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Phenolic composition of virgin olive oil is determined by the enzymatic and/or chemical
reactions that take place during olive fruit processing. Of these enzymes, β-glucosidase
activity plays a relevant role in the transformation of the phenolic glycosides present in
the olive fruit, generating different secoiridoid derivatives. The main goal of the present
study was to characterize olive fruit β-glucosidase genes and enzymes responsible for
the phenolic composition of virgin olive oil. To achieve that, we have isolated an olive
β-glucosidase gene from cultivar Picual (OepGLU), expressed in Nicotiana benthamiana
leaves and purified its corresponding recombinant enzyme. Western blot analysis
showed that recombinant OepGLU protein is detected by an antibody raised against
the purified native olive mesocarp β-glucosidase enzyme, and exhibits a deduced
molecular mass of 65.0 kDa. The recombinant OepGLU enzyme showed activity on
the major olive phenolic glycosides, with the highest levels with respect to oleuropein,
followed by ligstroside and demethyloleuropein. In addition, expression analysis showed
that olive GLU transcript level in olive fruit is spatially and temporally regulated in a
cultivar-dependent manner. Furthermore, temperature, light and water regime regulate
olive GLU gene expression in olive fruit mesocarp. All these data are consistent with
the involvement of OepGLU enzyme in the formation of the major phenolic compounds
present in virgin olive oil.

Keywords: β-Glucosidase, Olea europaea, oleuropein, olive fruit, phenolic compounds, virgin olive oil

INTRODUCTION

Olive (Olea europaea L.) is one of the first plants grown as oil crop. Consequently, olive oil is one of
the oldest known plant oils and it can be consumed as virgin olive oil (VOO). In the Mediterranean
diet, this oil constitutes the main lipid source and it has been related with several beneficial
nutritional properties which are mainly associated to its phenolic components (Konstantinidou
et al., 2010; Visioli and Bernardini, 2011). However, phenolic compounds are relevant not only
because their nutritional properties, but also due to their organoleptic characteristics. In fact,
phenolic components are involved in the pungent and bitter sensory notes of VOO (Andrewes
et al., 2003; Mateos et al., 2004). Phenolic compounds are being currently used as a trait in new
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cross breeding programs (León et al., 2011), and also as
VOO quality markers, because of their health promoting and
organoleptic properties.

Oleuropein, demethyloleuropein and ligstroside, the most
significant phenolic glycosides detected in the olive fruit, belong
to the secoiridoids class, a group of monoterpenoids typical
of the Oleaceae family with a cleaved methylcyclopentane
skeleton (Obied et al., 2008). On the contrary, the main
phenolic compounds detected in VOO are the secoiridoid
derivatives, resulting from the enzymatic hydrolysis of
these olive fruit glycosides. Specifically, the aldehydic forms
of oleuropein and ligstroside aglycones (3,4-DHPEA-EA
and p-HPEA-EA, respectively), and the dialdehydic forms
of decarboxymethyloleuropein and ligstroside aglycones
(3,4-DHPEA-EDA and p-HPEA-EDA, respectively) (Montedoro
et al., 2002). Oleuropein derivatives exhibit the highest
antioxidant activity (Ramos-Escudero et al., 2015), protein-
denaturing/protein-cross-linking properties (Konno et al., 1999),
cytotoxic effects (Bernini et al., 2011) and effectivity as chronic
disease preventive agents (Pinto et al., 2011).

The phenolic profile of VOO is mainly derived from the
amount of phenolic glycosides originally found in the tissues of
olive fruit and the activity of oxidative and hydrolytic enzymes
operating on these glycosides during VOO processing (García-
Rodríguez et al., 2011; Romero-Segura et al., 2012). Although
secoiridoids biosynthesis and degradation pathways are still
not fully understood (Obied et al., 2008), hydrolysis by highly
specific β-glucosidases seems to be critical for the diverse roles
attributed to secoiridoid derivatives. In this sense, the wide
array of physiological roles assigned to plants β-glucosidases
(β-d-glucoside glucohydrolases, EC 3.2.1.21), such as functions
in plant secondary metabolism, symbiosis, defense, signaling,
and cell wall lignification and catabolism, are determined by
their tissue and subcellular localization, and their substrate-
specificities (Cairns and Esen, 2010).

The existence of various β-glucosidase isoforms in olive
was first reported by Mazzuca et al. (2006), who described
the localization of two isoforms of oleuropein-degradative
β-glucosidases in the oil droplets and in the chloroplasts of
mesocarp of green olive fruits. Transcriptomic (Alagna et al.,
2012) and proteomic (Bianco et al., 2013) studies confirm
that olive, similar to most plants, possesses several distinct
β-glucosidases. Recently, the isolation and characterization of a
defense-related β-glucosidase gene from olive (cv. Koroneiki) has
been described (Koudounas et al., 2015). Nearly all these earlier
reports on this enzyme have been centered in its physiological
function as a defense mechanism which specifically generates
oleuropein-derived compounds with established antimicrobial
activities. In contrast, no similar studies have been carried out on
the β-glucosidase genes/enzymes in relation to the VOO quality;
despite that this knowledge may be very valuable to enhance
marker assisted breeding programs to obtain new varieties with
tailored oil quality characteristics.

