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Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for

significant yield losses in soybean production. Among the methods available for

controlling this disease, breeding for resistance is the most promising. Progress in

breeding efforts has been slow due to the insufficient information available on the genetic

mechanisms related to resistance. Genome-wide association studies (GWAS) enable

unraveling the genetic architecture of resistance and identification of causal genes. The

aims of this study were to identify new sources of resistance to CR in a collection of 459

diverse plant introductions from the USDA Soybean Germplasm Core Collection using

field and greenhouse screenings, and to conduct GWAS to identify candidate genes

and associated molecular markers. New sources for CR resistance were identified from

both field and greenhouse screening from maturity groups I, II, and III. Five significant

single nucleotide polymorphism (SNP) and putative candidate genes related to abiotic

and biotic stress responses are reported from the field screening; while greenhouse

screening revealed eight loci associated with eight candidate gene families, all associated

with functions controlling plant defense response. No overlap of markers or genes was

observed between field and greenhouse screenings suggesting a complex molecular

mechanism underlying resistance to CR in soybean with varied response to different

environments; but our findings provide useful information for advancing breeding for CR

resistance as well as the genetic mechanism of resistance.
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INTRODUCTION

Soybean [Glycine max (L.) Merrill] is one of the most economically important crops due to its
potential as an oilseed crop and major source of plant protein used for both livestock and human
consumption. The United States (US) is responsible for 33% of the world production with a record
106.96 million ton in 2015, grown on 33.5 million ha and prices range from $296 to $351 per
ton (http://www.usda.gov). However, production can be strongly compromised by abiotic stresses,
pests, and pathogens (Hartman et al., 2015).
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Charcoal rot (CR), a disease caused by Macrophomina
phaseolina, can reduce both yield and seed quality (Smith and
Wyllie, 1999). For economically important soybean diseases,
it ranked among the top 10 in the US from 1996 to 2014,
with an average of 1 million ton of yield loss according
to the Extension and Outreach at the University of Illinois
(extension.cropsciences.illinois.edu), and sixth in the top eight
soybean producing countries in 2006 (Wrather et al., 2010).
Charcoal rot is distributed worldwide in the tropics and sub-
tropics, as well as in the US north central and southern regions
(Wyllie, 1988), and M. phaseolina is known to infect over 500
plant species of economic importance including maize, sorghum
(Adeyanju et al., 2015), and sunflower (Pawlowski et al., 2015).
Annually, CR is a greater concern in the southern US due
to frequent hot and dry conditions that tend to occur during
important soybean developmental growth stages.

M. phaseolina is a soil- and seed-borne polyphagous fungus.
The abundant production of minute black microsclerotia causes
the infected plant tissues to blacken, and therefore, the disease
is known as charcoal rot (Sarr et al., 2014). The fungus survives
in the soil mainly as microsclerotia that are stimulated by
root exudates to germinate and infect host plant material.
Limiting soil moisture and higher air and soil temperature
increases disease severity (28–35◦C; Smith and Wyllie, 1999).
The pathogen may move from infected roots to stems, clogging
vascular tissues in the tap root (Kaur et al., 2012), and to seed,
causing reduced germination, and seedling rots. Aboveground
symptoms of CR appear after flowering (soybean growth stage
R1), and are particularly evident in soybean fields at the R5
(beginning seed), R6 (full seed), and R7 (beginning maturity)
growth stages (Wyllie, 1988). In severe situations, diseased plants
may wilt and prematurely die.

Charcoal rot management strategies in soybean include
cultural methods, seed-applied fungicide, and biological control,
but these have not been effective or widely adopted and have
provided limited control (Mengistu et al., 2015). In this scenario,
genetic resistance may be the most feasible and sustainable
method to manage CR (Mengistu et al., 2007). Complete
resistance to M. phaseolina is not reported in any plant species,
but identification of partial resistance has been reported in
soybean, including moderately resistant cultivars, such as DT97-
4290, used as a disease check standard (Paris et al., 2006;
Mengistu et al., 2007, 2013; Twizeyimana et al., 2012; Pawlowski
et al., 2015). However, investigations into commercially available
germplasm and their general response to the fungus have not
been widely performed.

Breeding for resistance is difficult because most diseases are
quantitatively inherited and controlled by multiple genes; in
such a scenario, methodologies that help to elucidate resistance
mechanisms, and identify resistant genotypes contribute to
increased success in breeding programs (St Clair, 2010).
Primarily, breeding efforts have been focused on genetic entries
from later maturity groups (MGs; e.g., MG IV and V), which
are coincident with predominant CR regions in the southern US;
however, the identification of CR in northern latitude soybean
growing regions require research and breeding efforts in earlier
maturity regions that plant early maturity varieties (typically

MG III and earlier). Breeding efforts can be complemented with
genome wide association studies (GWAS) as these serve a dual
role of disease screening as well as identification of genetic
markers and candidate genes.

