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Malaria is still an eminent threat to major parts of the world population mainly in sub-
Saharan Africa. Researchers around the world continuously seek novel solutions to
either eliminate or treat the disease. Artemisinin, isolated from the Chinese medicinal
herb Artemisia annua, is the active ingredient in artemisinin-based combination therapies
used to treat the disease. However, naturally artemisinin is produced in small quantities,
which leads to a shortage of global supply. Due to its complex structure, it is difficult
chemically synthesize. Thus to date, A. annua remains as the main commercial source
of artemisinin. Current advances in genetic and metabolic engineering drives to more
diverse approaches and developments on improving in planta production of artemisinin,
both in A. annua and in other plants. In this review, we describe efforts in bioengineering
to obtain a higher production of artemisinin in A. annua and stable heterologous in
planta systems. The current progress and advancements provides hope for significantly
improved production in plants.
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INTRODUCTION

Malaria is still a global concern with around 214 million annual cases and 430,000 annual deaths,
mainly among of children younger than 5 (World Health Organization [WHO], 2016). This fatal
disease is caused by Plasmodium sp. particularly Plasmodium falciparum that proliferate in female
Anopheles mosquitoes (Cox, 2010). Since the 1940s there has been continuous attempts to halt the
spread of the disease and this has succeeded in Europe, North America, and parts of Asia and Latin
America (Carter and Mendis, 2002). However, not in Sub-Saharan Africa where 80% of the annual
malaria patients are found. Besides measures such as vector control and insecticide-treated nets,
research and development has led to new drugs and a vaccine. The current preferred therapy is
artemisinin combination therapy (ACT) (Banek et al., 2014; Lalloo et al., 2016) that is based on
artemisinin produced in the natural source Artemisia annua. Artemisinin can also be produced
heterologously in the plants Nicotiana benthamiana and Physcomitrella patens (Han et al., 2016;
Wang et al., 2016; Ikram et al., 2017). The vaccine toward Plasmodium is called PfSPZ and can be
produced in N. benthamiana and P. patens plants (Rosales-Mendoza et al., 2014, 2017; Boes et al.,
2016; Epstein et al., 2017).

Malaria drugs have contributed significantly to the reductions in malaria mortality and
morbidity. The focus for many years has been to screen traditional medicine to find new
antimalarial drugs (Simonsen et al., 2001; Adia et al., 2016; Nondo et al., 2017). The malaria
drug artemisinin is an example of this and originates from A. annua, a Chinese medicinal
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plant (Qinghao), commonly known as sweet wormwood. It
was discovered by the Chinese researcher You-You Tu and
her team in 1972, and was named Qinghaosu (Klayman, 1985;
Tu, 2011). Chemically, artemisinin is a sesquiterpene lactone
with a unique endoperoxide structure, without the nitrogen
containing heterocyclic ring like other antimalarial compounds
(Luo and Shen, 1987). The in planta accumulation of artemisinin
is 0.01–1.4% dry weight depending on the plant variety and
artemisinin is stored in the glandular trichomes of A. annua
(Duke et al., 1994; Van Agtmael et al., 1999; Bhakuni et al., 2001;
Muangphrom et al., 2016). The current production using plants
with a “low” content of artemisinin can only just cover the global
need, which have led to an increase in price (Peplow, 2016).
In 2006, World Health Organization (WHO) recommended
artemisinin as the first-choice treatment for malaria. Rapid
emergence of antimalarial drug resistance drew attention to
formulation of artemisinin-based combination therapy (ACT)
with artemisinin as the primary substance and is now the
preferred treatment (World Health Organization [WHO], 2015).