We have previously isolated and purified to apparent
homogeneity a protein with β-glucosidase activity from olive fruit
mesocarp which exhibits high activity with the main phenolic
glycoside in olive fruit, oleuropein, and gives rise to one of the

most important phenolic compounds in VOO (3,4-DHPEA-EA)
as the main reaction product (Romero-Segura et al., 2009). Data
on the β-glucosidase activity during ripening of olive fruit from
cultivars Arbequina and Picual are in good agreement with
the phenolic composition of the oils obtained from fruits with
different degrees of maturity (Romero-Segura et al., 2012).

The objective of this study was to characterize olive
fruit β-glucosidase genes and enzymes responsible for the
phenolic composition of VOO. Thus, we have isolated an olive
β-glucosidase gene from cultivar Picual, which codes for an
enzyme that displays the highest activity toward oleuropein. The
immunological and catalytic properties of this olive β-glucosidase
enzyme, together with its expression data, are in agreement
with its participation in the biosynthesis of the major phenolic
compounds found in VOO.

MATERIALS AND METHODS

Plant Material
Olive (Olea europaea L. cv. Picual and Arbequina) trees were
cultivated in the experimental orchard of Instituto de la Grasa,
Sevilla (Spain), with drip irrigation and fertirrigation from the
time of flowering to fruit ripening. In the case of non-irrigated
treatment, the olive trees received only natural rainfall.

Young drupes, developing seeds, and mesocarp tissue
were harvested at different weeks after flowering (WAF)
corresponding to different developmental stages of the olive fruit:
green (9, 12, 16, and 19 WAF); yellow-green (23 WAF); turning
or veraison (28 and 31 WAF); and mature or fully ripe (35 WAF).
Immediately after harvesting, olive tissues were frozen in liquid
nitrogen, and stored at−80◦C.

Stress treatments were carried out according to Hernández
et al. (2011). Olive branches with approximately 100 olive
fruit at turning stage (28 WAF) were taken from olive trees
and incubated in a growth chamber at 25◦C with a 12 h
light/12 h dark cycle to imitate physiological conditions of the
tree. The light intensity was 11.5 µmol m−2 s−1. For stress
experiments, standard conditions were modified according to
the effect studied. For low and high temperature treatments, the
branches with olive fruit were incubated at the standard light
intensity, at 15 or 35◦C, respectively. To evaluate the effect of
the darkness, the standard temperature was maintained, and light
was turned off. To study the effect of wounding, the whole surface
of the olive fruit was mechanically damaged with pressure at zero
time using forceps with serrated tips, affecting mesocarp tissue.
To maintain the natural photoperiod day/night of the olive fruit,
the zero time of each experiment was selected 2 h after the start
of the light period. When indicated, olive mesocarp tissues were
collected, frozen in liquid nitrogen, and kept at−80◦C.

Isolation of a β-Glucosidase Full-Length
cDNA Clone
Candidate sequences for olive β-glucosidases were identified
in the olive ESTs database (Muñoz-Mérida et al., 2013) by
means of the tblastn algorithm together with amino acid
sequences of known plant β-glucosidase proteins. One of
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them, which showed high expression levels in mesocarp
tissue according to in silico expression analysis, was selected
for cloning. Based on this sequence, a specific pair of
primers CR3 5′-AAGAGCACCAAAGTCTGCAATG-3′ and CR4
5′-GGAGCCCAACTCCTTTATTGG-3′ was designed. These
primers, together with an aliquot of an olive Uni-ZAP XR cDNA
library constructed with mRNA isolated from 13 WAF olive fruit
of cultivar Picual (Haralampidis et al., 1998), were used for PCR
amplification. The generated DNA fragment was subcloned into
the vector pSpark R© I (Canvax, Spain) and sequenced in both
directions. DNA sequence determination and analysis was carried
out as described in Hernández et al. (2016).

Total RNA Extraction and cDNA
Synthesis
1–2 g of frozen olive tissues harvested from at least three different
olive trees, were used for total RNA isolation as described by
Hernández et al. (2005). Verification of RNA quality, removal of
genomic DNA and cDNA synthesis were performed according to
Hernández et al. (2009).

Quantitative Real-Time PCR (qRT-PCR)
Gene expression analysis was performed by qRT-PCR using
an Mx3000PTM real-time PCR System and the “Brilliant R©

SYBR R© Green Q-PCR Master Mix (Stratagene, La Jolla, CA,
United States) as previously described (Hernández et al., 2009).
Primer3 program1 was used to design primers for gene-specific
amplification (Supplementary Table S1). The housekeeping
olive ubiquitin2 gene (OeUBQ2, AF429430) was used as an
endogenous reference to normalize. The real-time PCR data were
calibrated relative to the corresponding gene expression level
in 12 WAF mesocarp tissue from Picual in the case of tissue
and developmental expression studies, whereas for the stress
studies the data were calibrated relative to the corresponding gene
expression level at zero time for each treatment and cultivar. In
both cases, the 2−11CT method for relative quantification was
followed (Livak and Schmittgen, 2001). The data are presented
as means ± standard deviation (SD) of three different qRT-
PCR reactions carried out in three different 96-well plates. Each
reaction was performed in duplicate in each plate.