Genome-wide association studies associate variation across
the entire genome with phenotypes (Korte and Farlow, 2013)
and are used to identify genetic variations of important
traits including disease resistance (Iquira et al., 2015). These
GWAS use high-density markers and a population of diverse
individuals to provide greater mapping resolution than
conventional methodologies, which enables the prediction
or identification of putative causal genes, and reduce time
and cost for the genetic dissection of traits (Song et al.,
2013; Zhang et al., 2015b). In soybean, GWAS have been
previously utilized to identify genes associated with resistance
to Phytophthora root rot (Sun et al., 2014), soybean cyst
nematode (Bao et al., 2014; Vuong et al., 2015), iron deficiency
chlorosis (Mamidi et al., 2014; Zhang et al., 2017), sudden
death syndrome (Wen et al., 2014; Zhang et al., 2015a,b),
Sclerotinia stem rot (Bastien et al., 2014; Iquira et al.,
2015; Zhao et al., 2015), and soybean aphid (Chang et al.,
2016).

The aims of this study were to (1) identify new sources of CR
resistance in 459 diverse soybean plant introduction (PI) lines
from MG I, II, and III through field and greenhouse screening,
and (2) conduct GWAS to increase our understanding of the
resistance mechanisms and identify genetic markers associated
with resistance that will contribute to the future selection of
genotypes for breeding programs and genetic studies for CR
resistance.

MATERIALS AND METHODS

Two experiments were conducted to identify CR resistance
sources and to locate candidate genes and markers related
to resistance. The first experiment was a field screening
using root and stem severity (RSS; Mengistu et al., 2007) to
classify genotypes for resistance. The second experiment was
a greenhouse screening utilizing the cut-stem methodology
(Twizeyimana et al., 2012) to classify genotypes for resistance
based on the area under the disease progress curve (AUDPC).

Plant Material
A collection of 459 soybean PI lines, spanning MG I to III,
was obtained from the United States Department of Agriculture
(USDA) Soybean Germplasm Collection. Two breeding lines
(DT97-4290 provided by the USDA (Paris et al., 2006), and
H3LER11017-00-0238 provided by Pioneer) were used as
moderately resistant checks, and two others (Pharaoh provided
by the USDA (Schmidt et al., 1993), and H3LER11022-00-0037
provided by Pioneer) were used as susceptible checks.

Macrophomina phaseolina Isolate and
Culture Maintenance
An isolate ofM. phaseolina collected from an Iowa soybean field
in 2013 (D. Mueller lab, ISU) was used for all associated studies as
outlined below. This isolate will be available to researchers with
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appropriate permits. From the plate of mycelium obtained from
Dr. Mueller’s lab, a mycelial plug transfer was made to create
inoculum on PDA. We inoculated the fungus onto susceptible
plants, then re-isolated the fungus to inoculate the soybean plants
(field and greenhouse experiments in this study). The fungus
had the same morphological characteristics as the original plate
as well as showed similar symptoms on the susceptible plant
inoculations.We completed Koch’s postulates with the re-isolated
pathogen (to inoculate susceptible soybean plants) to confirm its
pathogenicity.

The inoculation method was adapted from Mengistu et al.
(2007). Sorghum (Sorghum bicolor L.) seed (400 mL by volume)
was soaked for 24–48 h in 4 L of distilled water. The liquid was
decanted, and seedwere equally divided and put into autoclavable
bags. The autoclave cycle consisted of 121◦C for 30 min, and
samples were autoclaved twice. The autoclaved sorghum seed
were put in bags containing 1.8 kg of sorghum grain and 1-week-
old culture plugs of M. phaseolina (grown on PDA) were placed
into each bag to inoculate the sorghum at a rate of 1 plate of
fungus per 1.8 kg of seed. The bags were closed and incubated
at 30◦C for 2 weeks while periodically shaking the bag. After
2 weeks, the sorghum seed were completely colonized by the
fungus and were darkened with microsclerotia. These seed were
removed from the sealed bags to allow air drying, and were then
stored in sealed plastic containers at 4◦C until use.

Field Experiment
Four hundred sixty five soybean genotypes including 459 PI
lines, four maturity checks (MN1410, LD02-4485, IA3023, and
IA4005), one moderately resistant check (H3LER11017-00-0238,
provided by Pioneer), and one susceptible check (H3LER11022-
00-0037, provided by Pioneer), were grown near Muscatine, IA,
in 1.52m long single rows with 0.76m row to row distance
and 0.91m alleyways. Maturity and disease checks were spaced
every 100 and every 50 entries, respectively. Genotypes were
arranged in a randomized complete block design (RCBD)
with three replications. During field planting, the planter was
calibrated to apply 3 g of charcoal rot-infected sorghum seed
per linear 0.3m in furrow with the soybean seed at a rate
of 8 seeds/0.3m using a 4-row planter (Almaco Company,
Nevada, IA).

Stem collection and charcoal rot ratings were based on the
evaluation of root and stem severity rating (RSS; Mengistu et al.,
2007). For each replication, five plants of each genotype were
randomly harvested between the R7 and R8 growth stage from
each row. Stem and top of the tap root portion of each plant was
obtained by gently uprooting each plant and clearing it of the
soil and other debris. Each plant stem was longitudinally split
using a sharp knife and ratings were given on a scale of 1–5
(Figures 1A,B).