To secure the global need of artemisinin, there are continuous
and extensive efforts to enhance the production of artemisinin
in the native plant A. annua. A. annua is currently the primary
commercial source of artemisinin and significant breeding
programs has contributed to higher artemisinin content in the
plant (Ma et al., 2015; Pulice et al., 2016; Xie et al., 2016),
including establishment of mutant libraries (Pandey et al.,
2016). Several plant-breeding techniques have been applied to
create superior cultivars of A. annua. For example, conventional
breeding by crossing A. annua with high artemisinin content in
wild population has led to hybrid lines with 2% artemisinin d.w
(Delabays et al., 2001; Cockram et al., 2012). A detailed genetic
map of A. annua comprising of genes and markers controlling
artemisinin yield has been established to generate robust high
yielding crops (Graham et al., 2010). Identification of A. annua
superior parental lines with desired traits from these genetic maps
has provided two high-yielding hybrids and diallel crossing of
the parental lines and the hybrids has showed consistent results
for the development of improved A. annua hybrids (Townsend
et al., 2013). Doubling the number of chromosomes generated a
new variety of tetraploid cultivar with higher artemisinin content
and this might become a new elite line (Banyai et al., 2010b). The
overall production of the new cultivars from various laboratories
have increased the level of artemisinin to about 1 to 2% d.w.
(Delabays et al., 1993; Ferreira et al., 2005; Graham et al., 2010;
Brisibe et al., 2012), but not all the established plant lines are
stable over generations (Delabays et al., 2001).

Efforts in plant breeding have been challenging due to the
heterozygous nature of A. annua, which results in transgenic
plants with varying degrees of artemisinin content even though
they were generated in the same laboratory (Delabays et al., 2001;
Graham et al., 2010; Larson et al., 2013). This variation is due to
the segregation of the heterozygous wild type progeny leading to
a different genetic background than the parent plant. Although
several high content lines have been created, the unstable yield
in the progeny of these cultivars were insufficient to increase the
global supply of artemisinin (Shretta and Yadav, 2012; Paddon
et al., 2013).

Accumulation of artemisinin in A. annua is limited to the
small 10 cell glandular trichomes (GT) mostly on leaves and
other aerial parts (Ferreira and Janick, 1995; Lommen et al.,
2006; Ling et al., 2016). Low GT numbers are correlated to
low artemisinin content (Graham et al., 2010; Kjær et al.,
2012). Attempts to increase the number of GTs by physical and
chemical stress have not been successful (Kjær et al., 2012).
One study expressed the β glucosidase (bgl1) gene in A. annua
through Agrobacterium-mediated transformation, which resulted
in an increase of GT density by 20% on leaves and 66% on
flowers and an increase in artemisinin content of 1.4% in leaves
and 2.56% in flowers (d.w). Manipulating GT density together
with biosynthetic pathway engineering may further increase
artemisinin content in A. annua. In depth understanding of
A. annua GT generation at the molecular level, will broaden
the opportunities of increasing the artemisinin production. This
approximately though require a greater acceptance of GMO crops
in open fields to ensure the global supply.

Plant tissue culture has also been investigated to establish
a production of artemisinin in A. annua hairy root or cell
suspension cultures (Nair et al., 1986; Baldi and Dixit, 2008).
Several manipulations of the growth conditions such as different
sugar supply, light irradiation, UV-B radiation and chilling
treatment have led to production of artemisinin in A. annua
tissue cultures (Woerdenbag et al., 1993; Liu et al., 2002; Wang
and Weathers, 2007; Baldi and Dixit, 2008; Yin et al., 2008;
Pandey and Pandey-Rai, 2014). Generating somaclonal variants
tolerant against salt stress through gamma-rays irradiation has
resulted in 13 somaclonal variants (ASV1 to ASV13) of which
one of the variants, ASV12 is a stable salt-tolerant line with
a higher expression profile of artemisinin key genes (ADS,
CYP71AV1, DBR2, and ALDH1) and a higher artemisinin
content as compared to wild type. In addition, treatments with
elicitors such as methyl jasmonate has significantly increased
artemisinin production by up to 49% including up-regulating
the expression of artemisinin biosynthesis genes as well as
increased GT index (0.128) (Baldi and Dixit, 2008; Wang
et al., 2010; Dangash et al., 2014; Xiang et al., 2015). Other
elicitors such as chitosan, gibberellic acid, and salicylic acid
also aid in the accumulation of artemisinin (Guo et al., 2010;
Banyai et al., 2011). Combinations of various cultivation and
elicitation methods are currently being geared for a mass
production of artemisinin in A. annua hairy roots via bioreactors
with 6.3 g/L dry weight (37.50 g fresh weight) biomass and
0.32 mg/g artemisinin content after 25 days (Patra and Srivastava,
2017).

