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Plant cell wall formation is a complex, coordinated and developmentally regulated

process. Cellulose is the most dominant constituent of plant cell walls. Because of its

paracrystalline structure, cellulose is themain determinant of mechanical strength of plant

tissues. As the most abundant polysaccharide on earth, it is also the focus of cellulosic

biofuel industry. To reduce culm lodging in wheat and for improved ethanol production,

delineation of the variation for stem cellulose content could prove useful. We present

results on the analysis of the stem cellulose content of 288 diverse wheat accessions and

its genome-wide association study (GWAS). Cellulose concentration ranged from 35 to

52% (w/w). Cellulose content was normally distributed in the accessions around a mean

and median of 45% (w/w). Genome-wide marker-trait association study using 21,073

SNPs helped identify nine SNPs that were associated (p < 1E-05) with cellulose content.

Four strongly associated (p < 8.17E-05) SNP markers were linked to wheat unigenes,

which included β-tubulin, Auxin-induced protein 5NG4, and a putative transmembrane

protein of unknown function. These genes may be directly or indirectly involved in the

formation of cellulose in wheat culms. GWAS results from this study have the potential

for genetic manipulation of cellulose content in bread wheat and other small grain cereals

to enhance culm strength and improve biofuel production.
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INTRODUCTION

Increasing world population demands a sustainable increase in the production of food, feed and
fuel crops (Scholey et al., 2016). Bread wheat (Triticum aestivum) occupies more agricultural
area than any other food crop worldwide (http://www.wheatinitiative.org/). In addition to grain
production, the annual worldwide production of wheat straw is around 3.5 × 108 tons, which is
used as cattle fodder in developing countries and is a potential feedstock for cellulosic ethanol
production (Singhania et al., 2014). Wheat straw, which is comprised of cellulose (∼40%),
hemicelluloses (∼35%), and lignin (∼25%), is one of the most abundant lignocellulosic raw
materials in the world (Ruiz et al., 2013). Cellulose, a paracrystalline polysaccharide, is the
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main determinant of mechanical strength, which has
implications in crop lodging, biotic and abiotic stresses.
Cellulose amount in a unit length of the stem explains most
of the variation in mechanical strength (Appenzeller et al.,
2004; Dhugga, 2007). The proportion of cellulose in the cell
wall also affects the total sugar release during the process of
enzymatic hydrolysis (Fan et al., 2012; Lindedam et al., 2012). An
understanding of the natural variability of cellulose in plants and
its association with chromosomal regions could provide markers
for enhancing grain and biomass yield (Ciesielski et al., 2014).

Cellulose consists of linear chains of β (1→4) linked glucan
(polyglucose) known to be synthesized by the members of
superfamily Glycosyltransferase 2 (GT2) called Cellulose synthase
A (CesA; Fujii et al., 2010; Kumar et al., 2016). Twenty-two
CesA genes have been reported in hexaploid wheat (Kaur et al.,
2016). In addition to the CesA genes, the Glycosylhydrolase
9 (GH9) family genes are known to have an impact on the
synthesis of cellulose in plants (Kotake et al., 2011). Based on
the mutant analysis in Arabidopsis, a member of GH9 family
called KORRIGAN1 (KOR1) has been reported to be involved
in cellulose synthesis, cell expansion and intracellular trafficking
of cellulose synthase complex (CSC; Szyjanowicz et al., 2004;
Lei et al., 2014; Vain et al., 2014). Investigation of brittle culm
1 mutants in rice and brittle stalk 2 mutant in maize revealed
the involvement of COBRA-like proteins in cellulose formation
in secondary walls (Ching et al., 2006). Involvement of Sucrose
synthase (SuSy) in channeling substrate to cellulose synthase
has also been reported (Fujii et al., 2010). Similarly, several
other proteins affect cellulose synthesis, including chitinase-
like 1 (CSI1; Sánchez-Rodríguez et al., 2012), companion of
cellulose synthase (CC; Endler et al., 2015), and tracheary
element differentiation-related (TED) 6 and 7 (Rejab et al.,
2015).

Variation for the proportion of cellulose in cell wall among
wheat varieties is not yet known. This study was planned
to identify the genomic regions affecting the variability of
cellulose content among diverse spring wheat genotypes
through GWAS.