Greenhouse Screening
A total of 463 soybean genotypes were evaluated including 459
PI lines and four checks, two resistant and two susceptible
checks repeated twice per block. The genotypes were arranged
in a randomized complete block design (RCBD) with four
replications. Two plants of each genotype in cups made

for an experimental unit in each block. Plants were grown
in 0.24 L styrofoam cups, with holes in the bottom for
drainage, filled with soilless mix (Sunshine Mix, LC1; Sun
Gro Horticulture Inc., Agawam, MA) and topped with pellets
of slow-release fertilizer (Osmocote Plus 19-9-12, 23 g per
cup) spread over the surface of each cup. Seeds were over
sown, three seeds per cup, in each pot and thinned to two
plants 10 days post-emergence. All experiments were conducted
in a greenhouse maintained at 30◦C day and 22◦C night
temperatures, and the room was supplemented with high-
pressure 400W sodium lights to ensure the 16-h photo period.
Plants were watered manually to avoid plant wilting. The cut-
stem inoculation technique was used to classify genotypes for
resistance (Twizeyimana et al., 2012). Briefly, soybean plants
were grown to the V2 growth stage and a razor sharp blade
was used to cut 40mm above the unifoliate node. From the
growing margin of a 4-day old culture of M. phaseolina on
PDA, a mycelial plug was obtained using a 200µL pipette
tip (Fisher Scientific). The pipette tip with mycelial plug was
immediately placed over the stem cut by the razor blade
and ensuring the agar was in embedded in the stem. Ratings
were based on the recorded measurements of lesion length.
The details of measurements are provided in Pawlowski et al.
(2015) with the modification that the length of cut-stem at
the time of inoculation was 40mm instead of 25mm used
in their publication. Measurements were taken the third day
after inoculation (dai), and followed every 3 days, for a total
of 5 ratings (3, 6, 9, 12, and 15 dai). The area under the
disease progress curve (AUDPC) for each entry was calculated to
estimate the disease resistance and select superior PI lines (Jeger
and Viljanen-Rollinson, 2001). AUDPC was used for GWAS
using greenhouse data.

Statistical Analyses
The model for the phenotypic trait was Yij =µ + gi + bj +
eij, whereµ is the total mean, gi is the genetic effect of the ith
genotype, bj is the block effect, and eij is a random error following
N(0, σ 2

e ). Broad sense heritability was calculated as H2
= σ

2
g /[σ

2
g

+ σ
2
e /r], where σ

2
g is the genotypic variance, σ

2
e is the error

variance, and r is the number of replications. The estimation of
variance components was performed by R software with all effects
considered to be random.

Genotyping and Quality Control
The SNP dataset of the association panel was prepared by
a previous study using the Illumina Infinium SoySNP50K
BeadChip and was retrieved from the SoyBase (https://soybase.
org/; Sonah et al., 2015). Of the 42,180 SNPs available for the
association panel, 60 SNPs failed to anchor to the reference
genome sequence and were excluded from further analyses.
Individual markers with missing rates >10% were omitted, and
the remaining missing data were imputed using BEAGLE version
3.3.1 with default parameter settings (Browning and Browning,
2007, 2009). SNPs with a minor allele frequency (MAF) <5%
after imputation were also omitted for further analyses. Finally,
35,683 SNPs were used for GWAS.
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FIGURE 1 | (A) Classes of charcoal rot resistance where resistant (values of 1), moderately resistant (values >1 and ≤2), moderately susceptible (values >2 and <3),

and susceptible (values 3–5). (B) Split stem showing symptoms associated with the scores: 1, no microsclerotia visible in vascular tissue; 2, very few microsclerotia

visible and vascular tissue is not discolored; 3, microsclerotia partially covering the vascular tissue and there is minimal discoloration; 4, numerous microsclerotia in the

tissue and also visible under the outside epidermis, and discolored vascular tissue; 5, darkened vascular tissue due to high numbers of microsclerotia both inside and

outside of the stem. (C) Distribution of the 459 PI lines and checks for resistance classification. (D) Class of location of the resistant check in accessions distribution.

Marker Distribution and Linkage
Disequilibrium Estimation
The Glyma.Wm.82.a2 reference genome was used to obtain
chromosome physical lengths (bp) through SoyBase (www.
soybase.org) which were used to calculate genome-wide inter-
marker distance and chromosome-wide densities. Pairwise
linkage disequilibrium (LD) between markers was measured
using the squared correlation coefficient (r2) between alleles
with the R package, synbreed (Wimmer et al., 2012). The r2

was calculated separately for euchromatic and heterochromatic
regions due to the variability of recombination. Only significant
r2 values (P < 0.001), calculated according to Remington et al.
(2001), were considered informative. The chromosomal distance
where the average r2 dropped to half of its maximum value was
used to estimate the LD decay rate of the population (Huang et al.,
2010).