Transient Expression of OepGLU Gene in
Nicotiana benthamiana
For functional Agrobacterium-mediated CaMV35S-driven
transient expression, the OepGLU coding sequence was
PCR-amplified using the specific primers YDV1F (5′-CACC
ATGGATATCCAAAGCAAC-3′) and YDV1R+His (5′-CTAG
TGATGGTGATGGTGATGCCCGGTGCTGCCTCTAAGCCTT
TTAC-3′), and subcloned into the GATEWAY R©-compatible
binary vector pH2GW7 (Karimi et al., 2002). The resulting
purified pH2GW7-OepGLU construct was used to transform
Agrobacterium tumefaciens strain GV3101 using freeze-thaw
method described by Höfgen and Willmitzer (1988). Nicotiana
benthamiana leaves were pressure infiltrated with A. tumefaciens

1http://primer3.ut.ee/

cultures (OD600 approximately 1.0) as described by Popescu et al.
(2007). Samples were collected 3 days after infiltration, frozen in
liquid nitrogen and kept at−80◦C.

Purification of OepGLU Recombinant
Isoenzyme Expressed in N. benthamiana
Leaves
To obtain the crude extract, 4 g of infiltrated leaf tissue
were thawed and homogenized in 30 ml of 20 mM
Na-phosphate buffer pH 7.4 containing 500 mM NaCl,
20 mM imidazole, 5% (w/v) polyvinyl polypyrrolidone, and
1 mM phenylmethanesulfonyl fluoride using an Ultraturrax
homogenizer at 4◦C. The resulting homogenate was centrifuged
at 27000 g for 20 min at 4◦C. The clear supernatant was filtered
through three layers of Miracloth (Calbiochem, United States)
and was used as the crude extract.

To purify the recombinant OepGLU protein containing
the C-terminal 6xHis tag motif, 30 ml of crude extract
was loaded onto a 1-ml His GraviTrap column (GE
Healthcare, United Kingdom), and OepGLU protein
was eluted with 3 ml of 20 mM Na-phosphate pH 7.4
containing 500 mM NaCl and 500 mM imidazole. Remaining
NaCl and imidazole were removed by means of a PD-10
column (GE Healthcare, United Kingdom). The enzymatic
solution was concentrated in 30 kDa microcentrifuge filters
Vivaspin R© (GE Healthcare, United Kingdom) at 2000 g
and 4◦C to a final volume of 250 µl. This purified and
concentrated preparation was used for OepGLU biochemical
characterization.

β-Glucosidase Assay
Two methods for in vitro assaying β-glucosidase activity
were used in this study (Romero-Segura et al., 2009).
A spectrophotometric method, in which the β-glucosidase
activity was determined by continuously monitoring the increase
in absorbance at 405 nm related to the increasing amount of
p-nitrophenol liberated from the synthetic glucoside pNPG,
and a second method based on the direct determination of
the hydrolyzed natural olive glucoside, oleuropein, by HPLC
analysis.

HPLC Analysis
Analytical HPLC of phenolic compounds was performed in
a Beckman Coulter liquid chromatographic system equipped
with a System Gold 168 detector, a solvent module 126 and
a Mediterranea Sea 18 column (4.0 mm i.d. x 250 mm,
particle size = 5 µm) (Teknokroma, Spain). Quantification and
identification of phenolic compounds was performed following a
previously described methodology (Luaces et al., 2007).

Protein Determination and
Electrophoresis
The protein concentration was estimated using the Bio-Rad
(United States) Bradford protein reagent dye with BSA as
standard. SDS-PAGE was performed as previously described
(Romero-Segura et al., 2009).
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Preparation of Anti-β-Glucosidase
Polyclonal Antibodies and Immunoblot
Analysis
Polyclonal antibodies against the native olive β-glucosidase
protein purified from olive mesocarp according to the method
described by Romero-Segura et al. (2009) were prepared in rabbit
by Production and Animal Experimentation General Service of
the University of Seville.

For Western blotting, 5–6 µg of protein samples were
separated by SDS-PAGE as described above and electro-blotted
onto nitrocellulose membrane using the Mini Trans-Blot R© system
(Bio-Rad). Bound anti-β-glucosidase primary antibody was
detected using an anti-rabbit alkaline phosphatase-conjugated
secondary antibody (Sigma–Aldrich, United States). When a
mouse monoclonal anti-6xHis antibody (GE Healthcare) was
used as primary antibody, an anti-mouse alkaline phosphatase-
conjugated antibody (Invitrogen) was employed as secondary
antibody. To detect alkaline phosphatase activity after antibodies
incubation, nitrocellulose membrane was submerged in a
solution obtained by dissolving a SIGMAFASTTM BCIP R©/NBT
tablet (Sigma–Aldrich) in 10 ml of distilled water.

