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Intron retention, one of the most prevalent alternative splicing events in plants, can

lead to introns retained in mature mRNAs. However, in comparison with constitutively

spliced introns (CSIs), the relevantly distinguishable features for retained introns (RIs) are

still poorly understood. This work proposes a computational pipeline to discover novel

RIs from multiple next-generation RNA sequencing (RNA-Seq) datasets of Arabidopsis

thaliana. Using this pipeline, we detected 3,472 novel RIs from 18 RNA-Seq datasets

and re-confirmed 1,384 RIs which are currently annotated in the TAIR10 database. We

also use the expression of intron-containing isoforms as a new feature in addition to the

conventional features. Based on these features, RIs are highly distinguishable from CSIs

bymachine learningmethods, especially when the expressional odds of retention (i.e., the

expression ratio of the RI-containing isoforms relative to the isoforms without RIs for the

same gene) reaches to or larger than 50/50. In this case, the RIs and CSIs can be clearly

separated by the Random Forest with an outstanding performance of 0.95 on AUC (the

area under a receiver operating characteristics curve). The closely related characteristics

to the RIs include the low strength of splice sites, high similarity with the flanking exon

sequences, low occurrence percentage of YTRAY near the acceptor site, existence of

putative intronic splicing silencers (ISSs, i.e., AG/GA-rich motifs) and intronic splicing

enhancers (ISEs, i.e., TTTT-containing motifs), and enrichment of Serine/Arginine-Rich

(SR) proteins and heterogeneous nuclear ribonucleoparticle proteins (hnRNPs).

Keywords: retained introns (RIs), constitutively spliced introns (CSIs), high-throughput next-generation RNA

sequencing (RNA-Seq), distinguishable features, random forest, intronic splicing silencers (ISSs), intronic splicing

enhancers (ISEs)

INTRODUCTION

Alternative splicing is a biological mechanism that gives rise to different transcript isoforms from
the same genes. The expression levels of alternatively spliced isoforms of a gene can change at
different growth stages or under different environmental conditions. The prevalence of alternative
splicing in plants has been investigated recently using high-throughput next-generation RNA
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sequencing (RNA-Seq) technologies (Marquez et al., 2012;
Thatcher et al., 2014; Conesa et al., 2016). Compared with
previous studies (Severing et al., 2011; Syed et al., 2012), these
studies revealed higher proportions of genes that show alternative
splicing in different species. For example, around 40% of the
multi-exon genes of Zea mays (Thatcher et al., 2014), 63% of
the multi-exon genes in Glycine max (Shen Y. et al., 2014), and
60% of the multi-exon genes in Arabidopsis thaliana (Marquez
et al., 2012) were found to have alternative splicing events.
This trend of increasing prevalence is mainly attributed to the
richer data obtained by RNA-Seq. In another study through
RNA-Seq profiling, Klepikova et al. identified 37,873 novel splice
junctions in Arabidopsis which are not included in TAIR10
database (Klepikova et al., 2016). RNA-Seq has now opened up
great opportunities to understand many unknown transcriptome
landscapes in plants.

Intron retention is one of the most prevalent events of
alternative splicing in plants. If an intron is always spliced out
from all the isoforms of the gene, it is known as a constitutively
spliced intron (CSI). However, an intron of a gene that can
be retained in one or more isoforms whereas spliced out in
other isoforms is called a retained intron (RI). The prevalence
of intron retention has been seen in many plants, including
Oryza sativa (Campbell et al., 2006), A. thaliana (Filichkin
et al., 2010), Gossypium raimondii (Li Q. et al., 2014), Sorghum
bicolor (Panahi et al., 2014), Zea mays (Thatcher et al., 2014),
Brachypodium distachyon (Vitulo et al., 2014), and Medicago
truncatula (Zhang et al., 2016), with a 45.1, 64.1, 40, 41,
58, 55.5, and 51.3% prevalence over the alternative splicing
events, respectively. Accumulating evidences have also suggested
that intron retention can regulate specific abscisic acid (ABA)
signaling, affect other developmental processes, and strengthen
the response to environmental stresses and conditional signals
(Reddy et al., 2013; Panahi et al., 2015; Wang et al., 2015).
To understand a wider range of characteristics and features
of the RIs in Arabidopsis, we developed a new computational
pipeline for discovering new RIs frommultiple RNA-Seq datasets
acquired under different developmental stages or environmental
conditions.

Our computational pipeline consists of five main steps for
the accurate identification of RIs and CSIs from multiple RNA-
Seq datasets (Figure 1). At first, adaptor sequences and low-
quality reads within the raw RNA-Seq reads are trimmed
or removed using Trim sequences tool in CLC Genomics
Workbench. Secondly, GSNAP is used to map clean reads to
the reference genome (Wu and Nacu, 2010). Unlike Tophat
(De Bona et al., 2008), GSNAP adopts a “seed and extend”
algorithm, and can detect known and novel splice junctions
in individual reads more accurately. Thirdly, based on the
high-quality genome sequences of Arabidopsis, Cufflinks, a
popular genome-guided transcriptome analysis tool, is utilized
to reconstruct a transcriptome (Trapnell et al., 2010). Although
Cufflinks reports the minimal number of compatible isoforms
with lower sensitivity, it can obtain a higher accuracy of
transcripts in comparison with other similar tools like Scripture
(Guttman et al., 2010). Fourthly, cuffdiff2 is used to estimate
expression quantification at the isoform level because of the

best compatibility (Trapnell et al., 2013). It not only directly
utilizes the merging transcriptomes from differential conditions
with cuffmerge but also effectively controls the over-dispersion
problems of biological replicates. Lastly, we developed a
software package (RIs_CSIs_ID) to merge separate results and
conduct other downstream computational tasks required for
comprehensive and accurate identification of RIs and CSIs.

We are also interested in the classification and distinction
between the RIs and CSIs by machine learning methods, and
proposed a new feature vector to describe both two types of
introns for more accurate classification. Conventional features
include linear sequence features of intron, short frequent
sequence motifs, and other splice sites-related features (Mao
et al., 2014). In particular, we introduced the use the expression
of intron-containing isoforms as a new feature to describe
introns in addition to the conventional features. Under the
representation by the new feature vector, RIs and CSIs can
be distinctively separated by machine learning methods. To
see the best classification between RIs and CSIs, we focused
on some subsets of RIs that have high expressional odds of
retention. The expressional odds of retention for a retained
intron in a gene are defined as the expression ratio of the
RI-containing isoforms relative to the isoforms without the RI
for the same gene. When the expressional odds of retention
reaches to or larger than 50/50, the RIs and CSIs can be
clearly separated by the Random Forest learning algorithm (Nair
et al., 2013) with an outstanding performance of AUC 0.95
on average. By incorporation expression data, our classification
performance had a significant improvement in comparison with
those previously reported methods (Eichner et al., 2011; Mao
et al., 2014).

It is well-known that splice sites, branch point and cis-
regulatory elements have impacts on pre-mRNA splicing (Zhang
et al., 2011; Wittkopp and Kalay, 2012; Meyer et al., 2015).
However, the relevant features and conservative motifs are
waiting to be resolved. For example, the cis-regulatory elements
located in the introns are usually considered as intronic splicing
enhancers or silences (ISEs or ISSs), but what frequent motifs
are species-specific ISEs and ISSs remains unknown. Based on
the newly found RIs and CSIs, we detected the signal strength
and the similarity between the flanking sequences of splice
sites, the conservative branch point sequence motifs, ISSs, ISEs,
and the enrichment of SR (Serine/Arginine-Rich) proteins and
hnRNPs (heterogeneous nuclear ribonucleoparticle proteins).
We discovered those contrasting or determinative features have
outstanding differences between RIs and CSIs, indicating their
involvement in alternative splicing processes.