Genome-Wide Association Analysis
To minimize the effect of environmental variation, best linear
unbiased predictors (BLUPs) of individual lines were calculated
using the R package, lme4 (Bates et al., 2014) for further analysis.
The association analysis was conducted by using the genome
assessment and prediction integrated tool (GAPIT) R package as
descried in previous studies (Zhang et al., 2010; Lipka et al., 2012).
No population structure was involved in the mixed linear model
as a covariant as suggested by the Bayesian information criteria
test.

The threshold for significant associations was determined by
the empirical significance level of P < 0.001. To access the
empirical significance of SNPs, a total of 1,000 permutations of

genome-wide association was performed as previously described
(Zhang et al., 2015a). For each iteration, the phenotype values
and kinship matrix (K) in the MLM remained unchanged while
genotypes of each SNP were permuted. The threshold was set at
the lowest P-value of the SNP-trait association that did not meet
the empirical significance level.

Prediction of Putative Candidate Genes
Genes annotated in Glyma1.1, Glmy1.0, and NCBI RefSeq
gene models, available through SoyBase aligning to the
Glyma.Wm.82.a2 reference genome (www.soybase.org), were
used as the source of candidate genes. The significant SNPs in
LD r2 > 0.7 with the peak SNP were clustered to form the
candidate region of the quantitative trait locus (QTL). The peak
SNP is defined as the SNP with the lowest P-value within the
region defined above. The prediction of candidate genes resulted
from the following priorities: (i) genes of known function related
to soybean disease resistance, (ii) genes of known function as
orthologs related to disease resistance in Arabidopsis, and (iii)
genes pinpointed by the peak SNPs.

RESULTS

Field Screening
The RSSmethod, used in field screening, enabled identification of
accessions with better disease resistance than the resistant checks
(Figure 1). The mean score was 3.5 with a standard deviation
of 1.05. PI379559D had the lowest score of 1.0 and classified
as resistance as per the RSS classification (Paris et al., 2006;
Mengistu et al., 2007). Twenty-six accessions had a score of 5.0,
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and the moderately resistant check, H3LER11017-00-0238, had
a score of 4.0. Moderately resistant accessions present scores
ranging from values >1 and ≤2, and for this experiment 44
accessions met these criteria. However, 90% of the accessions
were classified as moderately susceptible and susceptible, with
values >2 and≤5.

Greenhouse Screening
Significant differences among the genotypes were observed
(P < 0.001). The mean AUDPC value was 470 with a standard
deviation of 124. PI603444A had the highest AUDPC value of
1,036, and PI567241 had the lowest AUDPC value of 270. The
moderately resistant checks, DT97-4290 and H3LER11017-00-
0238, had AUDPC values of 359 and 382, respectively, and the
susceptible checks, Pharaoh and H3LER11022-00-0037, had a
value range of 465 and 567, respectively.

Accessions with better resistance than the resistant checks
were identified in the greenhouse screening (Figure 2). Among
the 459 accessions, 51 (11%) exhibited AUDPC values less than
the resistant checks. All accessions, even the most resistant,
developed a lesion, which indicated that infection had occurred
but that the plant was able to stop fungal development.

Genotyping and Quality Control
For field screening, 155 (34%) accessions exhibited better CR
resistance than the resistant check, and for greenhouse screening,
30 (7%) accessions were more resistant than the resistant checks.
Table 1 shows the top 20 genotypes selected from maturity
groups I–III for disease resistance from each experiment (field
and greenhouse screening). Heritability values ranged from
0.60 to 0.58 for greenhouse and field screening, respectively
(Supplementary Table 1). The field and greenhouse screening had
a low but significant negative correlation (rfg = −0.12). Among
all the accessions selected for the field and the greenhouse, 22
(5%) were common between field and greenhouse experiments
(Table 2) showing a good level of resistance in both and included

accessions PI379559D and PI603594 with the lowest RSS and
AUDPC scores, respectively.

Genome-Wide Association Analysis and
Prediction of Putative Candidate Genes
A total of 19 SNPs associated with charcoal rot resistance
were identified across chromosomes 4, 14, and 18 for field
experiments, and chromosomes 6, 8, 9, 12, 18, and 20 for
greenhouse experiments (Supplementary Figure S1). Based on
the results of GWAS and genes annotated in SoyBase (www.
soybase.org), four putative candidate genes were predicted for
four of the six loci associated with field RSS scores. They
are orthologs of Arabidopsis genes related to stress response,
antimicrobial properties, and cell wall functions (Table 3). For
the greenhouse AUDPC, a total of 11 putative candidate genes
were predicted for eight of the 30 loci associated with the trait.
Three of them are orthologs of Arabidopsis genes related to
cell defense components and disease plant resistance proteins
(Table 3).