RESULTS

A number of contigs with a high degree of similarity to
plant β-glucosidases were selected from the olive EST database
(Muñoz-Mérida et al., 2013). Among them, one which showed
high expression levels in mesocarp tissue according to in silico
expression analysis was chosen for cloning. Two specific primers
were designed on the basis of this contig sequence, and used for
PCR amplification together with an aliquot of an olive cDNA
library of cultivar Picual. We obtained a full-length cDNA clone
of 1848 bp, which was designated OepGLU, and contained an
open reading frame encoding a predicted protein of 551 amino
acids (Supplementary Figure S1), with a calculated molecular
mass of 62.8 kDa and a pI of 6.6. The deduced OepGLU amino
acid sequence from cultivar Picual displayed a 98% identity to
an olive β-glucosidase cDNA clone (AY083162) from cultivar
Koroneiki (Koudounas et al., 2015).

Alignment of the deduced amino acid sequence of OepGLU
from cultivar Picual with other plant β-glucosidase protein
sequences (Supplementary Figure S1) suggests that it codes for a
β-glucosidase enzyme because it showed the conserved sequence
motifs characteristic of the glycosyl hydrolases family 1 (GH1)
T(F/L/M)NEP and Y(I/V)TENG, which include the two glutamic
acid residues involved in the catalytic mechanism (Esen, 2003).
In addition, the conserved amino acids Gln, His, Asn, Glu and
two Trp which have been shown to be essential for the binding of
the glucose (Cairns and Esen, 2010) were also found. A putative
N-glycosylation site (N83) has also been detected in the OepGLU
sequence, and the presence of a conserved GH1 family domain
has been identified by NCBI Conserved Domain Search and the
Pfam software. Analysis of OepGLU deduced protein sequence
with target prediction software such as WolfPSORT and TargetP
did not give rise to a clear subcellular localization. In fact, a

putative nuclear localization signal (RRKR) could be found at
amino acids 543–546 and a 25 amino acid N-terminal signal
peptide was also predicted (Supplementary Figure S1), generating
after its proteolytic cleavage a mature protein of 526 amino acids,
with a calculated molecular mass of 60.3 kDa and a pI of 7.0.

Purification and Immunological
Characterization of OepGLU
Recombinant Enzyme
To verify the functional identity of the OepGLU gene,
Agrobacterium-mediated transient expression in N. benthamiana
leaves was carried out. To that end, the OepGLU coding
region, including a C-terminal 6xHis tag, was subcloned into
the vector pH2GW7 using the GATEWAYTM technology. The
resultant plasmid designated pH2GW7-OepGLU+His was used
to transform A. tumefaciens GV3101, and tobacco leaves were
infiltrated with bacterial cells carrying this plasmid. Expression of
the recombinant protein was optimal at 3 days after infiltration.
SDS-PAGE analysis of the crude extract did not show the protein
band with the expected molecular mass for the recombinant
OepGLU (Figure 1A). However, when the enzyme preparation
purified by affinity chromatography was used, an intense band
with a molecular mass of 65.5 kDa was detected (Figure 1B,
lane 4). In contrast, this protein band was not observed in
purified preparations isolated from tobacco leaves infiltrated with
untransformed Agrobacterium cells (Figure 1B, lane 3).

Purified preparations of recombinant OepGLU were also
analyzed by western blot using the anti-6xHis antibody
(Figure 1C) and the antibody raised against the native olive
β-glucosidase (Figure 1D). In both cases, a protein band with the
same molecular mass as deduced from the SDS-gel was observed.

Kinetic Properties of Recombinant
OepGLU in Comparison to the Native
Enzyme
In the present study, purified preparations of recombinant
OepGLU, but not crude extracts, were able to hydrolyze the
artificial substrate p-nitrophenyl-β-D-glucopyranoside (pNPG)
and the major natural olive phenolic glycoside oleuropein
in a time-dependent manner. The enzymatic hydrolysis of
oleuropein by purified recombinant OepGLU was monitored
for up to 60 min by HPLC analysis (Figure 2). More than
50% of the oleuropein initially present was hydrolyzed after
5 min, producing as the first reaction product a mixture of
oleuropein aglycone isomers (OA-isomers). After 15 min, the
broad peak of OA-isomers was reduced, whereas 3,4-DHPEA-
EA and hydroxytyrosol began to accumulate. The purified
recombinant olive β-glucosidase exhibited a specific activity of
67.6 U/mg using oleuropein as substrate.

Once it was established the capacity of the purified
recombinant olive β-glucosidase to hydrolyze oleuropein, its
activity was also measured using the synthetic glucoside pNPG
as substrate, exhibiting a much lower specific activity (1.4 U/mg).
Hence, the natural substrate oleuropein was used to perform
the biochemical characterization of the recombinant olive
β-glucosidase.
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FIGURE 1 | SDS-PAGE of crude extract (A) and purified preparation (B) of
N. benthamiana leaves transiently expressing the OepGLU gene and Western
blot analysis of purified preparation using anti-6xHis antibody (C) or anti-GLU
antibody (D). Lane 1, crude extract of infiltrated leaves with untransformed
A. tumefaciens suspensions (control); lane 2, crude extract of infiltrated leaves
with pH2GW7-OepGLU transformed A. tumefaciens suspensions; lane 3,
purified preparation of infiltrated leaves with untransformed A. tumefaciens
suspensions (control); lane 4, recombinant OepGLU purified preparation; lane
5, purified GLU protein according to the method of Romero-Segura et al.
(2009). 6 µg of protein were loaded per lane in all cases. The primary antibody
dilutions used were 1:1500 (C) and 1:5000 (D) and the secondary antibody
dilution were 1:2500 (C) and 1:10000 (D). The band corresponding to the
olive β-glucosidase protein is denoted by an arrow.