Other efforts to enhance artemisinin production have been
attempted through genetic engineering of the artemisinin
biosynthetic pathway genes in microbial heterologous hosts.
Extensive work on the development of microbial production
of artemisinin precursors led to semi-synthesis of artemisinin,
but this is only partly commercially successful (Benjamin
et al., 2016; Peplow, 2016; Singh et al., 2017). In this
review, the progress and recent bioengineering advances
in artemisinin production in stable heterologous in planta
systems including genetic modifications of A. annua is
summarized.
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ARTEMISININ BIOSYNTHESIS IN
Artemisia annua

The biosynthesis of Artemisinin (Figure 1) has been explored
for many years. However, not every detail about the regulation
and biosynthesis is completely understood, but the discovery
that the whole biosynthesis is located in the glandular
trichomes of A. annua has facilitated in-depth regulatory studies
(Olsson et al., 2009; Olofsson et al., 2011). Derived from the
general terpenoid biosynthesis, two molecules of isopentenyl
diphosphate (IPP) and one dimethylallyl diphosphate (DMAPP)
are condensed by farnesyl diphosphate synthase (FPPS/FPS) into
farnesyl diphosphate (FPP, farnesyl pyrophosphate), the C15
sesquiterpenoid precursor (Weathers et al., 2006; Brown, 2010;
Wen and Yu, 2011). Overexpression of FPS in A. annua resulted
in an increase of artemisinin production (Han et al., 2006; Banyai
et al., 2010a), which confirms the role of FPS and availability
of the substrates in the regulation of artemisinin biosynthesis
similar to other sesquiterpene lactones (Simonsen et al., 2013).

FPP is converted to amorpha-4,11-diene by amorpha-4,11-
diene synthase (ADS) via carbocation formation and cyclization
(Bouwmeester et al., 1999; Mercke et al., 2000; Picaud et al.,
2005, 2006). In the following two oxidization steps, amorpha-
4,11-diene is hydroxylated into artemisinic alcohol and oxidized

to artemisinic aldehyde by amorphadiene monooxygenase
(CYP71AV1), a cytochrome P450 enzyme (Teoh et al., 2006;
Wang et al., 2011). The activity of the CYP71AV1 has also
been confirmed through a knock-out of the endogenous gene
in A. annua showing that these plants do not produce any
downstream products of amorphadiene (Czechowski et al., 2016).
It has later been discovered that the alcohol dehydrogenase
(ADH1, a dehydrogenase/reductase enzyme) is specific toward
artemisinin alcohol and oxidizes this to the aldehyde. This
specificity and strong expression in A. annua glandular trichomes
confirms that ADH1 is responsible for oxidation of artemisinic
alcohol to artemisinic aldehyde (Olofsson et al., 2011; Paddon
et al., 2013; He et al., 2017). Artemisinic aldehyde is further
reduced to dihydroartemisinic aldehyde by artemisinic aldehyde
111 (13) reductase (DBR2) and subsequently oxidized to
dihydroartemisinic acid by aldehyde dehydrogenase (ALDH1),
which is also expressed in the trichomes (Zhang et al., 2008; Teoh
et al., 2009; Rydén et al., 2010; Liu et al., 2016). Besides catalyzing
the oxidation of dihydroartemisinic aldehyde to the acid, ALDH1
also catalyzes the oxidation of artemisinic aldehyde to artemisinic
acid (a reaction that in yeast is catalyzed by CYP71AV1) (Teoh
et al., 2006, 2009). Another enzyme, dihydroartemisinic aldehyde
reductase (RED1) converts dihydroartemisinic aldehyde to
dihydroartemisinic alcohol, a “dead end” substance, which