MATERIALS AND METHODS

RNA-Seq Datasets
We collected 18 RNA-Seq datasets of Arabidopsis from SRA
(http://www.ncbi.nlm.nih.gov/sra/, the accession numbers of
these SRA data are shown in Table 1). These datasets were
represented as 6 different groups, which were sampled in
different developmental stages or under different environmental
conditions. The first group has two datasets, SRR360152
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FIGURE 1 | The computational pipeline for the identification of RIs. Overview of the steps involved in clean reads, reads mapping, transcriptional reconstruction, RIs

extraction and express quantification at isoform level, specific procedural methods, and corresponding software’s are described in order to identifying reliable RIs for

each class of RNA-Seq dataset.

TABLE 1 | Data sources of RNA-Seq.

Classes ID in SRA Tissues or growth

conditions

Sequencing instrument The length

of reads (bp)

Sequencing

types

The Percentage of

aligned mapping (Q ≥ 20)

(%)

Sample1 SRR360152 10-d seedlings and flowers

mixed in a 1:1 ratio

Illumina Genome Analyzer II 76 Paired 98.79

SRR360154 98.78

Sample2 SRR1104149 Inflorescent meristem AB SOLiD System 3.0 50 Single 99.95

SRR1104886 99.94

Sample3 SRR018179 Cold Illumina Genome Analyzer II 36 Single 97.03

SRR018180 99.77

SRR018181 99.65

SRR545949 91.12

Sample4 SRR018185 Heat Illumina Genome Analyzer II 36 Single 92.83

SRR018186 95.78

SRR018187 99.86

SRR545950 91.40

Sample5 SRR019206 Salt Illumina Genome Analyzer II 36 Single 88.27

SRR019207 87.73

SRR545952 85.61

Sample6 SRR019209 Drought Illumina Genome Analyzer II 36 Single 92.58

SRR019210 92.86

SRR545953 90.81

All samples of RNA-Seq in analysis are divided into six classes (denoted as Sample1, Sample2, Sample3, Sample4, Sample5 and Sample6) based on different issues and conditions.

The percentage of aligned mapping illustrates the percents of the aligned mapping reads with the phred quality score (Q) more than 20 (Q ≥ 20) after running gsnap.
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and SRR360154 (SRP009136), containing RNA-Seq profiles of
Arabidopsis tissues under the conditions 10-d seedlings and
flowers with a 1:1 ratio (Marquez et al., 2012). The second
group also has two datasets, SRR1104149 and SRR1104886
(SRP035230), containing RNA-Seq profiles of Arabidopsis tissues
at the stage of inflorescent meristem (Wang et al., 2014). The
other 14 datasets contain RNA-Seq profiles of Arabidopsis at
environmental stress responses to cold, heat, salt and drought
(Filichkin et al., 2010), which are organized into four groups
accordingly. So, the 18 datasets are organized into six groups and
denoted as Sample1, Sample2, Sample3, Sample4, Sample5 and
Sample6, which, respectively, match with the conditions “10-d
seedlings and flowers with a 1:1 ratio,” “inflorescent meristem,”
“cold,” “heat,” “salt” and “drought.” Other details of these RNA-
Seq datasets are listed in Table 1.

Extraction of RIs and CSIs from Multiple
RNA-Seq Datasets
Extraction of RIs from multiple RNA-Seq datasets is a
complicated process, including five steps described in Figure 1.

Clean Reads
To remove low-quality and adaptor sequences within the raw
reads, Trim sequences tool in CLC Genomics Workbench
was employed for cleaning raw reads. (i) Trimming adapter
fragments off raw sequence reads. (ii) Trimming reads with
N bases over 10% (N is ambiguous base or nucleotide). (iii)
Trimming reads with the Phred quality scores (Q) < 13. In
Equation (1), e is the base-calling error probability, i.e.,Q value of
13 is equivalent to 0.05 e value. These trimming steps ensure not
only all clean reads without low-quality bases left for downstream
analyses but also the error recognition rate of nucleotides in clean
reads no more than 0.05.

Q = −10 log10(e) (1)

Reads Mapping
GSNAP v2016-04-04 (http://research-pub.gene.com/gmap/) can
detect known and novel splice junctions in individual read,
depending on the indexes of known splice junctions and the
whole-gene sequence of Arabidopsis. So, we built these indexes
in local server first, then set the parameter -N as 1 in order to find
novel splice junctions. After reads mapping, the aligned reads
that meet quality standards (Q≥ 20) were counted. Aligned read
percentages of all samples are illustrated respectively, in Table 1.
The mean percentage of mapped reads is 94.60%, these mapped
reads were used for the next transcriptome reconstruction.

Transcriptome Reconstruction
For each SAM file after reads mapping, we
independently assembled isoforms using Cufflinks v2.2.1
(http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.1/). It is
known that plant introns are averagely shorter than their animal
counterparts. We previously reported 96% introns were found
within the range from 44 to 631 bp for TAIR10 (Mao et al.,
2014). So we adjusted the parameter -I (-max-intron-length)
from default 30,000 to 5,000 for Cufflinks. Meanwhile, the

parameter -u (-multi-read-correct) was utilized to weigh reads
mapping to multiple locations in the genome, and only highest
ranking alignments were reported. Cuffmerge was employed to
remove the redundant isoforms in different samples. Then, some
potentially problematic isoforms with the class-code “p, u, x, s,
or r” in contradiction with reference transcripts were filtered.
Finally, we merged each two samples considering the complexity
and space of computation, and obtained the possible sets of
isoforms and genes, respectively, including 43,249 isoforms and
22,763 genes, 34,796 isoforms and 22,243 genes, 34,509 isoforms
and 22,283 genes for Sample12, Sample34 and Sample56. In
the following steps, we did systematic comparison among these
isoforms according their coordinates in genome for all the six
samples.

Express Quantification at Isoform Level
Genes with multiple isoforms due to alternative splicing might
have exons shared by different isoforms, which can lead to
ambiguity in mapping fragments to isoforms and in quantifying
expression of isoforms. Cuffdiff2 is efficient to reduce read
assignment uncertainty and control the degree of overdispersion
across biological replicates assisted by a beta negative binomial
distribution. Reads per kilobase per million mapped reads
(RPKM) is often used to normalize the isoform expression
(Mortazavi et al., 2008).

RPKM =
109C

NL
(2)

In Equation (2), C represents the numbers of aligned reads in
an isoform, N means the numbers of total aligned reads in a

FIGURE 2 | The known RIs in TAIR10 and novel discovered RIs respectively in

six classes of RNA-Seq datasets. All experimental RNA-Seq datasets for

analysis are divided into six classes: Sample1, Sample2, Sample3, Sample4,

Sample5, and Sample6. For each class, that the discovered RIs are novel

means they are unknown in TAIR10 but newly detected by our method, which

depicted with light gray, and contrarily with dark gray.
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sample, L is the length of isoform. FPKM is very similar to RPKM,
where fragments as a substitute instead of reads are counted out.
RPKM is made for single-end RNA-Seq while FPKM is made for
paired-end RNA-Seq. Here we unified with FPKM to quantify
the isoform expression. A single fragment can correspond to one
read for single-end RNA-Seq while to two reads for paired-end
RNA-Seq. The files named isoforms.fpkm-tracking have recorded
the expressions of our assembled isoforms.