The purified recombinant olive β-glucosidase displayed an
optimum pH of 5.5 with a fast decrease of activity above it
(Figure 3A), and showed> 80% of its highest activity at 25–45◦C,
with an optimum temperature when assayed at 40◦C and a strong
decline over 45◦C (Figure 3B). Thermal inactivation kinetics
showed that recombinant OepGLU was active up to 40◦C with
a significant decline over this temperature (Figure 3C).

In addition, β-glucosidase activity was assayed with a mixture
of oleuropein, demethyloleuropein and ligstroside, the three
most important phenolic glycosides identified in olive fruit,
in order to mimic what happens during the milling step of
the industrial VOO extraction process, when the enzyme and
possible substrates meet as olive fruit tissues are disrupted.
Substrate selectivity experiments (Table 1) showed that the
highest activity level was reached using oleuropein as substrate,
followed by ligstroside (25.6%) and demethyloleuropein (15.6%).
In particular, after a 5 min reaction time it could be
observed in the corresponding chromatogram that most of the
oleuropein was hydrolyzed followed by ligstroside, with the
consequent appearance of OA-isomers and ligstroside aglycone
isomers (LA-isomers), respectively (Supplementary Figure S2).

Verbascoside was used as negative control, since its chemical
structure is significantly different from that of the other three
phenolic glucosides and does not contain a non-reducing
terminal β–D-glucosyl residue.

To obtain the kinetic parameters of recombinant olive
β-glucosidase, enzyme activity was measured over a range
of concentrations of oleuropein as substrate (Supplementary
Figure S3). The calculated Km for oleuropein was 26.8 mM and
the Vmax 263.2 U/mg, with a catalytic efficiency (Vmax/Km) of 9.8.

Tissue Specificity and Developmental
Expression of Olive GLU Gene Is
Cultivar-Dependent
Olive GLU gene expression levels were analyzed in different
Picual and Arbequina olive tissues by qRT-PCR using
specific primers (Figure 4A), with the aim of investigating
its physiological role and its possible contribution to the content
of the different phenolic compounds present in the VOO. In both
cultivars, higher expression levels were detected in young drupes
and mesocarp compared to seeds, where transcript levels were
negligible. Young drupes of 9 WAF from cultivar Arbequina
showed the highest expression level. Interestingly, transcript
levels in mesocarp at turning stage (28 WAF) were much higher
in Picual than in Arbequina cultivar.

Besides, olive GLU transcript levels were analyzed at different
times during olive fruit development and ripening in Picual and
Arbequina mesocarp and seed tissues (Figure 4B). A maximum
transcription level was observed in green mesocarp (16 WAF)
from both cultivars. In the case of cultivar Arbequina, the high
expression level detected at 16 WAF dramatically decreased
after this maximum, reaching constant low levels during the
rest of the olive fruit development and ripening periods. On
the contrary, in the cultivar Picual, olive GLU expression
level showed a second maximum, lower than the first one,
once the olive fruit ripening period has started (28 WAF).
Unlike mesocarp tissue, olive GLU gene exhibited almost
undetectable transcript levels in seeds from Picual and Arbequina
(Figure 4B), which is consistent with the very low enzyme
activity levels observed in both cultivars (Romero-Segura et al.,
2011).

The same study was also performed in Picudo, Hojiblanca and
Manzanilla cultivars, using olive fruit mesocarp at the three main
stages in which olive fruit are harvested for olive oil production:
yellow-green (23 WAF), turning or veraison (31 WAF), and
mature or fully ripe (35 WAF) (Supplementary Figure S4). The
olive GLU gene expression levels in the cultivars Picudo and
Hojiblanca remained low, showing no significant changes. On the
contrary, the transcript levels in the cultivar Manzanilla showed
an increase during fruit ripening, and then decreased at the end
of the ripening period.

Transcriptional Regulation in Olive Fruit
Mesocarp of GLU Gene in Response to
Abiotic Stresses
To examine the effect of different abiotic stresses on the
expression level of the GLU gene in mesocarp tissue, olive tree
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FIGURE 2 | Time-course of the oleuropein hydrolysis catalyzed by the purified recombinant OepGLU. Enzyme activity was assayed as indicated in Material and
Methods. Identification of peaks: 1, oleuropein; 2, OA-isomers; 3, 3,4-DHPEA-EA; 4, hydroxytyrosol.

branches from Picual and Arbequina cultivars with olive fruit at
turning stage (28 WAF) were incubated for 24 h modifying the
standard conditions (25◦C with a 12 h light / 12 h dark cycle)
dependent on the effect to be tested. No changes in the olive
GLU gene expression levels were observed in olive fruit mesocarp
when standard conditions were used (Figures 5, 6).

When low temperature (15◦C) was used to incubate the olive
fruit, a significant transient increase in the expression levels of
olive GLU was observed in both cultivars, with a maximum
after 3 or 6 h of treatment for Picual and Arbequina cultivars,
respectively (Figure 5A). On the contrary, the incubation at high
temperature (35◦C) of olive fruit brought about a reduction in the
olive GLU gene transcript levels in both cultivars especially after
1 h of treatment, reaching almost undetectable transcript levels
after 24 h (Figure 5B).