Field screening identified four putative candidate genes
(Table 3). The one, Glyma.04g053100, on chromosome
4 was identified at 6.4 kb downstream of ss715588228.
Glyma.04g053100 belongs to a universal stress protein family
(USP) protein and is homologous to the AT5G12000.1 that
encodes a Leucine-rich repeat receptor-like protein kinase
response to stress (Table 3). On chromosome 14, the candidate
gene Glyma.14g002000 was identified at 6.9 kb away from
the peak SNP ss715618004. It encodes a multidrug resistance
protein and is homologous to the AT4G38380.1, which
encodes a transporter of plant metabolites related to defense
signals (Table 3). On chromosome 18, two gene candidates,
Glyma.18g248100 and Glyma.18g228600, were found at the
proximity of the peak SNP ss715631906 and ss715631726,
respectively. The former is homologous to Arabidopsis
AT4G17070.1 encoding a peptidyl-prolyl cis-trans isomerase
and is related to the response to oxidative stress and pathogen

FIGURE 2 | (A) Variation of disease lesion length (mm) for charcoal rot from disease screening in greenhouse. (B) Distribution of the 459 PI lines and checks for

resistance classification based on AUDPC. (C) Classes of distribution of the AUDPC. (D) Class of location of the resistant checks in the distribution of the accessions.
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TABLE 1 | Genotypic value (GV) and maturity group (MG) of the top 20 plant introduction lines selected for charcoal rot resistance that were better than the resistant

checks, variation of GV for low and high ratings, and GV for the resistant checks for field and greenhouse screening for charcoal rot resistance.

Field Greenhouse

Accessions GV Accessions GV

Lowest disease rating 2.1 Lowest disease rating 351.2

Highest disease rating 4.3 Highest disease rating 806.2

Disease resistant checks GV Disease resistant checks GV

DT97-4290 n/e DT97-4290 392.2

H3LER11017-00-0238 4.0 H3LER11017-00-0238 427.0

Top 20 accessions MG GV Top 20 accessions MG GV

PI379559D III 2.1 PI567241 II 351.2

PI167240 III 2.1 PI549064 II 352.2

PI458507 III 2.1 PI379559D III 356.6

PI461509 I 2.1 PI091725 II 360.2

PI538389 III 2.1 PI471899 III 360.9

PI189958 II 2.2 PI603594 II 361.2

PI091091 II 2.2 PI567277 II 362.1

PI548316 III 2.2 PI088497 I 362.6

PI549056 II 2.2 PI437462A II 362.7

PI437377 III 2.2 PI504497 II 363.6

PI476911 II 2.2 PI567774B III 364.9

PI538377 III 2.3 PI084973 III 366.8

PI578376 II 2.3 PI361090 I 371.2

PI091102 II 2.3 PI079694 I 371.9

PI091349 III 2.3 PI232989 II 372.1

PI479711 II 2.3 PI096322 III 372.9

PI578363 II 2.3 PI404169B III 374.4

PI588008A III 2.3 PI567250B III 375.0

PI603594 II 2.3 PI574478B II 379.6

PI092683 II 2.4 PI467307 I 379.7

infection. The latter produces a protein containing the LysM
domain, which is related to cell wall catabolism and fungal
pathogen defense in Arabidopsis (Table 3).

Greenhouse study identified eight loci across six
chromosomes (Table 3). On chromosome 6, two candidate
genes were identified at 24.5 and 14.8 kb upstream of the
peak SNP ss715593307. Both encode a Cytochrome P450
protein involved in biosynthetic reactions including defensive
compounds such as terpenoids. On chromosome 8, two loci were
identified, each with two candidate genes. Glyma.08g306800
and Glyma.08g306900 at the proximity of ss715601990 encoding
a Glutathione S-transferase, proposed to be involved in the
synthesis of stress-related proteins and defense components.
The second locus was targeted by two SNPs in high LD
(r2 > 0.7). Two genes located at 21.3 kb downstream and 35.8 kb
upstream of the leading SNP ss715602087 were identified.
Glyma.08g315900 and Glyma.08g316500 encode a peptide
methionine sulfoxide reductase (PMSR) and a Calmodulin-
domain Protein Kinase (CDPK), respectively, and both are
related to abiotic and biotic stress responses. On chromosome 9,
Glyma.09g230300 was identified 15.6 kb downstream of the lead
SNP ss715604575. It encodes a leucine rich repeat (LRR) protein

that is involved in disease resistance mechanisms. The candidate
gene, Glyma.12g006300, was identified in a region consisting of
16 significant SNPs in high LD (r2 > 0.7) on chromosome 12. It
also encodes a LRR type protein and is related to disease defense
components and stress related responses. On chromosome
18, putative candidate gene Glyma.18g262800 is located 2.9 kb
downstream of the peak SNP ss715632099 and encodes an AP2
domain-containing inductor of ethylene-responsive element
(ERE) that is associated with plant disease defense. Similarly,
Glyma.20g197000 encoding an AP2 domain-containing protein
was found at the close proximity of the peak SNP ss715638424
on chromosome 20.