Identification of RIs and CSIs
We used the ASTALAVISTA algorithm (Foissac and
Sammeth, 2007) to identify all alternative splicing events
from the GTF output files by cuffmerge (referring to File S1,
Alternative_splicing_data). In this study, only intron retention
events were examined. RIs can be directly identified by the
record code of alternative splicing event. But these RIs include
lots of redundant records because of the inner algorithm of
ASTALAVISTA that is based on pairwise rather than global
comparison. Moreover, no expression information of isoforms is
shown on their records.

We proposed and implemented a software package
(RIs_CSIs_ID) for the recognition of RIs from the results
of ASTALAVISTA based on the comparison among all isoforms
for the same genes. RIs_CSIs_ID is efficient to remove the
redundant RI records of ASTALAVISTA. At the same time, it can
add the expression information of isoforms and the coordinates
of RIs to the final records, which is particularly critical when
we compare differentiations of RIs among different tissues and
growth conditions. Only does the RI-containing isoforms and

the corresponding isoforms without the RI for the same gene are
both expressed (FPKM no < 0.5), these RIs really happen in the
biology and will be counted.

CSIs are always spliced out in all isoforms for one gene. If one
intron is found in at least one mature isoform, it no longer is
CSI. So the number of CSIs will be reduced with the increasing of
novel RIs. RIs_CSIs_IDwas also implemented for the recognition
of CSIs. The user manual and open-source of RIs_CSIs_ID are
freely available (please site https://pan.baidu.com/s/1o8DRbz8,
also see File S2).

Expressional Odds of Retention for the
Distinctions of Various Subsets of RIs from
the Set of CSIs
We divide the isoforms of a gene into two types when this gene
contains introns which can be retained in some isoforms. One
is the type of isoforms which contain the retained introns (RIs),
and the other is the type of isoforms that do not have any of
these introns. The “expressional odds of retention” of an intron
is defined as the ratio of the FPKM of isoforms containing the
retained intron, divided by the FPKM of the other isoforms that
do not contain such intron. If the expressional odds of retention
is bigger than 1.0, it means that the isoforms containing the RI
are expressed more than the other isoforms, i.e., the expressional
odds of retention is high. On the other hand, an expressional
retention odds < 1.0 implies that the isoforms containing the RI
are expressed less than the other isoforms with the RI spliced, i.e.,
the expressional odds of retention is low. The odds 1.0 suggests
that the two types of isoforms are expressed at the same level.

FIGURE 3 | The 6-venn diagrams of RIs from six classes. The sets of RIs found from Sample1∼6 have a large amount of overlap. (A) The known RIs unique to the six

classes or their combinations. (B) The novel discovered RIs unique to the six classes or their combinations. They use the same color setting rules, red brown set

represents Sample1, red set for Sample2, blue set for Sample3, yellow set for Sample4, purple set for Sample5, green set for Sample 6. The numbers of intersection

areas reflect the details of overlap among the different classes.
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We used the expressional odds of retention as criteria to
form various subsets of RIs for the classification and distinction
between RIs and CSIs. For example, the subset under “the 50/50
expressional odds of retention” stands for that we constructed a
subset of RIs which have the 1.0 or larger expressional odds of
retention, and used this subset of RIs to compare with the set of
CSIs. Similarly, the subset under “the 10/90 expressional odds of
retention” stands for that we constructed a subset of RIs which
have the 1/9 or larger odds of retention, and used this subset
of RIs to compare with CSIs. The default case is that we used
machine learning methods to distinguish the whole set of RIs and
the whole set of CSIs.

By the machine learning methods, the feature vector to
represent the RIs and CSIs for the classification consists of the
new feature FPKM and three types of conventional features
(denoted as FeatureSet-1, FeatureSet-2, and FeatureSet-3). Given
a RI, its FPKM value is the geometrical mean of the FPKMs
of RI-containing isoforms in all the expressed samples. As a
CSI is spliced out from all the isoforms of its gene, its FPKM
is set as the geometrical mean of its FPKM values of the gene
in all the samples. The three types of conventional features
are similar to our previous study (Mao et al., 2014). The
conventional FeatureSet-1 includes: the length of an intron, the
nucleotide occurrence probabilities of A, C, G, and T, the AT
content, the GC content and the segmental probabilities of four
nucleotides correlation factors. The conventional FeatureSet-2
includes the signal strength features of the splice sites (SFvalue,
SFaccvalue) and the similarity level features (IDdonv, IDacceptv).
The conventional FeatureSet-3 includes frequent motifs features.
These frequent motifs frequently occur in either the set of RIs
or the set of CSIs but not in both. In order to identify these
frequent motifs, one evaluation factor α(x

(

k
)

) is used to describe
the diversity of a k-mer (from 2 to 5-mer) subsequence (x

(

k
)

)
between the RIs and CSIs. A higher absolute value of α(x

(

k
)

)
stands for a significant diversity of x

(

k
)

occurring in the RIs
and CSIs. A negative value of α(x

(

k
)

) means a high frequency
of x

(

k
)

in the RIs than in the CSIs, while a positive value of
α(x

(

k
)

) signifies the opposite case. The other evaluation factor
S(x

(

k
)

) means the confidence coefficients of x
(

k
)

in the RIs
(STrue (x(k))) or CSIs (SFalse (x(k))).

The classification is conducted using Random Forest (Nair
et al., 2013), a machine learning algorithm. Measurements
accuracy, F-Measure, and the area under a receiver operating
characteristics curve (AUC) are used for the assessment of the
classification performance. Definitions of these measurements
can be referred to Liu et al. (2006).

RESULTS

A Large Number of Newly Discovered RIs
From the six groups of RNA-Seq datasets Sample1, Sample2,
Sample3, Sample4, Sample5, and Sample6, our method detected
2,904, 2,834, 2,834, 2,825, 2,346, and 2,298 RIs, respectively,
(denoted as RI-set1, RI-set2, RI-set3, RI-set4, RI-set5, and
RI-set6). The TAIR10 and the latest Araport11 Pre-release 3
(https://www.araport.org/data/araport11) have annotated 2,520
and 1,356 RIs, respectively, where the majority 1,289 RIs are

common. Benchmarking with TAIR10, we identified 1,782, 1,719,
1,607, 1,603, 1,227, and 1,181 novel RIs, and re-confirmed 1,122,
1,115, 1,227, 1,222, 1,119, and 1,117 known RIs annotated in
TAIR10 from Sample1, Sample2, Sample3, Sample4, Sample5,
and Sample6, respectively (Figure 2).

Some RIs were detected repeatedly from these six groups of
datasets. In total, we detected 4,856 distinct RIs, including 3,472
novel RIs and 1,384 RIs which have already been annotated in
TAIR10. Figures 3A,B is 6-venn diagrams showing the numbers
of RIs unique to these six datasets or their combinations. Some
intersection areas have no number to fill, meaning there are no
unique RIs for those overlapped areas of datasets.