Genes associated with cell wall have been previously
explored through GWAS in miscanthus (Slavov et al., 2014),
poplar (Porth et al., 2013), maize (Li et al., 2016), and barley
(Houston et al., 2015). In barley, genes of Glycosyltransferase
2 and Glycosylhydrolase families were associated with culm
cellulose variation. However, none of the genes found
in maize through GWAS of stalk cellulose content was
specifically involved in the cellulose biosynthetic pathway. In
the present study, the stem internodes of 288 spring wheat
varieties were analyzed for variation in cellulose content.
Utilizing the 21,073 SNPs generated by DArT-seq GBS and
cellulosic content, GWAS was performed using fixed and
random model circulating probability unification (FarmCPU)
method (Liu et al., 2016). Genes, which were not reported
previously for their role in cellulose formation, were identified
as associated with the culm cellulose content. Gene-trait
associations identified in this study might be useful in
altering the lignocellulose composition of wheat and other
grasses.

MATERIALS AND METHODS

Plant Material
A worldwide collection of 288 diverse spring wheat germplasm
was used for the phenotypic and genotypic analysis. The
collection included cultivars from different regions of
United States, the International Maize and Wheat Improvement
Centre (CIMMYT), Mexico, and historical lines dating back
to 1871 (Mohan et al., 2013). The wide span of our collection
was intended to capture the maximum variation possible while
maintaining a manageable population size. This worldwide
collection also represents the various market classes of wheat
based on the kernel color, hardiness, and shape. The following
types of genotypes were represented based on kernel type: soft
white spring (SWS), soft red spring (SRS), hard red spring (HRS),
hard white spring (HWS), and club wheat (Mohan et al., 2013).
The plants were grown in the greenhouse of the Plant Growth
Facilities, Washington State University, Pullman at 22◦C/18◦C
temperature and 16/8 h day/night in 2014-15. Seeds were planted
in a randomized design to accommodate the effect of light.

Phenotypic Analysis
The analysis on percent cellulose was performed for 288 diverse
spring wheat genotypes, with three replicates per genotype. The
first internode (from the base) of the main tiller of each of
three mature plants was dried at 80◦C. Measured amount of
dried sample (45–55mg) was placed into a pre-weighed 2ml
Eppendorf tubes with a screw cap. A mixture of acetic acid:
water: nitric acid (8:2:1) was added to each tube (1.5ml) and
vortexed (Updegraff, 1969). All the tubes were transferred to a
steel rack and placed in a boiling water bath for 4 h. The tubes
were allowed to cool at room temperature and centrifuged in a
swing-out rotor at 10,000 rpm for 10min. The supernatant was
aspirated off, the pellet washed with distilled water four times and
finally washed with 90% ethanol. After each wash, the tubes were
vortexed and centrifuged at 10,000 rpm for 10min. The tubes
were dried at 80◦C followed by determination of percent cellulose
on dry matter basis.

Population Structure and GWAS Analysis
Principal component analysis (PCA) was used to infer population
structure through Genomic Association and Prediction
Integrated Tool (GAPIT; Lipka et al., 2012; Ahmad et al., 2015;
Tang et al., 2016). Twenty-one thousand and seventy-three
SNP markers were obtained by analyzing the genomic DNA
with a Genotyping-by-Sequencing (GBS) approach (Mohan
et al. unpublished). In brief, genotyping was carried out at
DArT Pyt Ltd in Canberra-Australia, using a combination
of HiSeq 2000 (Illumina) next-generation sequencing with
DArT-seq GBS technology (called DArTseqTM). This method
follows two-step complexity reductions by using two enzymes,
PstI/HpaII and PstI/HhaI, along-with TaqI restriction enzyme
to eliminate subsets of PstI -HpaII and PstI-HhaI fragments,
respectively. The pooled barcoaded samples were run in a single
lane on an Illumina Hiseq 2000 instrument for sequencing. A
proprietary analytical pipeline developed by DArT Pyt Ltd was
used to obtain the DArT score and SNP tables (http://www.
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diversityarrays.com/). Fixed and Random Model Circulating
Probability Unification (FarmCPU; Liu et al., 2016) in R version
2.15.3 was used to calculate P-values for Manhattan Plot and
Q-Q plots. A Manhattan plot was generated using the −log10(p)
values for each SNP with 1% Bonferroni test threshold (Team,
2014). The significance of the genome-wide association between
SNP marker and cellulose content was tested at FDR p < 0.001.

Gene Annotation
The sequences containing the SNPs were mapped against wheat
unigenes downloaded from the NCBI database. Significant
SNPs with associated unigenes were annotated using BLASTN
with the International Wheat Genome Sequencing Consortium
(IWGSC; Mayer et al., 2014) reference Sequence v1.0 (https://
www.wheatgenome.org) posted on May 30, 2017. The functions
of associated unigenes were also searched with BLASTN through
identification of orthologs from other plant species.

RESULTS

Cellulose Content
The culm cellulose content differed significantly in a set of 228
wheat lines with a range of 0.32–0.52mg and an average of
0.45mg cellulose/mg of dry weight (Table S2). The cellulose
concentration was normally distributed around the mean in the
set as depicted in the density plot (Figure 1). As expected from
this plot, the calculated median was also similar to the overall
mean across the population.