FIGURE 1 | Artemisinin biosynthesis pathway occurs in the glandular trichomes of Artemisia annua. The pathway intermediates are defined as FPP, farnesyl
diphosphate; AD, amorpha-4,11-diene; AAOH, artemisinic alcohol; AAA, artemisinic aldehyde; AA, artemisinic acid; DHAAA, dihydroartemisinic aldehyde; DHAA,
dihydroartemisinic acid. The full name of the enzymes is stated in the text.
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affects the production yield of artemisinin (Rydén et al., 2010).
The final step is a light-induced non-enzymatic spontaneous
reaction converting dihydroartemisinic acid to artemisinin and
artemisinic acid to arteannuin B (Sy and Brown, 2002; Teoh et al.,
2006; Czechowski et al., 2016).

BIOENGINEERING OF ARTEMISININ
PRODUCTION IN GREEN PLANT CELLS

Bioengineering of Biosynthetic Genes in
Artemisia annua
Characterization of enzymes in the artemisinin biosynthetic
pathway provides new tools and advances the possibility
of engineering the production of artemisinin. This can be
achieved by enhancing the general terpenoid metabolism and
through overexpression of several genes involved in artemisinin
biosynthesis in A. annua (Tang et al., 2014). Overexpression of
key terpenoid genes encoding for the enzymes IDI, FPS, HMGR,
the plastid targeted DXR and HDR have increased production
significantly (some by 2 to 3 fold) in many different studies in
A. annua (Han et al., 2006; Aquil et al., 2009; Banyai et al.,
2010a; Nafis et al., 2011; Xiang et al., 2012; Ma et al., 2017a).
Co-expression of FPS, CYP71AV1 and its redox partner, POR

(cytochrome P450 reductase) increased production by 3.6 fold,
whereas combining four genes ADS, CYP71AV1, ALDH1, and
POR from A. annua yielded a 3.4 fold increase in the artemisinin
levels (Chen et al., 2013; Shi et al., 2017). Additionally, the
production also increased by overexpression of ADS, CYP71AV1,
and HMGR (Ma et al., 2009; Alam et al., 2016). The expression
of several genes in the pathway clearly have an effect on the
artemisinin level and do increase the amount of biomass obtained
(Shen et al., 2012; Alam et al., 2016). Thus, utilizing genetic
engineering to target the expression of both upstream and specific
artemisinin genes should be pursued.

The overexpression of DBR2 clearly showed that this is
a key enzyme that regulates the production of artemisinin
by guiding the metabolic flow from artemisinic acid toward
dihydroartemisinic acid. Without the activity of DBR2 the plants
solely make artemisinic acid and thereby arteannuin B (Zhang
et al., 2008), thus showing that overexpression of this enzyme will
enhance artemisinin production. Collectively, the overexpression
studies have provided insights into the understanding of the
pathway and how to upregulate it.

Another strategy in bioengineering is to block competing
reactions such as the squalene synthase (SQS) and
β-caryophyllene synthase, enzymes consuming FPP for sterol
and β-caryophyllene biosynthesis. This has been proven to
elevate artemisinin production by 3.14 and 5.49 fold, respectively

TABLE 1 | Genetic engineering to improve the production of artemisinin in Artemisia Annua.