The numbers of novel RIs unique to these datasets are listed in
Table 2 in comparison with the numbers of known RIs annotated
in TAIR10. The prefixes “RI-known” and “RI-novel” represent
known RIs annotated in TAIR10 and novel RIs newly detected
by our method. The suffix numbers in these notations indicate
that the unique RIs belong to what datasets combinations. For
example, RI-novel12 means the set of those novel RIs which had
been detected from only Sample1 and Sample2 (i.e., AT1G55310,
AT4G14300, AT1G28060 et al.).

There are 872 of the 1,384 previously annotated RIs (63%)
that are expressed in all of the six groups of datasets (Figure 3A).
Of the 3,472 novel RIs, there are 96 RIs (2.76%) which are

TABLE 2 | Intersections of known and novel RIs among six classes.

Known in TAIR10 Novel

Name of a RI set Counts Name of a RI set Counts

RI-known123456 872 RI-novel123456 96

RI-known12345 1 RI-novel13456 14

RI-known12356 2 RI-novel1234 26

RI-known13456 10 RI-novel1256 14

RI-known23456 2 RI-novel1345 1

RI-known1234 107 RI-novel3456 866

RI-known1235 1 RI-novel134 2

RI-known1256 38 RI-novel345 37

RI-known1345 1 RI-novel346 2

RI-known3456 163 RI-novel356 13

RI-known123 2 RI-novel456 11

RI-known124 1 RI-novel12 1,577

RI-known156 1 RI-novel34 525

RI-known234 3 RI-novel46 3

RI-known12 85 RI-novel56 155

RI-known34 62 RI-novel1 52

RI-known56 27 RI-novel2 6

RI-known1 1 RI-novel3 25

RI-known2 1 RI-novel4 20

RI-known3 1 RI-novel5 20

RI-known5 1 RI-novel6 7

RI-known6 2

The prefixes “RI-known” and “RI-novel” represent respectively known RIs in TAIR10 and

novel RIs detected from RNA-Seq by our method. The suffix numbers show the unique

RIs belong to serial numbers of datasets combinations.
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expressed in all of the six datasets (Figure 3B). These RIs (i.e.,
RI-known123456 and RI-novel123456) are combined, consisting
of 968 RIs, for a special distinction with CSIs. This set of RIs is
denoted as RI-set-all-expressed.

We are also interested in two specific subsets of the novel RIs
(Figure 3B). One is the subset of 1,577 RIs which co-occurred
only in the developmental tissues like seedlings, inflorescent
meristems and flowers (namely, RI-novel12); the other is a subset
of 866 RIs which co-occurred only under stress conditions like
cold, heat, salt and drought (namely, RI-novel3456). These two
RI sets are combined, denoted as RI-set-stage-expressed, for
downstream analysis.

As defined, an intron is a CSI if and only if it is always spliced
out from all the isoforms of one gene. A total of 73,048 CSIs
were found from the six groups of RNA-Seq datasets. Fifty eight
thousand four hundred and thirty six of them having a FPKM no
< 0.5 were used to contrast with the RIs.

Classification Performance When the
Introns are represented by the New
Feature Vector
Our newly discovered 4,856 RIs are much more than the
2,520 RIs currently annotated in TAIR10, and much more than
the 1,356 RIs currently annotated in Araport11 Pre-release3.

It is interesting to know whether the 4,856 RIs have distinct
characteristics in comparison with the CSIs detected from the
same six groups of RNA-Seq datasets.

As stated in the Method section, the feature vector of every
intron consists of its FPKM value and its conventional features’
values. FPKM describes the expression information of the intron
at the isoform level. The definition is fixed for all the RI sets. The
conventional FeatureSet-1 and FeatureSet-2 are also fixed and
consistent across the eight sets to describe the introns. However,
the conventional FeatureSet-3 are dynamically changed from RI-
set1 to RI-set-stage-expressed depending on the values of the
diversity factors and confidence coefficients for all the 2-5 mer
motifs in each RI set (Table S1). All these feature vectors are
shown in Table 3.

The classification and prediction were conducted through
Random Forest (Weka 3.7). The 10-fold cross-validation
performance by Random Forest was excellent on the 8 RI
sets (i.e., RI-set1, RI-set2, RI-set3, RI-set4, RI-set5, RI-set6,
RI-set-all-expressed, and RI-set-stage-expressed). Most of the
AUC performance is around 95% (Table S2). The excellent
performance is mainly attributed to the introduction of FPKM as
a feature to characterize the introns. Without using this feature,
the classification performance can drop 14.6% on accuracy,
14.7% on F-measure, and 14% on AUC as average, respectively,
(Figure 4). These suggest that FPKM is an important feature to

TABLE 3 | The Feature vector to represent the RIs and CSIs for the classification.

Feature types Feature vector

FeatureSet-1 Length; AT and GC content; nucleotide occurrence probabilities of A, C, G and T; Segmental probabilities of four

nucleotides correlation factors (θAG, θAC, θAT , θGC, θGT , θCT ).

FeatrueSet-2 SFvalue, SFaccvalue; IDdonv, IDacceptv

FeatureSet-3 [RI-set1]—“ACG,” “AGG,” “CCG,” “CGA,” “CGG,” “GAG,” “GCC,” “GGA,” “GGC,” “GGG,” “AAGC,” “AGAG,”

“CAAG,” “GAAG,” “GAGA,” “GGAA,” “TATA,” “TTTT,” “AATTT,” “ATATT,” “ATTTT,” “TAATT,” “TATAT,” “TATTT,”

“TTAAT,” “TTATA,” “TTATT,” “TTTTA“,“TTTTC“,“TTTTT”;

[RI-set2]—“AGG,” “CCG,” “CGA,” “CGG,” “GAG,” “GCC,” “GGA,” “GGC,” “GGG,” “AAGC,” “AGAG,” “CAAG,”

“GAAG,” “GAGA,” “GGAA,” “TATA,” “TTTT,” “AATTT,” “ATATT,” “ATTTA,” “ATTTT,” “TAATT,” “TATAT,” “TATTT,”

“TTAAT,” “TTATA,” “TTATT“,“TTTTA“,“TTTTC“,“TTTTT”;

[RI-set3]—“TCTTG,” “TCTCT,” “CTTTG,” “CTCTT,” “TTCTG,” “CATTT,” “TTTCT,” “AGG,”

“CGA“,“GAAG“,“GGG“,“CCG“,“CGG”;

[RI-set4]—“TCTTG,” “TCTCT,” “CTTTG,” “CTCTT,” “TTCTG,” “TTTCT,” “AGG,” “CGA,”

“GAAG“,“GGG“,“CCG“,“CGG”;

[RI-set5]—“CCG,” “CGA,” “CGG,” “GCG,” “GGG,” “AGGA,” “GAAG,” “TCGA,” “CATTT,” “CTTGT,” “TCTGT,”

“TCTTG,” “TGCAG,” “TGCTT,” “TTGCA“,“TTGCT”;

[RI-set6]—“CCG,” “CGA,” “CGC,” “CGG,” “GCG,” “GGG,” “AGGA,” “GAAG,” “TCGA,” “ACTTT,” “CATTT,”

“TCTGT,” “TCTTG,” “TGCAG,” “TGCTT“,“TTGCT”;

[RI-set-stage-expressed]—“CG,” “GG,” “CC,” “TT,” “TA,” “GAG,” “ACG,” “GGA,” “GCC,” “CGA,” “GGC,”

“AGG,” “GGG,” “GCG,” “CCG,” “CGG,” “CGC,” “AAGC,” “GAGA,” “CAAG,” “GGAA,” “CAGA,” “GAAG,” “AGGA,”

“TTTT,” “TATA,” “TTTTT,” “CTTTT,” “ATTTT,” “TTTGT,” “TGTTT,” “TTTTC,” “TTTTG,” “TTTCT,” “TCTTT,” “TTGTT,”

“GTTTT,” “TTCTT”;

[RI-set-all-expressed]—“CG,” “GG,” “ATA,” “CCG,” “CGG,” “TAT,” “TATA,” “ATAT,” “TAGT,” “TATT,” “CGGA,”

“GGAG,” “GAGG,” “CAAG,” “ACCG,” “CGGT,” “TCGG,” “TATTT,” “CATTT,” “AATTT,” “ATTTT,” “TTTTA,” “TTATT,”

“TTTTT,” “AAGAG,” “TGGAG”.