To examine the effect of darkness on the transcript levels of
the olive GLU gene in Picual and Arbequina mesocarp tissues,
branches were incubated for 24 h at 25◦C in the darkness.
A decrease in the oliveGLU gene expression levels was detected in

both cultivars, mainly in Picual during the first 3 h of incubation
(Figure 6A).

In addition, the potential involvement of olive GLU in the
transcriptional response to wounding was tested in olive fruit
subjected to mechanical damage from olive branches incubated
at standard conditions. In this case, olive GLU gene expression
levels declined progressively in both cultivars (Figure 6B).

On the other hand, since a number of studies point out
that different water regimes could affect the phenolics content
of VOO, showing a negative correlation between the content
of secoiridoid derivatives and the water amount used for olive
growing (Gómez-Rico et al., 2006; Servili et al., 2007), the effect
of water regime on the transcript levels of olive GLU was
investigated in olive fruit mesocarp of Picual and Arbequina
cultivars grown with natural rainfall or irrigation. A higher
transcript level was detected for the olive GLU gene when
Picual and Arbequina were cultivated with natural rainfall only
(Figure 7), except for late ripening stages (35 WAF) where
transcript levels were very low in both watering conditions.

Frontiers in Plant Science | www.frontiersin.org 6 November 2017 | Volume 8 | Article 1902

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-01902 November 4, 2017 Time: 10:17 # 7

Velázquez-Palmero et al. Oleuropein β-Glucosidase Olive Oil Phenolics

FIGURE 3 | Effect of pH (A), temperature (B), and thermal stability (C) on the
purified recombinant OepGLU activity. The optimum pH was determined using
sodium acetate, phosphate and borate buffers (50 mM) in the standard assay.
The optimum temperature was determined using a temperature interval of
15–60◦C in the standard assay. Thermal stability was determined under
standard assay conditions after incubation of purified preparation at different
temperatures for 60 min. 100% activity was 50.9 U/ml.

TABLE 1 | Substrate selectivity of purified recombinant OepGLU on a mixture of
various natural olive glycosides.

Substrate Relative activity (%)

Oleuropein 100.0

Ligstroside 25.6

Demethyloleuropein 15.6

Activity was determined by measuring the corresponding hydrolyzed natural olive
glycoside by HPLC. Initial concentration of the substrates in the assay mixture was
5 mM each.

DISCUSSION

Several candidate olive β-glucosidase sequences were identified
from an olive ESTs database (Muñoz-Mérida et al., 2013).
This is consistent with the numerous β-glucosidase genes
usually detected in the same plant, as reported in Arabidopsis
(Xu et al., 2004). Since higher β-glucosidase activity levels have
been observed in olive fruit mesocarp in comparison to seeds

FIGURE 4 | Relative expression levels of olive GLU gene in different tissues of
Picual and Arbequina cultivars (A), and in mesocarp tissue (closed squares) or
seeds (open squares) during the development and ripening of olive fruit (B).
The beginning of fruit ripening, which coincides with the appearance of purple
color, is indicated by an arrow.
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FIGURE 5 | Effect of low (A) and high (B) temperature on the relative
expression levels of olive GLU gene in the Picual and Arbequina mesocarp
tissues. Branches with approximately 100 olive fruit at turning stage (28 WAF)
were incubated using standard conditions (open squares), or at a temperature
of 15◦C (A) or 35◦C (B) (closed squares). Boxes in the upper part indicate
light (open) or dark (closed) periods.

(Romero-Segura et al., 2011), one of the contigs which showed
high expression levels in mesocarp tissue compared to seeds
according to in silico expression analysis, was selected for
cloning. Sequence analysis of the β-glucosidase gene isolated
from olive (cv. Picual) showed that its deduced amino acid
sequence contains the conserved sequence motifs and domains
characteristic of the glycosyl hydrolases family 1 (GH1) (Esen,
2003; Cairns and Esen, 2010), and suggests that it codes for a
β-glucosidase enzyme.

In order to characterize the immunological and kinetic
properties of the olive β-glucosidase recombinant enzyme,
transient expression in N. benthamiana leaves was performed.
The band corresponding to the recombinant olive β-glucosidase
was observed by SDS-PAGE only when the enzymatic
preparation purified by affinity chromatography was applied, but
not in the case of the purified preparation isolated from tobacco
leaves infiltrated with untransformed Agrobacterium cells used
as control, or when the crude extract was loaded onto the gel. In
addition, western blot analysis of the purified preparations was

FIGURE 6 | Effect of darkness (A) and wounding (B) on the relative
expression levels of olive GLU gene in the Picual and Arbequina mesocarp
tissues. Branches with approximately 100 olive fruit at turning stage (28 WAF)
were incubated using standard conditions (open squares), or incubated at
25◦C for 24 h in the dark (A) or subjected to mechanical damage and
incubated at standard conditions for 24 h (B) (closed squares). Boxes in the
upper part indicate light (open) or dark (closed) periods.