DISCUSSION

Charcoal rot is an important fungal disease; however, limited
information is available on the resistance of earlier maturity
soybean accessions to this disease in the US. From both field and
greenhouse screenings in the current research, new sources of
charcoal rot resistance were identified for MGs I to III among
the accessions that performed better than or similar to the
resistant checks. Pawlowski et al. (2015) reported three PI lines
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TABLE 2 | Selection of soybean genotypes with better charcoal rot resistance

than the resistant checks for both field and greenhouse experiments using 459

plant introduction accessions from the USDA germplasm bank.

Accessions MG Field rating Greenhouse rating (AUDPC)

PI567241 II 3.6 351.2

PI549064 II 3.0 352.2

PI379559D III 2.1 356.6

PI091725 II 2.8 360.2

PI471899 III 2.9 360.9

PI603594 II 2.3 361.2

PI437462A II 3.8 362.7

PI504497 II 3.8 363.6

PI567774B III 3.8 364.9

PI084973 III 2.5 366.8

PI079694 I 3.9 371.9

PI232989 II 3.4 372.1

PI096322 III 3.2 372.9

PI404169B III 3.6 374.4

PI567250B III 3.5 375.0

PI574478B II 3.2 379.6

PI467307 I 3.3 379.7

PI578499A II 2.7 380.6

PI423870 II 3.2 383.4

PI227558 II 3.6 391.2

PI458307A III 3.4 391.5

PI458506 II 2.8 391.5

Disease resistant checks Field Greenhouse

DT97-4290 n/e 392.2

H3LER11017-00-0238 4.0 427.0

from maturity groups I, II, and III exhibiting partial resistance
to M. phaseolina in a greenhouse screening of 81 genotypes
using the cut-stem technique; however, there was no overlap
with the genotypes from this study. The present study identifies
previously unreported sources of charcoal rot resistance from
early MGs (I, II, and III), contributing to the development of CR
resistant cultivars adapted to northern soybean growing regions
in the US, and complements the screening of soybean genotypes
in the later maturities (MG IV and beyond; Mengistu et al.,
2007). The identification of these accessions, together with the
heritability value, reinforces the existence of disease expression
repeatability and usefulness to breeding programs. Utilization of
field and greenhouse testing for charcoal rot resistance allowed
the identification and selection of soybean accessions with better
disease resistance than the resistant check in both field and
greenhouse environments.

The field and greenhouse screening allowed the comparison
of different environments in an attempt to understand the
mechanisms of resistance involved in each and to verify
correlation between expression of resistance in field and
greenhouse environments. The correlation between field and
greenhouse experiments was significant, but showed a low
negative value (rfg = −0.12). Charcoal rot resistance has

been screened primarily through field evaluations (Bristow and
Wyllie, 1984; Pearson et al., 1984; Smith and Carvil, 1997;
Mengistu et al., 2007). However, with the development of new
inoculation methodologies, some screenings have been evaluated
in controlled environments of greenhouse and growth chamber
(Bristow and Wyllie, 1984; Surrette et al., 2006; Twizeyimana
et al., 2012). No researchers screened plants under both field
and greenhouse conditions, although Twizeyimana et al. (2012)
had reported a comparable result for the cut-stem methodology
with previously reported field results. It is important to highlight
that these comparable results compared 16 PI lines pre-screened
for resistance and did not represent a true correlation of
a heterogeneous population consisting of variable resistance
responses.

The lack of correlation between field and greenhouse
experiments for disease assessment is commonly reported in
literature (Kim and Diers, 2000; Hoffman et al., 2002; Hartman
et al., 2014). Environmental factors, including rainfall and
temperature, and plant maturity have major effect on the
severity of CR and must be considered when correlating
greenhouse and field studies that evaluate a diverse maturity set
of soybean accessions (Pawlowski et al., 2015). Several issues
with greenhouse and field disease experiments, such as control
of environmental conditions, physiological differences between
genotypes, resistance mechanisms, uniform concentrations of
inoculum, and inoculation location on the plant should be
considered to help standardize and correlate future research
efforts. Plants in field tests are indirectly inoculated by placing
inoculum with the seed during planting, and the initial inoculum
content of soil is generally not quantified. Furthermore, the
rating methodologies for field and greenhouse screening may
be of influence because one rating is subjective based on
visual symptoms (RSS), and the other is directly quantified by
measuring the extent of necrosis (cut-stem method). Another
issue is related to the plant growth stage and physiology. A
plant’s response to abiotic and biotic stresses involves complex
signaling pathways that depend on numerous genes, proteins,
and metabolites, reflecting in differences in the resistance
mechanism, which may also vary across life stages (Radwan et al.,
2013). In the current studies, disease evaluation occurred at the
V2 growth stage in the greenhouse screening, and R7 growth
stage for the field screening. Response differences due to artificial
wounding (in cut stem method) and growth stage may relate to
the expression of different genes for disease reactionmechanisms,
and environmental conditions for field settings can generate
genotype by environment interactions.