Type Overexpressed enzymes Artemisinin yield Reference

Upstream key enzymes FPS 13.0 mg/g (DW) Han et al., 2006
Banyai et al., 2010a
Chen et al., 2000

HMGR 1.7 mg/g (DW) Aquil et al., 2009

0.6 mg/g (DW) Nafis et al., 2011

AaIPP1 2.5 mg/g (DW) Ma et al., 2017a

AaHDR1 0.09 mg/g (FW) Ma et al., 2017b

Artemisinin biosynthesis enzymes DXR 1.21 mg/g (DW) Xiang et al., 2012

with related key enzymes CYP71AV1 and POR 0.98 mg/g (FW) Shen et al., 2012

HMGR and ADS 1.73 mg/g (DW) Alam and Abdin, 2011

FPS and ADS 26 mg/g (DW) Han et al., 2016

FPS, CYP71AV1, POR 2.90 mg/g (FW) Chen et al., 2013

ADS, CYP71AV1, ALDH1, and POR Shi et al., 2017

ADS, CYP71AV1, POR 15.1 mg/g (DW) Lu et al., 2013a

DBR2 22.35 mg/g (DW) Tang et al., 2012b

ALDH1 25.34 mg/g (DW) Tang et al., 2012a

Competitive pathway enzymes SQS 31.0 mg/g (DW) Zhang et al., 2009

CPS 3.56 mg/g (DW) Chen et al., 2011

Transcription factors AaWRKY 14.2 mg/g (DW) Jiang et al., 2016

AaERF1 and AaERF2 9.1 and 8.1 mg/g (DW) Yu et al., 2012

AaORA 11.9 mg/g (DW) Lu et al., 2013b

AaMYC2 15.3 mg/g (DW) Shen et al., 2016a

AaNAC1 23.5 mg/g (DW) Lv et al., 2016

Others Rol B 7.30 ug/g (DW)

Rol C 3.33 ug/g (DW) Dilshad et al., 2015b

AaPYL9 1.80 mg/g (FW) Zhang et al., 2013

AtCRY1 1.65 mg/g (DW) Hong et al., 2009
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TABLE 2 | Compilation of bioengineering works in heterologous in planta host producing artemisinin and artemisinic acid.

Construct Strain Artemisinin Artemisinic acid Reference

Mega vector consisting HMGR, CYP71AV1, CPR, DBR2,
cytosolic-targeting ADS and mitochondria-targeting ADS

Nicotiana tabacum 0.0068 mg/g DW – Farhi et al., 2011

Transient expression of ADS, CYP71AV1, DBR2, ALDH1
with co-expression of lipid transfer proteins from A. annua

Nicotiana benthamiana 0.0030 µg/g DW – Wang et al., 2016

FPS, ADS, CYP71AV1, CPR targeted at the chloroplast
followed by combinatorial supertransformation of CYPB5,
ADH1, ALDH1, DBR2

Nicotiana tabacum – 120 µg/g FW Fuentes et al., 2016

Six MVA pathway genes, AACT, HMGS, HMGR, MVK,
PMK, PMD transformed into chloroplast and subcellular
targeting DBR2, CYP71AV1 and CPR via chloroplast
transient peptide

Nicotiana tabacum 0.8 mg/g DW – Malhotra et al., 2016

Five artemisinin pathway genes, ADS, CYP71AV1, ADH1,
DBR2, ALDH1 stably transformed into Physcomitrella
patens via a novel in vivo DNA assembly method

Physcomitrella patens 0.21 mg/g DW – Ikram et al., 2017

(Zhang et al., 2009; Chen et al., 2011). Since RED1 competes
with ALDH1 in artemisinin biosynthesis of A. annua, removing
RED1 could also lead to the increase of artemisinin production
in A. annua (Rydén et al., 2010).

FPS in general has a higher kcat value than sesquiterpene
synthases and this is true for the FPS and ADS in A. annua. Thus,
it has been investigated whether a fusion of the two enzymes
would increase the turnover of FPP to amorphadiene (Han et al.,
2016). The findings that such fusion can facilitate metabolite
channeling through a biosynthesis pathway has recently been
shown for other metabolites (Laursen et al., 2016). The metabolite
channeling from FPS to ADS is supported by a 2–3 fold increase
of amorphadiene in plants where these two genes are fused (Han
et al., 2016). The dynamic artemisinin content in the transgenic
and wild type plants is associated with the expression of these
genes involved in the artemisinin pathway. Table 1 summarizes
the work on genetic manipulation in A. annua to improve the
production of artemisinin.