Principal Component Analysis and
Marker-Trait Associations
PCA was performed to investigate population structure. The first
two PCs explained 8.13 and 4.90% variation in the population
of lines. Plotting PC2 against PC1 revealed two distinct, a major

FIGURE 1 | Density plot of percent cellulose among 288 diverse spring wheat

accessions.

and a minor, clusters. The minor cluster containing 20 genotypes
was removed from the final analysis to account for population
structure and the first PC was used as a covariate for GWAS
analyses (Figure 2).

A total of 21,073 single nucleotide polymorphic (SNP)
markers with a minor allele frequency (MAF) above 5%
(Figure 3) and the cellulose content data from 268 lines were
subjected to GWAS analysis, which revealed nine significant
marker-trait associations with p-values of less than 1E-05
(Figure 4). The most significant SNP marker in our analysis
corresponded to wheat chromosome 5AL with a p-value of
1.86E-07. The second most significant SNP was located on
chromosome 1AL with a p-value of 2.24E-07. In addition, we
found significant SNPs corresponding to chromosome 1AL, 6BS,
1DL, 2DS, 4DL, 5BL, and 3B with p-values of less than 1E-05
(Table 1). The quantile-quantile (QQ) plot drawn for calculated
p-values was used to check spurious associations. The deviation
of relatively a few markers from null expectations in the QQ
plot supports the significant associations we have identified
(Figure 5).

Gene Identification
Significant SNP markers resulting from GWAS were mapped
to the wheat unigene database. The identified unigenes
were annotated based on the sequence comparisons using
NCBI BLAST and EnsemblPlant databases. The first and
second most significant SNP markers were associated with
the unigenes TRIAE_CS42_5AL_TGACv1_376159_AA1232950
and gnl|UG|Ta#S52545076, respectively. The third and fourth
SNPs respectively were associated with the genes TRIAE_C
S42_2DS_TGACv1_179544_AA0607850 and TRIAE_CS42_3B
_TGACv1_224721_AA0800650.1. The gene TRIAE_CS42_5A

FIGURE 2 | Principal component analysis of 288 diverse genotypes used for

GWAS.
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L_TGACv1_376159_AA1232950 is uncharacterized as judged
from a lack of its functional annotation in wheat and
other plant species. The unigene gnl|UG|Ta#S52545076 was
60% identical at the amino acid level with a gene in the
Tubulin superfamily, Tubulin β-1 chain, of Triticum urartu.
TRIAE_CS42_2DS_TGACv1_179544_AA0607850 showed 82%
identity over 97% amino acid coverage with the Auxin-
induced protein 5NG4 of Aegilops tauschii, whereas TRIAE_
CS42_3B_TGACv1_224721_AA0800650.1 was annotated based

FIGURE 3 | Minor allele frequency (MAF) patterns relative to allele calls for

wheat genotypes based on 21073 SNPs.

on 51% amino acid identity and 97% coverage with a
putative transmembrane protein of Medicago truncatula
(Table 1).

DISCUSSION

From a larger set of 288 diverse bread wheat lines, we used
268 well-structured accessions to study the genetic association
of cellulose content in wheat. The most appropriate model was
selected to obtain a higher level of confidence in the association
results. GWAS was conducted using Fixed and Random Model

FIGURE 5 | Quantile-quantile (QQ) plot showing the deviation from null

hypothesis for associated SNP makers.

FIGURE 4 | Manhattan plot of genome-wide association study (GWAS) on stem cellulose content (mg cellulose/mg dry weight) by using the FarmCPU. The

−log10(p–values) from GWAS are plotted against the position on each of the 21 bread wheat chromosomes. U represents unassigned chromosome scaffolds. Two

loci on chromosomes 1A and 5A were identified above the Bonferroni threshold correcting for genome-wide multiple tests at type I error of 0.001 (green line).
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TABLE 1 | Regions of wheat genome showing significant associations with stem cellulose content variation based on GWAS.

