reasons for this include an increase of the resistance of
mesophyll cells to stomata diffusion, a decrease of CO2 solubility,
a decreased affinity of Rubisco enzyme to CO2, a decreased
RuBP regenerative capacity, or the stability of key components
in photosynthetic apparatus was decreased by salt stress (Zheng
et al., 2002). Leaf gas exchange parameters attested that transgenic
chrysanthemum had stronger photosynthesis than WT under

salt stress, indicating DgWRKY4 may play a positive role of
slowing down the damage to chrysanthemum photosynthesis by
salt stress.

High salinity would cause lipid peroxidation and bring about
the accumulation of MDA, thus MDA content could reflect
the degree of plant damage caused by salt stress (Yoshimura
et al., 2004). WT chrysanthemum accumulated more MDA
than overexpressed lines (Figure 7A), demonstrating that
DgWRKY4 might protect chrysanthemum by reducing the MDA
accumulation level under salt stress. Excess ROS would cause
serious damage to plant protein (Zhang X. et al., 2011), and the
antioxidant system of plants plays a dominant role in minimizing
cellular damage caused by active oxygen and maintaining a
ROS balance (Apel and Hirt, 2004). Analyses showed there
was a higher activity of ROS scavengers in overexpressed lines
than WT under salinity (Figures 5B–D), which were consistent
with physiological results, as the expression of antioxidant
genes (DgCuZnSOD, DgCAT, and DgAPX) was up regulated
under salinity (Figures 9A–C). The final result proved that
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FIGURE 8 | Physiological effects of salt stress on WT and DgWRKY4 overexpressed chrysanthemum lines. (A) Leaf MDA content. (B) Leaf SOD activity. (C) Leaf
POD activity. (D) Leaf CAT activity. (E) Leaf proline content. (F) Leaf soluble sugar content. Data represent means and standard errors of three replicates. The
different letters above the columns indicate significant (P < 0.05) differences according to Duncan’s multiple range test.

FIGURE 9 | Expression of stress-related genes in WT and overexpressed lines (OE4 and OE-6) at various time points (0, 5, 10, and 15 days) of salinity.
(A) DgCu/ZnSOD. (B) DgCAT. (C) DgAPX. (D) DgP5CS. (E) DgDREB1A. (F) DgDREB2A. (G) DgCSD1. (H) DgCSD2. EF1a was amplified as a control. Data
represent means and standard errors of three replicates. The different letters above the columns indicate significant (P < 0.05) differences according to Duncan’s
multiple range test.
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DgWRKY4 transgenic chrysanthemum exhibited lower ROS
accumulation than WT under salt stress (Figures 7A–D).
Therefore, physiological and molecular double experiments
showed that overexpression of DgWRKY4 was beneficial to ROS-
scavenging system to work better, thereby enhancing the salt
tolerance of chrysanthemum.

To alleviate the dehydration evoked by high salinity, plants
would increase accumulation of metabolites, such as soluble
protein, soluble sugar, and proline (Vinocur and Altman,
2005). Among them, proline not only plays important roles in
osmotic adjustment, protecting cellular macromolecules and cell
membrane structures (Singh et al., 2000) but also scavenging
ROS under stresses (Miller et al., 2010). In our study, transgenic
chrysanthemum accumulated more proline and soluble sugar
than WT under salinity (Figures 8E,F). And the expression
level of DgP5CS was up regulated in overexpressed lines
(Figure 9D), which was consistent with the increase of proline.
All above results suggested that DgWRKY4 might enhance
osmotic regulation ability of transgenic chrysanthemum to resist
salt stress.

CONCLUSION

In conclusion, our study identified DgWRKY4 as a salt-
inducible TF, as well as a positive regulator of salt tolerance
in chrysanthemum. The results showed that DgWRKY4 was up

regulated by NaCl, and DgWRKY4 overexpression improved salt
tolerance of transgenic chrysanthemum. The enhanced tolerance
of transgenic chrysanthemum was achieved by relatively strong
photosynthetic capacity, great activities of antioxidant enzymes,
high accumulation of proline and soluble sugar, and improved
expression of stress-related genes, suggesting that overexpression
of DgWRKY4 may lead to an effective ROS-scavenging and
osmotic adjustment system to maintain cell stability and alleviate
the harm of salt stress to plants. Therefore, DgWRKY4 can serve
as an important candidate gene for salt-tolerant plant breeding.
Further research will focus on down-stream target genes of
DgWRKY4 to understand its deeper molecular mechanisms in
salt stress response.
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