FIGURE 7 | Effect of the water regime on the relative expression levels of the
olive GLU gene in the Picual and Arbequina mesocarp tissues from olive trees
cultivated with natural rainfall or irrigation.

performed using two types of antibodies. In the first case, an anti
6xHis antibody detected a band with identical molecular mass
(65.0 kDa) than that observed by SDS-PAGE, confirming that it
corresponded to the recombinant enzyme. This molecular mass
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of OepGLU is in the range of 55–65 kDa described for almost all
plant β-glucosidase monomers (Esen, 2003), and is identical to
that of 65.4 kDa reported for the β-glucosidase protein purified
from olive fruit mesocarp (Romero-Segura et al., 2009). In
the second case, an antibody raised against the native olive
β-glucosidase protein purified from olive mesocarp (Romero-
Segura et al., 2009) detected a band with identical molecular
mass. Furthermore, when a preparation corresponding to native
enzyme purified according to the method of Romero-Segura
et al. (2009) was used as positive control, an intense band with
a similar apparent size was detected. All these data strongly
suggest that the recombinant OepGLU corresponds to the native
β-glucosidase enzyme previously purified by our group from
olive fruit mesocarp, which has been demonstrated to play a key
role in shaping the VOO phenolic composition (Romero-Segura
et al., 2012). Interestingly, although native and recombinant
olive β-glucosidase enzymes exhibit similar molecular masses,
the occurrence of post-translational modifications cannot be
discarded. In fact, a unique N-glycosilation site was predicted in
the OepGLU amino acid sequence.

Although the capacity of the recombinant olive β-glucosidase
to hydrolyze oleuropein has been previously demonstrated using
crude extracts from N. benthamiana leaves (Koudounas et al.,
2015), a quantitative in vitro enzymatic assay using purified
recombinant protein, to avoid interferences of metabolites and
enzyme activities present in the tobacco leaves crude extract,
has not been reported so far. Furthermore, a comprehensive
characterization of the kinetic properties of the enzyme has not
been carried out up to date. Purified preparations of recombinant
OepGLU exhibited β-glucosidase activity with both, the artificial
substrate pNPG and the major natural olive phenolic glucoside
oleuropein. This result demonstrates that the OepGLU gene code
for a β-glucosidase enzyme, confirming its functional identity.
Interestingly, purified recombinant OepGLU showed very low
activity levels when pNPG was used as substrate, as previously
reported for the native enzyme from olive (Romero-Segura et al.,
2009) and privet tree (Konno et al., 1999). It has been described
for plant β-glucosidases that there is not a correspondence
between the activity levels exhibited using non-physiological
substrates such as pNPG, and those obtained using their natural
substrates (Cairns et al., 2015). The comparison of the data
obtained from the time-course of the oleuropein hydrolysis
catalyzed by the purified recombinant OepGLU, with those
previously reported using the purified native enzyme (Romero-
Segura et al., 2012), shows that the native olive β-glucosidase
hydrolyzes oleuropein more efficiently. These discrepancies on
the relative activity of β-glucosidase proteins purified from the
native plant and the corresponding recombinant proteins have
been previously described (Himeno et al., 2013). OA-isomers
are the first reaction products formed by the recombinant
OepGLU after the hydrolysis of the glucoside. The elimination
of the glucose molecule could destabilize the phenolic aglucone
and during the reaction course the formed isomers tend to
its stabilization yielding 3,4-DHPEA-EA, which simultaneously
produce hydroxytyrosol by chemical hydrolytic reactions, since
the recombinant β-glucosidase is the only enzyme present in the
reaction mixture.

The purified recombinant OepGLU displays the highest
activity at pH 5.5 and 40◦C, similar values to those reported
for the olive native β-glucosidase enzyme (Romero-Segura et al.,
2009). Optimum pH in the range of 4.5-5.5 has been described
for other β-glucosidases from plants such as rice (Akiyama
et al., 1998) and Citrus sinensis (Cameron et al., 2001). With
respect to optimum temperature, data in the interval of 40-50◦C
has been previously reported for the β-glucosidases from maize
(Esen, 1992) and Citrus sinensis (Cameron et al., 2001). The
recombinant olive β-glucosidase exhibits a high thermostability
up to 40◦C, as reported for the native enzyme from olive
(Romero-Segura et al., 2009). Taking into account its thermal
resistance profile, the OepGLU enzyme could act during the
malaxation step of the industrial process to obtain VOO, where
temperatures higher than 30◦C are not unusual. However, it
has been reported that after 15 min of malaxation at this
temperature, no β-glucosidase activity could be detected in the
paste, likely due to the presence of enzyme inhibitors (García-
Rodríguez, 2014). In the same way, the thermal resistance of
OepGLU could explain why the thermal treatment of olive fruit
at temperatures of 56–68◦C just before the milling step causes
a high decrease in the content of the secoiridoid derivatives
in the VOO (Yousfi et al., 2010), since at those temperatures
the olive β-glucosidase enzyme should be inactivated, highly
reducing the degree of hydrolysis of the phenolic glucosides.
Substrate selectivity experiments showed that the recombinant
olive β-glucosidase exhibits a higher preference for oleuropein
as substrate, followed by ligstroside and demethyloleuropein.
These results are in agreement to those reported for the native
enzyme (Romero-Segura et al., 2009), and demonstrate the
capacity of the recombinant OepGLU to hydrolyze the three
main phenolic glucosides of olive fruit, which are the precursors
of the main secoiridoid derivatives present in the VOO. The
recombinant olive β-glucosidase showed kinetic parameters of
Km for oleuropein (26.8 mM) and Vmax (263.2 U/mg), different
of those described (3.8 mM and 2,500 U/mg, respectively) for the
native enzyme (Romero-Segura et al., 2009), and indicate a lower
catalytic efficiency of the recombinant enzyme as previously
mentioned.