Bioengineering the Regulation of
Artemisinin Biosynthesis
Over the last 20 years Agrobacterium rol A, B, and C genes
have been shown to increase the biosynthesis of stress response
metabolites in different plant families (Bulgakov, 2008). Rol
genes are a potential activator of secondary metabolites which
directly upregulate artemisinin production by induction of the
gene expression, leading to higher amounts of enzymes and thus
more products. Transformation of rol genes in other Artemisia
sp. resulted not only in the overexpression of artemisinin pathway
genes, but also artemisinin content in the plant (Dilshad et al.,
2015a,b; Amanullah et al., 2016). Integration of individual and
combined rol B and C genes in A. annua increases the production
of artemisinin by up to ninefold (Ghosh et al., 1997; Dilshad et al.,
2015a,b).

Identifying transcription factors involved in regulating
artemisinin production has also contributed to a higher
production of artemisinin and was recently reviewed (Shen et al.,
2016b). Overexpression of the transcription factor AaWRKY1
shows a 4.4 fold increase of artemisinin compared to the control

plant. Overexpression of another transcription factor jasmonate-
responsive AP2/ERF-type; AaERF1 and AaERF2 increases the
gene expression levels of ADS, CYP71AV1, and DBR2 resulting
in a higher accumulation of artemisinin and artemisinic acid in
A. annua (Shen et al., 2016b). What is clear from recent work
is that there are parts of the artemisinin pathway, which have
promoters that are specific for trichomes (Chen et al., 2017).
Therefore changing these to a strong constitutive promoter might
be a novel engineering target with CRISPR/Cas9 technology.

Metabolic Engineering in Nicotiana spp.
Introducing artemisinin pathway genes in heterologous plants
has been successful in both stable and transient expression but
the artemisinin yield is relatively low (Farhi et al., 2011; Zhang
et al., 2011; Ting et al., 2013). Currently, only Nicotiana spp. has
been used as the plant alternative in the artemisinin research
as it is cheap, well-established with rapid growth and high
biomass. The expression of ADS in Nicotiana tabacum resulted
in an increased production of the first product amorpha-4,11-
diene (Wallaart et al., 2001). The addition of CYP71AV1, DBR2,
and ALDH1 produced 4 mg/g fresh weight of amorph-4,11-
adiene in leaves followed by 0.01 mg/g dry weight of artemisinic
alcohol (Zhang et al., 2011). Stable expression of five multiple
genes from the MVA and artemisinin pathway constructed in
a single vector into N. tabacum produces 0.48–6.8 µg/g dry
weight of artemisinin (Farhi et al., 2011). However, transient
expression combining ADS, FPS, HMGR, and CYP71AV1 in
N. benthamiana produced artemisinic acid that was further
modified by endogenous glycosyl transferase into artemisinic
acid-12-β-diglucoside (Van Herpen et al., 2010). There is a
high production of glycosylated artemisinin precursors with the
expression of artemisinin genes in N. benthamiana (Ting et al.,
2013).

Glycosylation is a problem in the Nicotiana spp. (Van
Herpen et al., 2010; Ting et al., 2013). To overcome this,
attempts were made to target the biosynthesis into different
cellular compartments such as the chloroplast. Fuentes et al.
(2016) introduced the artemisinin pathway into N. tabacum
chloroplast via a stable plastid genome transformation followed
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by a combinatorial transformation resulting in a transformation
of transplastomic recipient lines (COSTREL) that produces
120 µg/g artemisinic acid.