Few accessions showed better performance than the checks
for both field and greenhouse screening (22 accessions from
459), and need careful development of strategies for selection.
Although greenhouse screening is considered faster and less
laborious, the correlation between resistance observed in the
greenhouse vs. in field screening is not consistently related.
Therefore, field screening, which better represents the final
environment for crops, should still be considered in the
screening process. However, it should be considered that the
available methods for CR assessment are few and new, and
still under processes of improvement. In this scenario, further
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TABLE 3 | SNPs significantly associated with charcoal rot resistance through GWAS and predicted candidate genes for field and greenhouse screening.

Chromosome SNP p-value Gene Annotation Ortholog Ortholog function*

FIELD

4 ss715588228 1.45E-04 Glyma.04g053100 Universal stress protein family (USP);

Leucine-rich repeat receptor-like

protein kinase

AT5G12000.1 Response to stress

14 ss715618004 5.87E-05 Glyma.14g002000 Multi Antimicrobial Extrusion (MATE);

Multidrug resistance protein

AT2G38330.1 Transmembrane transport

18 ss715631906 4.63E-05 Glyma.18g248100 Cyclophilin (CyPs) AT4G17070.1 Response to oxidative stress

18 ss715631726 3.18E-04 Glyma.18g228600 LysM domain AT5G62150.1 Cell wall macromolecule

catabolic process

GREENHOUSE

6 ss715593307 4.20E-06 Glyma.06g176100/

Glyma.06g176200

Cytochrome P450 AT3G48310.1 Abiotic and biotic stress

response

8 ss715601990 2.67E-06 Glyma.08g306800/

Glyma.08g306900

Glutathione S-transferase C-terminal

domain (GST)

AT3G20410.1/

AT4G25130.1

Cell defense/protection from

oxidative stress

8 ss715602087 1.95E-06 Glyma.08g315900/

Glyma.08g316500

Peptide methionine sulfoxide

reductase (PMSR)/CDPK

calmodulin-domain protein kinase

isoform 9

AT5G61460.1/

AT5G62420.1

Chromosome

structure/oxidation reduction

9 ss715604575 7.46E-05 Glyma.09g230300 Leucine Rich Repeat (LRR) AT5G61480.1 Vascular tissue development

12 ss715612760 3.73E-08 Glyma.12g216200 Terpene synthase (TPS) AT5G23960.2 Sesquiterpenes generator

12 ss715613120 4.04E-05 Glyma.12g006300 Leucine Rich Repeat (LRR) AT5G61480.1 Vascular tissue development

18 ss715632099 2.93E-04 Glyma.18g262800 AP2 domain AT5G19790.1 Encondes an ethylene

response factor

20 ss715638424 1.26E-06 Glyma.20g197000 AP2 domain AT4G13620.1 Encondes an ethylene

response factor

*The Arabidopsis Information Resource (https://www.arabidopsis.org/).

investigation for field and greenhouse methods which correlate
well in classifying genotypes for CR resistance are needed
and recommended to enable secure and reliable selection and
classification of resistant genotypes. The interest in greenhouse
screening still exists because it is less time and resource intensive’;
however, only after a greenhouse screening methodology that
is positively correlated with field expression is developed, can
controlled (indoor) condition screening be effectively used as a
pre-screening prior to a more thorough field screening.

M. phaseolina is known as a generalist because no specific
resistance genes are reported in any of its hosts. There is no
complete resistance reported for this pathogen among the host
species probably because resistance is quantitatively controlled.
The current research is the first study to our knowledge to use
a genomic tool (i.e., GWAS) to identify genes related to CR
resistance in soybean in order to better understand the pathway
of genetic expression and association with resistance. Five gene
families were associated with the resistance response for the field
screening. Among them, the USP family and the cyclophilins
(CyPs) are both related to stress response. USPs are small
cytoplasmic proteins which have been related to pathogen-plant
interaction. Lenman et al. (2008) reported that the USP were the
first plant protein to phosphorylate in response to the inoculum
presence when inoculating Arabidopsis plants with Phytophthora
spores. CyPs are ubiquitous proteins, that are induced by various
stresses including temperature (low or heat shock), light, salt
stress, physical injury, and pathogens (Marivet et al., 1994). In

diseased plants, cyclophilin may function as a “chaperon-like
molecule” that decrease the risk of proteolytic degradation or help
avoid accumulation during stress.

One of the genes identified is a characterized member of
the multi antimicrobial extrusion (MATE) protein which has
been reported to be involved in many physiological functions.
Among these functions are alkaloid accumulation, flavonoid
accumulation, and plant hormone signaling, all directly related
to defense responses against herbivores and pathogens (Shitan,
2016). MATE transporters are associated with plant disease
resistance, transporting compounds such as salicylic acid (SA)
that plays an essential role in plant innate immune signaling and
in disease resistance. Initiation of plant antimicrobial defenses in
response to attempted microbial infection relies on a molecular
dialog between the interacting organisms. LysMs genes have
been associated in the recognition of carbohydrate patterns
commonly related with microbial surfaces and in microbial
infection immunity (Willmann et al., 2011). Wan et al. (2008)
demonstrated that plant cells can perceive chitin fragments that
lead to gene induction and defense responses by a LysM receptor-
like kinase1 (LysM RLK1) in Arabidopsis thaliana, indicating that
LysM RLK1 is essential for chitin signaling and plant innate
immunity.

