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Editorial on the Research Topic
Melatonin in Plants

Melatonin (N-acetyl-5-methoxytryptamine) is an important pleiotropic molecule with multiple
physiological and cellular actions in animals and plants. In 1958, melatonin was identified in
the pineal gland of bovine. In 1995, melatonin was discovered in higher plants. Thereafter, the
numerous functions of melatonin in animals have shown its great potential in plant physiology.

The plant melatonin field is dynamic as evidenced in the increasing number of publications
in all disciplines, including its involvement in seed germination, primary root and lateral
root architecture, photoprotection, circadian rhythm, flowering time, biomass production, leaf
senescence and fruit ripening. Compelling evidence suggests that melatonin is also involved in
various stress responses. Most of these studies indicate that melatonin may act as the first barrier in
response to reactive oxygen species (ROS) burst by scavenging free radical, and as the second step
for defense by regulating the expression of several stress-responsive genes.

This topic focuses on distribution, synthesis, metabolism, and the in vivo roles of melatonin
in plants. We aim to ask whether and how melatonin functions as an important regulator during
plant development and plant stress responses, and how melatonin network connects with different
signaling pathways. This topic contains 3 reviews, 21 original research studies and 1 corrigendum.

The first section is the review and quantification of melatonin. Nawaz et al. and Nawaz
et al. provided a review update the available information about the presence and actions of
melatonin in different plant species including important crops, and highlighted the untraceutical
value of melatonin-rich food crops (cereal, fruit and vegetables). Hardeland summarized
the diversity of levels and multiplicity of functions of melatonin in plants, including the
precursor, catabolism, isoenzymes, rate limitation and remarkable pleiotropy of melatonin
biosynthetic pathway under various functional aspects, as well as the effects of melatonin on
plant growth and stress response. Shi et al. highlighted the changes of endogenous melatonin
levels under various stress conditions, melatonin-mediated stress responses through modulating
several transcription factors, physiological mechanism, and the extensive reprogramming of
transcriptome, proteome and metabolome. Erland et al. described a validated method for the
quantification of melatonin, serotonin and the underlying biosynthetic precursors (tryptophan,
tryptamine and N-acetylserotonin) in diverse plant culture systems. Ye et al. reported a simple
and rapid quantification of plant endogenous melatonin by UPLC coupled with high resolution
Orbitrap mass spectrometry.

The in vivo roles of melatonin were also revealed in different plant species in this topic. In
bermudagrass, Fan et al. found that exogenous melatonin treatment alleviated cold damage by
maintaining cell membrane stability, improving the process of photosystem II and increasing
antioxidant enzyme activities. In cabbage and Arabidopsis, Zhang et al. found that melatonin
improved anthocyanin accumulation and benefited cabbage growth, by increasing the expression
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levels of anthocyanin biosynthetic genes and ROS scavenging
capacity. Similarly, genistein promotes anthocyanin synthesis
in red cabbage in a light-dependent way, through directly
regulating anthocyanin biosynthetic genes (Zhang et al.).
Wang et al. found that high concentration of melatonin
represses root meristem through modulation of both auxin
synthesis and polar auxin transport in Arabidopsis. Consistently,
Liang et al. found that melatonin regulates root architecture
including both embryonic root and lateral root through
modulation of auxin response in rice. In rice, Han et al.
found that melatonin alleviated the inhibition of cold-mediated
seedling growth by regulating anti-oxidative systems and
photosystem II; and they also highlighted the dose dependent
response of melatonin on plant physiological, biochemical and
photosynthetic parameters. In cassava, Hu et al. found that
melatonin delayed postharvest physiological deterioration (PPD)
of cassava tuberous roots, through modulating ROS metabolism
and transcriptomic reprogramming including metabolic-, ion
homeostasis-, and enzyme activity-related genes as well as
calcium signaling-, mitogen-activated protein kinase (MAPK)
cascades-, and starch degradation-related pathways, etc. In
rice, based on comprehensive transcriptional profiling of
11 melatonin related genes in different periods, tissues, in
response to different treatments using published microarray
data, Wei et al. provided new insight into the direct relation
among melatonin biosynthesis and catabolic pathway, plant
development, circadian rhythm, stress and defense reponses in
rice. Wang et al. provided a new method for selecting and
identifying bidirectional promoters and underlying regulatory
regions in rice; and they also found that almost all these
promoters and novel cis-sequences are melatonin independent.
In switchgrass, Yuan et al. and Yuan et al. identified a
large number of differentially expressed genes (DEGs) in the
melatonin-rich switchgrass through RNA-seq, providing some
clues of melatonin metabolism on transcriptome reprogramming
in switchgrass. Szafranska et al. and Szafranska et al. found that
melatonin can enhance oxidative stress tolerance in growing
seedlings of Pisum sativum L., through regulating photosynthetic
apparatus, water content, ROS accumulation and chlorophyll
degradation. Jiao et al. identified the endophytic bacterium
Bacillus amyloliquefaciens SB-9, which displayed high level of
in vitro melatonin secretion as well as melatonin biosynthesis
pathways. This study showed the occurrence of melatonin
biosynthesis pathway in endophytic bacterial and the novel role
of the endophytic bacterial in counteract the adverse effects of

salt and drought stress in host plant roots. Ma et al. identified
another endophytic bacterium Pseudomonas fluorescens RG11,
which can transform tryptophan to melatonin and promote
endogenous melatonin levels in grape roots. Ding et al. found
the effect of exogenous melatonin on alleviating photoinhibition
in tomato response to moderate light during chilling through
accelerating non-photochemical quenching. Li et al. revealed the
improved salt stress tolerance as well as photosynthesis and redox
homeostasis of watermelon by exogenous melatonin treatment.
Zheng et al. identified melatonin as an effective molecule to
protect apple against waterlogging stress, through maintaining
aerobic respiration, preserving photosynthesis and reducing
oxidative damage. In Nicotiana tabacum L. line Bright Yellow
2 (BY-2) cell, Kobylinska, et al. found that proper dosage of
melatonin increases cell proliferation and protects lead-induced
cell death through inhibition of cytochrome c translocation.

We have to notice that several fundamental issues need to be
resolved in the future. Besides this topic of melatonin in plants,
we are looking forward to seeing more new findings.
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