The Expression of

Intron-containing Isoforms

FPKM

Class label True (RIs); False (CSIs)

The Feature vector consists of the expression of intron-containing isoforms (denoted as FPKM) and three types of conventional features (FeatureSet-1, FeatureSet-2, and FeatureSet-3).

More definitions details of these conventional features can be referred to Mao et al. (2014).
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FIGURE 4 | Performances of Random Forest in all datasets. Eight datasets (i.e., the green line with triangle marks for RI-set1, the pink line with × marks for RI-set2,

the red line with * marks for RI-set3, the light gray line with filled circle marks for RI-set4, the black line with cross marks for RI-set5, the yellow line with hollow circle

marks for RI-set6, the blue line with rhombus marks for RI-set-all-expressed, and the red brown with square marks for RI-set-stage-expressed) respectively represent

the RIs and the corresponding CSIs extracted from Sample1, Sample2, Sample3, Sample4, Sample5, Sample6, all expressed in six datasets (RI-set-all-expressed)

and co-occurred in the developmental tissues or under stress conditions (RI-set-stage-expressed). For each dataset, nofpkm (classification features except FPKM),

fpkm (only FPKM feature) and various subsets of RIs (all classification features) depending on different criteria of expressional retention odds (all, 10/90, 20/80, 30/70,

40/60, and 50/50, Table S2) are prepared to do classification by Random Forest. (A) Depict the obtained performances of accuracy. (B) Describe the obtained

performances of F-Measure. (C) Show the obtained performances of AUC. Obviously, 50:50 expressional odds of retention consistently reach the best overall

performance (0.909 Accuracy and F-Measure, 0.954 AUC averagely) in all eight experimental datasets.
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distinguish RIs from CSIs. The RIs usually have smaller values
of FPKM (mean value = 15.2323, median = 5.3144) than CSIs
(mean value = 25.2818, median = 8.7087), and the significant
differences of FPKM between the RIs and CSIs were assessed
using the one-way ANOVA (P-value < 2.2e-16). On the other
hand, if only the FPKM feature is used to characterize the introns,
the classification performance is not adequately good –FPKMhas
to be combined with the conventional sequence features for the
excellent classification performance.

50/50 Expressional Odds of Retention:
Perfect Distinction between RIs and CSIs
Different RIs can have different expressional retention odds.
Some RIs are highly retained in majority isoforms while the
others are retained in only a few isoforms of one gene.
For example, Figure 5 shows a hierarchical clustering analysis
of RI expressional retention odds for all RIs of RI-set-all-
expressed, where the red area means these RIs with more-
than-1.0 expressional retention odds are easier to be retained
in majority isoforms. Moreover, higher value of odds shows
heavier red color. As typical representatives, the fourth intron of
AT5G37370.4 is retained in three other majority isoforms (i.e.,
AT5G37370.1, AT5G37370.2 ,and AT5G37370.3). Similarly, the
first intron of AT1G08570.2 is highly retained in three other
isoforms (i.e., AT1G08570.1, AT1G08570.3, AT1G08570.4). On
the contrary, the blue area means these RIs have a less-than-1.0
expressional retention odds. For example, the second intron of
AT1G02090.1 and AT1G02090.2 is less retained in AT1G02090.3.
We investigated whether the highly retained RIs can have a
perfect distinction from the CSIs and what are their distinctive
features.

To identify the best subset of RIs which can clearly distinguish
from the CSIs, we constructed five subsets of RIs according to
their expressional retention odds. For example, given RI-set1, the
five subsets of RIs are: (i) the subset of RIs that have a expressional
retention odds equal to or larger than 10/90, (ii) the subset of RIs
that have a expressional retention odds equal to or larger than
20/80, (iii) the subset of RIs that have a expressional retention
odds equal to or larger than 30/70, (iv) the subset of RIs that have
a expressional retention odds equal to or larger than 40/60, and
(v) the subset of RIs that have a expressional retention odds equal
to or larger than 50/50. The suffixes “g10,” “g20,” “g30,” “g40,”
and “g50” represent the expressional retention odds 10/90, 20/80,
30/70, 40/60, and 50/50, respectively, (Table S2).

The Random Forest classification performances and the
optimal parameters on the all RI subsets are shown in Table
S2. The changing trends of Accuracy, F-Measure and AUC on
the eight RI sets are depicted in Figures 4A–C respectively. On
the whole, Accuracy and F-Measure have similar tendencies
because of no more than 0.2% differences between them from
10/90 odds to 50/50 odds in the eight RI sets. In Figure 4C,
the performances of AUC appear to be better than those of
Accuracy and F-Measure in all RI sets. Moreover, we discovered
that performance enhancements in Accuracy, F-Measure and
AUC were unstable from 10/90 to 40/60 compared with the
eight default RIs sets. For instance, with the exception of subtle

FIGURE 5 | Hierarchical clustering of RI expressional retention odds for all RIs

in RI-set-all-expressed. These 968 RIs of RI-set-all-expressed are expressed in

all six classes. The blue area means that the expressional retention odds of

these RIs < 1.0, while smaller value shows heavier blue color. The red area

means the expressional retention odds of these RIs more than 1.0, while larger

value shows heavier red color. The white area means that the expressional

retention odds of these RIs are equal to 1.0.

differences in AUC performance, some datasets (RI-set1, RI-
set4, and RI-set-stage-expressed) indeed obtained increases of
classification performance, some datasets (RI-set2) were in the
opposite direction, the reminder of datasets (RI-set3, RI-set5,
RI-set6, and RI-set-all-expressed) appeared to a bit up and
down. However, 50/50 or larger expressional odds of retention
consistently reached the best overall performance (i.e., 0.909
Accuracy and F-Measure, 0.954 AUC average) in all sets.

Length of Introns, GC Content, Distribution
of CDS, and Features of Splice Sites
We focus on a case study to understand characteristics of RIs
in RI-set-stage-expressed. The comparison with the whole set
of CSIs and with a subset of RI-set-stage-expressed (those RIs
of more-than-1.0 expressional retention odds, namely RI-set-
stage-expressed_g50, or RIg50 for short). The intron length
distributions of these three sets of introns are presented in
Table 4. The introns in RIg50 have the widest length range and
the biggest mean value. Moreover, the GC content of the RIs
in RIg50 is highest (41.5%), followed by the RIs in RI-set-stage-
expressed (35.91%), and the lowest was found in the set of CSIs
(32.66%).

For the splice sites, there were only 53.79% of RIg50 that have
the consensus GT-AG introns, much lower than that of the CSIs
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TABLE 4 | The GC content, length distribution quartiles of introns and the mean values of splice regulating factors in CSIs, RIs, and RIg50.