Plant GLU genes are developmentally regulated (Morant et al.,
2008), and exhibit different spatial expression patterns depending
on their physiological functions. In this sense, olive GLU gene
showed different transcript levels in the studied tissues, showing
its spatial regulation. Besides, changes in the GLU transcript
level reveal that this gene is also temporally regulated, and
moderately correlate with changes in the β-glucosidase activity
levels in Picual and Arbequina previously reported (Romero-
Segura et al., 2012). This minor discrepancy observed between
transcript and activity levels could be explained by the occurrence
of post-translational modifications of the olive β-glucosidase
enzyme such as N-glycosilation, as previously mentioned. In
fact, N-glycosilation of plant β-glucosidases has been widely
described (Morant et al., 2008). Furthermore, the contribution of
other olive β-glucosidases isoforms to the enzyme activity levels
observed cannot be discarded. Interestingly, previous studies
on these two cultivars have demonstrated significant differences
not only in terms of β-glucosidase activity but also in their
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phenolic profiles along fruit ripening, with Picual oils being
described as a VOO with medium-high phenolic content at
any ripening stage while Arbequina oils typically have medium-
low concentration of phenolic compounds (Romero-Segura
et al., 2012). Moreover, expression data from cultivars Picudo,
Hojiblanca and Manzanilla confirm the cultivar-dependent
transcriptional regulation of the olive GLU gene during olive fruit
development and ripening. Hence, knowledge of the specific GLU
expression profile for each olive cultivar is critical to determine
the optimum harvesting time in order to obtain VOO with the
highest phenolic content.

In our study, we have also found that the transcript level of
the olive GLU gene in olive fruit mesocarp is transcriptionally
regulated in response to different abiotic stresses. Low and high
temperatures brought about the induction and repression of olive
GLU gene, respectively. These data are in agreement with those
described for the Arabidopsis β-glucosidase gene AtBG1, since
its expression levels increase when leaves are subjected to cold
stress (Lee et al., 2006). The decrease of the expression levels
of olive GLU gene observed at 35◦C is also consistent with the
lower content of secoiridoid derivatives in oils extracted from
olive fruit pre-treated for 24 h at 30–50◦C (García et al., 2001).
Darkness treatment of olive fruit from both cultivars produces a
decrease in the expression levels of olive GLU gene, indicating
that light may be implicated in the regulation of its transcription.
On the other hand, although plant β-glucosidases have been
involved in the defense against herbivores and pathogen attacks
(Minic, 2008), this primary response acts at enzyme activity
level, being regulated by compartmentalization, since enzyme
and natural substrates are differentially located at subcellular level
and only meet when cell integrity is disrupted (Morant et al.,
2008). Therefore, it is not surprising that olive GLU gene is not
induced after wounding, which indicates that the regulation at
transcriptional level is not operating. In contrast to our data,
the transcript increase of olive GLU gene in olive fruit mesocarp
after olive fruit fly attack has been reported (Corrado et al.,
2012), although only one olive fruit developmental stage was
used in that study. Finally, higher expression levels of the olive
GLU gene were detected under water deficit conditions in Picual
and Arbequina cultivars, mainly at turning stage. Similar results
have been recently reported for the OeGLU12-like2 gene from
cultivar Frantoio (Cirilli et al., 2017). The increase in the olive
GLU transcript level detected under water deficit conditions,
with the corresponding increase in the enzyme activity, could
also significantly contribute to explain the higher content of
secoiridoid derivatives reported in VOO obtained from olive fruit
under water stress conditions (Artajo et al., 2006; Stefanoudaki
et al., 2009).

CONCLUSION

We have purified the olive recombinant β-glucosidase
enzyme (OepGLU). Immunological detection, molecular mass
determination and kinetic properties of the recombinant
OepGLU strongly indicates that it corresponds to the native
olive β-glucosidase enzyme previously purified from olive fruit

mesocarp (Romero-Segura et al., 2009), which has been shown
as the main enzyme involved in the transformation during
VOO processing, of oleuropein and other phenolic glycosides
from olive fruit onto their corresponding secoiridoid derivatives
present in VOO. However, the contribution of other olive fruit
β-glucosidase isoenzymes to oleuropein hydrolysis cannot be
discarded. Our results have also shown that olive GLU gene
expression is not only spatially and temporally regulated in olive
fruit, but also is cultivar-dependent and regulated by temperature,
light and water regime. This study represents a significant step
to elucidate the factors responsible for the phenolic content and
profile of VOO. In addition, this information will help in the
design of molecular markers for the marker-assisted selection
of novel olive cultivars with improved phenolic content and
composition in their oils.
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