For the greenhouse screening, eight gene families were
related to the mechanism of response to CR resistance. Among
them, a cytochrome P450 was identified on chromosome 6,
which is widely reported for its function in plant defense,
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including soybean cyst nematode and soybean rust (Irmisch
et al., 2015; Wan et al., 2015; Langenbach et al., 2016). Three
candidate genes were proposed on chromosome 8. Glutathione
S-transferases (GSTs) has been connected in reactions linked
to secondary metabolism and response to pathogen, including
its importance in regulation of jasmonic acid (Han et al.,
2013) and has been reported in multiple species, for example,
Populus tomentosa (Liao et al., 2014) and Lilium regale Wilson
(Han et al., 2016). Peptide methionine sulfoxide reductase
(PMSR) acts as an antioxidant, repairing proteins damaged
from oxidative stress and a novel defensive role against attack
by pathogens Phytophthora capsici and P. infestans on pepper
(Capsicum annuum) via regulation of the cellular levels of
reactive oxygen and defense-related genes (Oh et al., 2010).
Calcium-dependent protein kinases (CPKs or CDPKs) are
regulated by various external stimuli including temperature
stress (heat or cold), water stress, salinity, wounding, and biotic
stress. NtCDPK2 has been reported to be activated by race-
specific pathogen elicitation (Cf-9/Avr9) and abiotic stress in
tobacco (Romeis et al., 2000). On chromosome 12 a strong
association was detected and leucine rich repeat (LRR) and
Terpene synthase (TPS) related candidate genes were identified.
LRR proteins plays a crucial role in the plant’s defense against
pathogens, for their “immune” functions and recognition of
non-self-molecules, including from GWAS in soybean (Li et al.,
2016). Genome-wide identification and evolutionary analysis
of LRR genes in soybean reported 467 putative LRR-receptor
like kinase (LRR-RLK) genes in the soybean genome (Zhou
et al., 2016). Terpene synthase (TPS) act as signaling molecules
that induce defenses against tissue damage from wounds
and microbes infected sites. Recent research demonstrated
a terpene synthase 24 (OsTPS24) encoding a jasmonate-
responsive monoterpene synthase that produces an antibacterial
γ-terpinene against pathogens in rice (Yoshitomi et al.,
2016). On chromosome 18 and 20, the APETALA2/ethylene-
responsive element binding protein (AP2/EREBP) plays various
roles in plant growth and development, and in response
to stresses as pathogen infection, drought, temperature, and
salinity (Zhang et al., 2013; Tang et al., 2016). It has been
reported that the ethylene pathway was activated in response
to the pathogen attack in several crop species (Dong et al.,
2015; Wang et al., 2015; Agarwal et al., 2016; Hong et al.,
2016).

Genome wide association studies have been reported as a very
successful approach to investigating SNP-disease associations
and deciphering the trait genetic architecture. The results
reported in this study suggest that CR has a complex genetic
architecture, with a polygenic background, classified as a
quantitative trait. Due to its quantitative nature, information
generated in this study is more suitable applied to genomic
selection approaches rather than marker assisted selection
(MAS), as MAS is inadequate for improving quantitatively
inherited, i.e., polygenic traits. Genomic selection can improve
genetic value estimations and selection accuracy for breeding
for CR resistance. The information related to the candidate
genes and markers reported are the first report for CR disease
in soybean and require validation of marker-trait association

in bi-parental mapping populations. Additionally, it is highly
necessary that the genes are submitted to validation studies
through gene silencing and expression studies.

It is important to highlight that CR disease is a disease
commonly observed in the southern soybean production region
of the US, especially during years when hot and dry conditions
persist (Romero Luna et al., 2017). The disease has been
spreading to the northern soybean growing regions of the
US and have been reported in northern states including Iowa
(Yang and Navi, 2005), Michigan (Baird et al., 2010), Minnesota
(Elaraby et al., 2003), North Dakota (Bradley and Río, 2003),
and Wisconsin (Birrenkott et al., 1984). More information about
this disease and its evolution through the production regions
is needed in order to develop resistant cultivars. Additional
research is needed to determine if resistance mechanisms
are the same or different in northern and southern adapted
germplasm.

CONCLUSION

The current study is the first effort to apply GWAS to understand
and explain the genetic mechanisms underlying resistance to
charcoal rot in soybean. We identified 5 and 8 loci for field
and greenhouse screening, respectively, which were associated
with candidate genes involved in controlling the plant defense
response. However, the lack of overlap in significant SNP and
candidate gene in field and greenhouse screenings, indicates
that different mechanisms are involved in disease resistance
expression in field and greenhouse. This research serves as a basis
for the identification of candidate genes involved in CR resistance
and unravels the complexity of this resistance. In the materials
studied in our study, due to the prevalence of smaller effect loci
controlling CR, genomic selection is an attractive strategy. The
genetic entries identified in this paper will be useful for improving
charcoal rot resistance in soybean.
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