Dataset GC (%) SFvalue SFaccvalue IDdonv IDacceptv Length Length distribution of introns

[minimum, 0.25, 0.5, 0.75, maximum]
[mean values]

CSIs 32.66 4.8691 6.4489 18.453 18.362 155 [20, 86, 99, 156, 155]

RIs 35.91 4.1038 5.0915 18.221 18.056 140 [15, 82, 96, 134, 213]

RIg50 41.15 1.8208 2.1530 17.788 18 260 [18, 84, 119, 266, 522]

Our focus is the differences of them among CSIs, RIs, and RIs of more-than-1.0 expressional retention odds of RI-set-stage-expressed (namely RIg50). In the following tables, CSIs,

RIs and RIg50 are defined as the same. SFvalue and SFaccvalue represent the strength of splice sites. IDdonv and IDacceptv represent the similarity between two flanking sequences

of splicesites.

TABLE 5 | The occurrence of RIs and RIg50 in CDS or UTR, according to TAIR10.

Dataset CDS CDS+UTR UTR Proportion

RIs 594 42 332 61.36%

RIg50 507 78 101 73.90%

(99%) and the RIs in RI-set-stage-expressed (96.7%). There were
a higher proportion of RIs in RIg50 (73.90%) than those in RI-set-
stage-expressed (61.36%) occurred in the CDS region (Table 5).
Such RIs found in the CDS region have a greater chance to be
translated into proteins.

We also studied the strength of splice sites (namely, SFvalue
and SFaccvalue) and the similarity measurements between the
two flanking sequences of splice sites (namely, IDdonv and
IDacceptv) for the RIs in RIg50 and RI-set-stage-expressed in
comparison with the CSIs. We found that the RIs in RIg50
have the smallest SFvalue, SFaccvalue, IDdonv, and IDacceptv
(Figure 6C and Table 4). The maximum relevance minimum
redundancy (mRMR) method (Peng et al., 2005) was applied to
these intron sets and selected SFaccvalue and SFvalue as top2
and top4 classification features (File S3). All these indicate that
the introns in RIg50 have subtle and special strength of splice
sites that makes the retention easier than those in RI-set-stage-
expressed.

Conservative Sequence Motifs at the
Branch Point
The branch point sequence of a splice site is located at the
upstream of the polypyrimidine tract. The binding of U2-
snRNP to the branch point A has a strong influence on the
splicing result (Zhang et al., 2011). Xia et al. reported that the
average distance between the branch point and the acceptor site
was 33–34 bp, according to 19 experimentally proven branch
point sequences (Xia et al., 2006). Marquez et al. reported a
conservative motif YTRAY which was frequent for U2 introns
in Arabidopsis (Marquez et al., 2012). In yeast, the branch
point sequence is TACTAAC and is almost invariant (Berglund
et al., 1997). Mercer et al. discovered a set of 5- to 7-nt
branch point sequence motifs via a genome-wide identification
of 59,359 high-confidence human branch point (Mercer et al.,
2015).

We examined a conservative motif NNYTRAY near the
acceptor sites in terms of position and structure features of
branch point sequences. By our study, all the introns longer than
58 bp length were strictly aligned with the branch point A (0
point), where NNYTRAY (−5∼+1 bp) was searched within a
distance between 11 and 52 bp in the upstream of the acceptor
site (3′ss). The occurrences of the conservative motif NNYTRAY
are shown in Table 6. The occurrence rate of NNYTRAY in the
CSIs is the highest (59.8%), followed by the occurrence rate for
the RIs in RI-set-stage-expressed (48.5%) and that for the RIs in
RIg50 (only 34.1%). Figure 6A describes the length distributions
from 3’ss to branch point A for the CSIs and RIs in RI-set-stage-
expressed and RIg50. The minimum and maximum distance
between the branch point A and the 3′ss are consistent in the
three intron sets, only 0.25, 0.5 and 0.75 quantiles of distance
between the branch point A and the 3’ss show subtle differences
(within−1∼+ 1 bp range, Table 6).

The detected structures of NNYTRAY are shown in
Figure 6B. It is clear that subsequence (−3∼+ 1 bp) have higher
conservation while nucleotides at −4 and −5 positions were not
conserved (may be A, T, G or C) for CSIs and RIs in RI-set-stage-
expressed and RIg50. The occurrence frequency of G is second
to T in RIg50, unlike the other two intron sets where the second
nucleotide is A. The frequency details of A, T, C, and G in each
position (−5∼+1) in CSIs, RI-set-stage-expressed and RIg50 are
shown in Table 7. The nucleotides at −3 and +1 positions are
similar while nucleotide at−1 position has subtle difference.

It is suggested that the conservative motif of branch point
sequence YTRAY in Arabidopsis has been mainly distributed in
the range of 20–36 bp distance to 3′ss. We also found that the
introns without YTRAY near 3′ss had a great possibility to be
retained.

Contrasting Motifs between RIs and CSIs
Themselves
As show in Table 3, the conventional FeatureSet-3 (frequent
motifs features) are different among these RI sets based on the
results of diversities ( α(x

(

k
)

)) and confidence coefficients (STrue
(x(k)) and SFalse (x(k))) of all 2 to 5-mer motifs (see Table S1).
Some typical frequent motifs were selected via suitable thresholds
of diversities and confidence coefficients for each individual RIs
set. We focused on a case study to understand the influence
of frequent motifs features by the comparison with the RI-
set-all-expressed and RIg50. Table S3 shows values of α(x

(

k
)

),
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FIGURE 6 | The distribution features of conservative sequence motifs at the branch point. Here all negative samples (CSIs, blue color), positive samples(RIs, red color)

and positive samples with more-than-1.0 expressional retention odds of RI-set-stage-expressed (RIg50, navy blue color) are chosen for the comparisons. (A) The

length distribution of branch point sequence motifs from the acceptor site (3′ss) to the branch point A. (B) The weblogo of the branch point sequence motifs. The

vertical scale indicates the nucleotide occurrence probabilities of A, T, C, and G. All branch point sequence motifs is strictly aligned with the branch point (A, 0 point).

(C) The features of splicesites. SFvalue, SFaccvalue indicate the strength of the splice sites, and IDdonv, IDacceptv represent the similarity between two flanking

sequences of corresponding splice sites.

TABLE 6 | The occurrence of the conservative motif NNYTRAY in CSIs, RIs and RIg50.

Dataset Length of intron

< 58 bp

Length of intron ≥ 58 bp Distribution of distance to the accepter

site [minimum,0.25, 0.5, 0.75, maximum]
Introns Number without

NNYTRAY

Occurrence Numbers of

NNYTRAY

CSIs 1 811 1188 [12, 20, 26, 33, 51]

RIs 29 420 423 [12, 19.5, 25, 35, 51]

RIg50 52 400 234 [12, 21, 27, 36, 51]

Distribution of distance to the accepter site (3′ss) respectively illustrate the minimum, 0.25, 0.5, 0.75 quantiles, and the maximum distance between the branch point A and the 3′ss.
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TABLE 7 | The frequency details of A, T, C, and G in each position of the conservative motif NNYTRAY in CSIs, RIs, and RIg50.