SNP ID Allele CHR Scaffold:Position P-value MAF Unigene Candidate annotation Gene ID (Ensembl)

1096787|F|040 C>T 5AL 376159:25309 1.86E-07 0.323 gnl|UG|Ta#S13258805 Uncharacterized

gene

TRIAE_CS42_5AL_

TGACv1_376159_

AA1232950S

1018641|F|062 T>C 1AL 138:45403 2.24E-07 0.285 N/A

100315676|F|050 T>C 1AL 1074:43532 2.05E-06 0.402 gnl|UG|Ta#S52545076 Tubulin β-1 chain TRIUR3_05395

1080815|F|044 T>C 6BS 514572:36113 3.18E-05 0.202 N/A

3026141|F|05 A>C 1DL 63549:20036 3.72E-05 0.394 N/A

1018617|F|035 C>T 2DS 179544:14866 4.02E-05 0.489 gnl|UG|Ta#S65598833 Auxin-induced

protein 5NG4

TRIAE_CS42_2DS_

TGACv1_179544_

AA0607850

1245047|F|039 C>T 4DL 344580:40916 4.12E-05 0.070 N/A

1069330|F|06 T>A 5BL 406565:38744 5.21E-05 0.189 N/A

2249069|F|014 G>A 3B 224721:15888 8.17E-05 0.177 gnl|UG|Ta#S61725485 Transmembrane

protein, putative

TRIAE_CS42_3B_

TGACv1_224721_

AA0800650.1

Circulating Probability Unification (FarmCPU); a new and more
efficient recently developed method, which accounts for fixed
and random effects to control false positives (Liu et al., 2016).
Most of the GWAS mapping studies in wheat thus far have
been conducted to identify genes or QTLs related to agronomic
performance (Lopes et al., 2015; Jaiswal et al., 2016), grain yield
(Sukumaran et al., 2015), or disease resistance (Kollers et al.,
2013; Gurung et al., 2014). Cellulose is a major component
of cell walls and a key determinant of mechanical strength
of plant tissues (Appenzeller et al., 2004; Ching et al., 2006).
The involvement of the CesA genes in cellulose synthesis is
well-documented, and recently 22 CesA genes were reported
in wheat (Kaur et al., 2016). These genes are differentially
expressed in primary and secondary cell wall forming cells.
Although, we identified 9 SNP markers in this study to be
associated [−log10(p) = 7 to −log10(p) = 5] with cellulose
content (Table S1), we were able to map only four of these
to the wheat unigene database. A high marker density and
population size in our study increased the confidence about these
SNP associations (Wang et al., 2012). The genes associated with
the cellulose content may contribute to its natural variation in
wheat lines. The involvement of many genes other than CesAs in
controlling cellulose synthesis supports our suggestion (Kotake
et al., 2011).

Only a few studies have explored the genes other than CesA
involved in the cellulose biosynthetic pathway (Porth et al.,
2013; Slavov et al., 2014; Houston et al., 2015; Li et al., 2016).
Recently in a GWA study in barley, a species syntenic to wheat,
the association of several genes from the Glycosyltransferases
and Glycosylhydrolases families was shown with the culm
cellulose content (Houston et al., 2015). Similar to barley GWAS
associations, our results also pointed to the involvement of the
GT gene family in cellulose formation. We also identified some
unique associations not reported in the barley study.

Our results pointed to the involvement of β-tubulin in
the regulation of cellulose content. β-tubulins proteins form

heterodimers with α-tubulins to form microtubules, which have
long been known to guide the deposition of cellulose microfibrils
in the cell wall in a helical pattern (Rao et al., 2016). Functional
association of cortical microtubules with cellulose synthase
complexes is well-documented (Paredez et al., 2006; Chan et al.,
2007, 2010; Wightman and Turner, 2008; Crowell et al., 2009;
Gutierrez et al., 2009).

Another important association in our study is for the Auxin-
induced protein, 5NG4. This gene is a member of the plant
drug/metabolite exporter (P-DME; TC 2.A.7.4) family, also
called WALLS ARE THIN1 (WAT1)-related proteins. Mutant
studies in Arabidopsis helped demonstrate its involvement in
secondary cell wall formation. Comparative transcriptomics and
metabolomics demonstrated synchronized downregulation of
the secondary cell wall CesAs (CesA8, CesA7, and CesA4) and
auxin metabolism genes (auxin-responsive genes and auxin
influx transporter genes) in wat1mutants (Ranocha et al., 2010).
Higher expression of PIN-like auxin efflux carrier and auxin-
induced protein 5NG4 genes in relation to both cell division
and cell expansion was found in an expression profiling study
of Chinese fir (Cunninghamia lanceolata; Qiu et al., 2013). With
regard to the association of a putative transmembrane protein of
unknown function with cellulose content in our study, several
membrane proteins other than CesA are known to be involved
in cellulose formation. We could not, however, assign a putative
function to this protein. The additional genes we have reported
in this study to be associated with cellulose content in the
wheat culm are potential candidates for improving culm strength
and the potential of wheat stover for biofuels by increasing the
cellulose content.

CONCLUSION

Cellulose content in wheat culms of 288 diverse cultivars
varied widely. Genome-wide association analysis helped identify
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four genetic associations for cellulose content, which have the
potential as molecular markers to manipulate cellulose content
in wheat with the goal of improving culm strength and cellulosic
biofuel production.
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