Another group aimed to engineer two mega-metabolic
pathways separately into two different cellular compartments.
They first elevated the IPP pools by introducing six genes
from MVA pathway into N. tabacum chloroplast followed
by the artemisinin pathway genes into the nuclear genome
with subcellular targeting at DBR2, CPR, and CYP71AV1 via
chloroplast transit peptide. The lines produced ∼0.8 mg/g
dry weight of artemisinin (Malhotra et al., 2016). While
various methods were explored in order to enhance artemisinin
production in Nicotiana, the production levels remain minimal
due to the complex nature of the gene expression and regulation
in artemisinin biosynthesis pathway as well as the complex
glycosylation response in Nicotiana.

Metabolic Engineering in Physcomitrella
Patens
A new production platform is being established in a non-vascular
plant, the moss P. patens (Simonsen et al., 2009; Buttner-
Mainik et al., 2011; Ikram et al., 2015; Reski et al., 2015).
Having unique molecular tools of highly efficient homologous
recombination and a fully sequenced genome, P. patens is an
attractive production system when compared to other plant
production hosts (Schaefer and Zrÿd, 1997; Reski, 1998; Frank
et al., 2005). Additionally, a novel transformation technology
involving in vivo assembly of multiple DNA fragments in
P. patens has been established, further increasing its attractiveness
as a promising photosynthetic chassis for synthetic biology (King
et al., 2016). This is also supported by several works utilizing
P. patens as a “green factory,” for example, the expression of
taxadiene synthase in P. patens produces taxadiene without
any phenotypic change, making it a capable host for the
production of paclitaxel (Anterola et al., 2009). In addition,
three important sesquiterpenoids in the fragrance industry,
patchoulol, β-santalene, and sclareol was also successfully
produced in P. patens with productivity up to 1.3, 0.039, and
2.84 mg/g dry weight respectively (Zhan et al., 2014; Pan
et al., 2015). We recently reported the successful production
of artemisinin in P. patens (Ikram et al., 2017). All five
artemisinin pathway genes were introduced into P. patens via
the in vivo assembly of multiple DNA fragments method and
the transgenic P. patens lines produces 0.21 mg/g DW of
artemisinin, a significant level at only 3 days of culturing.
A considerable advantage of P. patens as an artemisinin
production platform is the absence of pathway intermediates
(glycosylation and glutathione conjugation). P. patens has less
glycosyltransferases as compared to higher plants that may lead

to the possibility of lower risk of endogenous modifications
to xenobiotic metabolites. Further research in bioengineering
of P. patens for a higher artemisinin production is ongoing
and could potentially help stabilize the supply of artemisinin
and aid in containing malaria. Bioengineering of artemisinin
biosynthesis pathway in heterologous in planta host with
successful production of artemisinic acid and artemisinin is
summarized in Table 2.

PERSPECTIVES

Current advances in genetic and metabolic engineering drive a
more diverse research and development approach on improving
in planta production of artemisinin. The successes achieved in
heterologous plant hosts and engineering of A. annua remains
are of great importance. Microbial engineering of artemisinic
acid shows some potential, but the added costs for later chemical
synthesis of artemisinin is a detracting factor for replacing
A. Annua as the main artemisinin source. Progress in plant
engineering and synthetic biology has significantly improved the
awareness of using plant as production hosts leading to great
efforts in the implementation and enhancement of artemisinin
production in both in vivo and in vitro production. Furthermore,
heterologous in planta production seems to be more cost effective
and environmentally friendly than other current biotechnological
platforms. Advances in multigene transformation, transcription
factors along with targeting of cellular compartment techniques
will enable elevation of production levels in future engineered
plants bringing us closer to industrial scale plant factories for
artemisinin production. Perhaps the continuous production of
artemisinin and other valuable plant metabolites in suspended
bioreactor cultures with in situ extraction to avoid cell toxicity is
not too far in the future. This will avoid the regulatory restrictions
on in field GMO plants, and allow for stable continues production
of drugs.
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