Classes Nucleotide −5 −4 −3 −1 1

CSIs A 0.227273 0.251684 0 0.476431 0

C 0.175926 0.164983 0.367845 0 0.298822

G 0.157407 0.175084 0 0.523569 0

T 0.439394 0.408249 0.632155 0 0.701178

RIs A 0.247863 0.226496 0 0.465812 0

C 0.15812 0.209402 0.435897 0 0.337607

G 0.239316 0.260684 0 0.534188 0

T 0.354701 0.303419 0.564103 0 0.662393

RIg50 A 0.247863 0.226496 0 0.465812 0

C 0.15812 0.209402 0.435897 0 0.337607

G 0.239316 0.260684 0 0.534188 0

T 0.354701 0.303419 0.564103 0 0.662393

For −2 and 0 point, T and A are respectively constant nucleotides.

STrue (x(k)) and SFalse (x(k)) of some typical frequent motifs
in the RI-set-all-expressed while Table S4 shows those in the
RIg50. The outstanding differences for thresholds of α(x

(

k
)

) and
S(x

(

k
)

) between the two RIs sets were discovered. In the first
one, the diversities and confidence coefficients of frequent motifs
were incompatible, so a compromise of thresholds are set as (
α(x

(

k
)

) < −0.36 and STrue (x(k))> 0.11) or α(x
(

k
)

) > 0.22 and
SFalse (x(k))> 0.35). While in the second one, these two indexes
were in balance and the relatively high thresholds of them were
set as ( α(x

(

k
)

) < −0.55 and STrue (x(k))> 0.45) or α(x
(

k
)

)
> 0.45 and SFalse (x(k)) > 0.5). Obviously, the classification
performances in RIg50 are improved significantly by comparison
to RI-set-all-expressed (AUC: 0.983 vs. 0.812). It suggests that
these distinguishable frequent motifs are easier to be found by
comparison between the CSIs and the RIs with more-than-1.0
expressional retention odds.

As typical representatives, “GGG-containing,” “GGAG-
containing,” “AT/TA-rich,” “AG/GA-rich,” and “TTTT-
containing” frequent motifs are investigated. In RI-set-all-
expressed, the values of α(x(GGG − containing motifs)),
α(x(GGAG − containing motifs)) and α(x(AG/GA −

rich motifs)) are less than zero (−0.36, −0.55, and −0.27),
which indicates that these motifs appear frequently in the RIs
than CSIs. While the mean values of α(x(AT/TA− rich motifs))
and α(x(TTTT− containing motifs)) are greater than zero (0.25
and 0.19), which illustrates the opposite case. The similar results
are obtained in the RIg50, but the absolute values of diversities
and confidence coefficients of these frequent motifs are much
higher in RIg50 than RI-set-all-expressed (Table 8). All these
indicate that the selected frequent motifs have contributed to
better distinction between RIs and CSIs in RIg50.

Pathways Involving the Genes Which
Contain Co-occurring RIs in Multiple
Samples
The RIs in RI-set-all-expressed are those RIs, which are expressed
in all of the six RNA-Seq datasets (namely, Sample1, Sample2,

TABLE 8 | The assessment indexes of typical representatives for the conventional

FeatureSet-3 in RIg50.

Motifs α(x
(

k
)

) STrue (x
(

k
)

) SFalse (x
(

k
)

)

Mean values

GGG-containing −0.77 0.14

GGAG-containing −0.92 0.21

AG/GA-rich(4bp) −0.72 0.50

TA/AT-rich(4–5bp) 0.33 0.28

TTTT-containing 0.54 0.57

α(x (k)) indicates the diversities of x (k) (typical frequent motifs) between in RIg50 and

CSIs. STrue (x (k)) indicates the confidence coefficients of x (k) in RIg50, and SFalse (x (k))

indicates the same in CSIs.

The bold “AG/GA-rich” and “TTTT-containing” motifs are putative intronic splicing silencers

(ISSs) and intronic splicing enhancers (ISEs).

Sample3, Sample4, Sample5, and Sample6). Similarly, the RIs
in RI-set-stage-expressed are those RIs which are expressed in
Sample1 and Sample2 only, or expressed in Sample3, Sample4,
Sample5, and Sample6 only. These RIs are called co-occurring RIs
in multiple samples. The two subsets of RI-set-stage-expressed
and RI-set-all-expressed that have an expressional retention odds
equal to or larger than 50/50 (RIg50 and RI-set-all-expressd_g50)
can be clearly separated from the CSIs by Random Forest
(Accuracy = 0.935, F-Measure = 0.935 and AUC = 0.983 for
the first one; Accuracy = 0.944, F-Measure = 0.944 and AUC =

0.955 for the second one; see Table S2).We hypothesize that these
co-occurring RIs with more-than-1.0 expressional retention odds
could perform the global regulation of alternative splicing.

There are 556 genes containing these co-occurring RIs.
Pathway analysis with the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database shows that 109 (19.6%) genes have
significant enrichment in 20 main categories that cover 79
pathways (Figure 7 and Table S5). “Spliceosome” and “mRNA
surveillance pathway” are the two typical and representative
pathways related to regulation of alternative splicing. For
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FIGURE 7 | Significant KEGG enrichment pathway involving the genes which contain co-occurring RIs in multiple Samples.

examples, an intron of ATSRL1 (AT5G37370; File S4) was
identified alternatively retained in some isoforms for all the
six samples (expressional retention odds reaching to the level
of 12.24, 87.54, 16.03, 13.68, 6.72, and 9.6 in the six samples,
respectively), which would generate truncated Serine/Arginine-
Rich (SR) like protein isoforms; As members of the SR protein
and hnRNPs (heterogeneous nuclear ribonucleopartile proteins)
families, ATSCL33 (AT1G55310), and DL3190W (AT4G14300;
File S4) harbored intron retention events from RNA-Seq analysis
in Sample1 and Sample2; Meyer et al. reported that mutants
defective in RNA-Binding proteins implicated in the splicing
process (Meyer et al., 2015).

DISCUSSION

There are several methods (e.g., MISO, rMATS, and
SpliceGrapher) that have been developed to detect patterns
of alternative splicing (including intron retention patterns)
using RNA-Seq data (Katz et al., 2010; Rogers et al., 2012;
Shen S. et al., 2014). However, these tools still have limits for
biologists to have accurate identification of RIs and CSIs. MISO
is limited to only discovering isoforms because of its heavy
reliance on the annotations of known alternative events; rMATS
is unable to detect differential alternative splicing patterns
between two RNA-Seq datasets without a user-defined threshold;
SpliceGrapher cannot quantify differential isoforms expression,
although it can predict some novel alternative splicing events
at the splice graph level. Therefore, these tools cannot meet the
expectations and needs for more comprehensive and accurate

annotation of RIs and CSIs using RNA-Seq data. On the other
hand, some previous reports are related with alternative splicing
in Arabidopsis. Filichkin et al. has identified stress-associated
alternative splicing events, and 40 percent of them are intron
retention events (Filichkin et al., 2010). Marquez et al. utilize
directly ASTALAVISTA software for their identification of RIs,
which had lead to plenty of redundant records (Marquez et al.,
2012). Wang et al. studied the patterns of alternative splicing
in flower development stages, and found a higher proportion
of RI (54.8%) in all alternative splicing events (identified from
25.6% of TAIR10 annotated genes; Wang et al., 2014). However,
they usually focus on one single stress-, tissue- or growth stage
RNA-Seq source, and the research results of alternative splicing
are far from comprehensive and accurate in Arabidopsis. Given
the increasing availability of public RNA-Seq datasets, there is a
high demand to have a capable method that can: (i) detect RIs
and CSIs accurately, (ii) perform the expression quantification
at the isoform level, and (iii) benchmark against the existing
annotation database of Arabidopsis. So in this study, we present
a computational pipeline including quality control metrics,
transcript alignment and reconstruction, express quantification,
redundancy identification, and integrated analysis on multiple
RNA-Seq data. Our pipeline is extensible for processing more
RNA-Seq data and can be modified to study other plant species.
In this study, we detected 4,856 RIs from18 RNA-Seq datasets
using our pipeline. In addition, commonality and diversity of
these RIs in different datasets were analyzed. There are 986
RIs that were expressed in all 6 sample sets. With comparison
of TAIR10, 3,472 novel RIs were evident in our data analysis
of 18 RNA-Seq datasets, which allowed us to examine 58,346
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CSIs accurately. All these indicate that our method can facilitate
accurate and comprehensive identification of RIs and CSIs in
Arabidopsis, as well as in other plant species.

Previous studies usually use conventional sequence features
to predict alternative splicing events on a genome scale (Jian
et al., 2014; Mao et al., 2014). We investigated the quantitative
expression information of intron-containing isoforms (FPKM),
and discovered significant differences of FPKM occurring
between RIs and CSIs (15.2323 vs. 25.2828, averagely). It is
interesting to note that the FPKM feature ranks in the top3
when we evaluate our selected features of classification through
mRMRmethod, the “ATTTT” and SFaccvalue features sort in the
top1 and top2 respectively (File S3). Meanwhile FPKM feature
proved to dramatically contribute in distinguishing RIs from
CSIs by our experiments. Furthermore, we also studied whether
the highly retained RIs can have a perfect distinction from
the CSIs. We researched five subsets of RIs according to their
expressional retention odds (from 10/90 to 50/50), and found
that 50/50 expressional odds of retention consistently gained the
outstanding performance of AUC 0.95 on average in all datasets.
In addition, some conventional features related with alternative
splicing were surveyed among representative RIs with more-
than-1.0 expressional retention odds (RIg50). It is noted that GC
content (41.5 vs. 35.91%) and the occurrence rate in CDS region
(73.90 vs. 61.36%) are obviously higher in RIg50 than RIs, while
the strength of splice sites (SFvalue, 1.8208 vs. 4.1038; SFaccvalue,
2.1530 vs. 5.0915), the similarity between two flanking sequences
of splice sites (IDdonv, 17.788 vs. 18.221; IDacceptv, 18 vs.
18.056) and the consensus GT-AG introns (53.79 vs. 96.7%)
appear lower in RIg50 than RIs. It is likely that RIs with higher
expressional retention odds have shown more stronger signal
strength of retention than those with low expressional retention
odds.

RIs is the predominant event of alternative splicing in
plants (Meyer et al., 2015; Staiger, 2015). A. thaliana, as an
important model plant with abundant genetic resources, has
greatly advanced our knowledge of the recognition mechanism
of RIs in plants. Our study found that RIs have distinguishable
features in comparison with CSIs by Random Forest, especially
when RIs tend to express in multiple samples and possess
higher expressional retention odds (more-than-1.0). Based on the
co-occurring RIs, we researched these distinguishable features
in more details. In addition to the low strength of splice
sites and high similarity with the flanking exon sequences,
low occurrence percentage of YTRAY near the acceptor site,
putative ISSs (AG/GA-rich motifs) and ISEs (TTTT-containing
motifs) are closely related to the recognition mechanism of
RIs. On the other hand, we also performed KEGG pathway
analysis in 556 genes containing the co-occurring RIs. The
results show significant enrichment in 79 pathways, especially
the enrichment of RNA-Binding proteins. The RIs of ATSRL1,
ATSCL33, and DL3190W can illustrate the regulation in the
splicing process. All these indicate that the distinguishable
features reflected obviously in co-occurring RIs should play
a wide range of functions in alternative splicing process,
which is independent of tissue-, growth-stage or stress-specific
environment.

It has been previously reported that the regulatory elements
“GAAG” within the introns of ATSCL33 can imply an auto-
regulation of alternative splicing (Thomas et al., 2012; Meyer
et al., 2015). In our study, the mean value of diversities
α(x(AG/GA − rich motifs)) between the RIg50 and the
CSIs is −0.72, while the confidence coefficents in the RIg50
(STrue(x(AG/GA − rich motifs))) is 0.50 (much larger than
(STrue(x(GGG − containing motifs)), 0.14; STrue(x(GGAG −

containing motifs)), 0.21) (See Table 8). These results indicate
that AG/GA-rich motifs, such as, “AGGA,” “GAAG,” “AGAG,”
and “GAGA,” have occurred more frequently in the RIg50 than
in the CSIs. They should have played a role of intronic splicing
silences (ISSs) in Arabidopsis. We found that there are multiple
AG/GA rich motifs located in two introns of ATSCL33. These
AG/GA-rich motifs involved in regulating intron retention in
isoforms of ATSCL33. In DL3190W and ATSRL1, we discovered
the same regulation function of AG/GA-rich motifs within
the corresponding RIs in pre-mRNA splicing. Accordingly,
TTTT-containing motifs held higher mean values of both
α(x(TTTT − containing motifs)) (0.54) and SFalse(x(TTTT −

containing motifs)) (0.57) than those of TA/AT-rich motifs (0.33
and 0.28), which are putative intronic splicing enhancers (ISEs)
as suggested by a previous study (Mao et al., 2014). So, TTTT-
containing motifs, instead of TA/AT-rich motifs, seem to be the
ISEs because of more obviously abundance in the CSIs.

RDM16 (AT1G28060) regulates the formation of the
U4/U6-associated splicing factor. Huang et al. illustrated
308 intron retention events discovered in RDM16 by
RNA-Seq analysis (Huang et al., 2013). Although RDM16
did not occur alternative splicing under stress conditions
(Sample3–Sample6) and its alternative splice event is not
annotated in TAIR10 database, but TCONS_00002758 and
TCONS_00002760 of RDM16 in our study were clearly detected
in developmental tissues (Sample1 and Sample2). The second
intron of TCONS_00002758 were proved in retention within
the second exon of TCONS_00002760, confirming that RDM16
had an impact on the pre-mRNA splicing in Arabidopsis. ABH1
(AT2G13540) encodes a nuclear cap-binding protein that is
involved in ABA signaling and flowering. Our analysis indicates
that some specific RIs with more-than-1.0 expressional retention
odds were discovered in ABH1 (File S4). The results highlight
that the genes involving the co-occurring RIs in multi-samples
are closely related to pre-mRNA splicing in Arabidopsis.

However, some of RIs show inconsistency with significant
difference of expression in different environmental treatments
or developmental stages. To identify RIs’ regulation in response
to different conditions, it is challenging to eliminate systematic
variations among RNA-Seq datasets with different platforms or
from different labs. An effective way to describe the expression
correlations in different datasets is to construct co-splicing
networks (Li W. et al., 2014; Klepikova et al., 2016), which
will increase the stability and spatiotemporal specificity of gene
expression profiles. On the other hand, the latest PacBio long-
read sequencing can help us validate alternative splicing isoforms
assembled from short reads systematically (Li et al., 2016). These
will be conducive to understanding of regulation mechanisms
involved in spatiotemporal specific RIs.
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