
REVIEW
published: 16 November 2017
doi: 10.3389/fpls.2017.01987

Frontiers in Plant Science | www.frontiersin.org 1 November 2017 | Volume 8 | Article 1987

Edited by:

Brigitte Mauch-Mani,

University of Neuchâtel, Switzerland

Reviewed by:

Verónica Cabrera,

National University of Cordoba,

Argentina

Vojislava Grbic,

University of Western Ontario, Canada

*Correspondence:

Juan E. Palomares-Rius

palomaresje@ias.csic.es

orcid.org/0000-0003-1776-8131

†
Pablo Castillo

orcid.org/0000-0003-0256-876X

Specialty section:

This article was submitted to

Plant Microbe Interactions,

a section of the journal

Frontiers in Plant Science

Received: 19 June 2017

Accepted: 03 November 2017

Published: 16 November 2017

Citation:

Palomares-Rius JE, Escobar C,

Cabrera J, Vovlas A and Castillo P

(2017) Anatomical Alterations in Plant

Tissues Induced by Plant-Parasitic

Nematodes. Front. Plant Sci. 8:1987.

doi: 10.3389/fpls.2017.01987

Anatomical Alterations in Plant
Tissues Induced by Plant-Parasitic
Nematodes
Juan E. Palomares-Rius 1*, Carolina Escobar 2, Javier Cabrera 2, Alessio Vovlas 3 and

Pablo Castillo 1†

1Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain, 2 Plant Biotechnology and

Molecular Biology Group, University of Castilla La Mancha, Toledo, Spain, 3 A. P. S. Polyxena, Bari, Italy

Plant-parasitic nematodes (PPNs) interact with plants in different ways, for example,

through subtle feeding behavior, migrating destructively through infected tissues, or

acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as

they derive their nutrients from living cells which they modify using pharyngeal gland

secretions prior to food ingestion. Some of them can also shield themselves against

plant defenses to sustain a relatively long lasting interaction while feeding. This paper is

centered on cell types or organs that are newly induced in plants during PPN parasitism,

including recent approaches to their study based onmolecular biology combinedwith cell

biology-histopathology. This issue has already been reviewed extensively for major PPNs

(i.e., root-knot or cyst nematodes), but not for other genera (viz. Nacobbus aberrans,

Rotylenchulus spp.). PPNs have evolved with plants and this co-evolution process has

allowed the induction of new types of plant cells necessary for their parasitism. There

are four basic types of feeding cells: (i) non-hypertrophied nurse cells; (ii) single giant

cells; (iii) syncytia; and (iv) coenocytes. Variations in the structure of these cells within

each group are also present between some genera depending on the nematode species

viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in

some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory

ecto-endoparasites, migratory endoparasites, or sedentary endoparasites). Apart from

their co-evolution with plants, the response of plant cells and roots are closely related

to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach

different types of cells in the plant), and the secretory fluids produced in the pharyngeal

glands. These secretory fluids are injected through the stylet into perforated cells where

they modify plant cytoplasm prior to food removal. Some species do not produce

specialized feeding sites (viz. Ditylenchus, Subanguina), but may develop a specialized

modification of the root system (e.g., unspecialized root galls or a profusion of roots).

This review introduces new data on cell types and plant organs stimulated by PPNs

using sources varying from traditional histopathology to new holistic methodologies.
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INTRODUCTION

More than 4,100 species of plant-parasitic nematodes (PPNs)
have been identified (Decraemer and Hunt, 2006) and some
of them cause damage to economically important crops. A
restricted group of genera is considered as major plant-pathogens
whereas others are specific to a more limited range of crops.
Some estimates suggest that PPNs cause a 77 billion dollar
loss in agricultural production worldwide each year (Sasser and
Freckman, 1987). Additional losses could be related to food
quality and visual imperfections ormarket devaluation associated
with infection symptoms (i.e., carrots or potatoes affected by
Meloidogyne spp.), restrictions to market exportation due to the
imposition of quarantine trade rules, or measures of control
aimed at keeping nematodes below damage threshold in the field.

Most nematode damage occurs through direct alteration of
plant cells, usually interfering with the normal cell cycle or
by withdrawing nutrients from cell cytoplasm. However, some
groups also act as virus vectors of nepo- and tobraviruses
(Longidorids and Trichodorids, respectively; Decraemer and
Robbins, 2007). Furthermore, PPNs could interact with other
plant-pathogens to increase damage to the plant or to break
plant resistance (i.e., vascular fungal diseases; Back et al., 2002).
In addition, some microorganisms pathogenic to grazer animals
have been associated with galls produced by anguinid nematodes
(McKay and Ophel, 1993). These issues, caused by PPNs, have
resulted in quarantine regulations [i.e., ruled by European
and Mediterranean Plant Protection Organization (EPPO) and
Association of South East Asian Nations (ASEAN)].

The aboveground symptoms of root nematode damage

are usually unspecific and associated with nutrient deficiency,

incipient wilt, stunting, poor yield, and sometimes plant death.

Very few symptoms in plants can be associated unequivocally
with PPNs as they are usually difficult to detect, with the
exception of galls in roots or stems and necrosis or deformations
in some hosts caused by specific species. PPNs can feed on all
plant parts, including roots, stems, leaves, flowers, and seeds.
For this feeding and interaction with plants, they need a stylet
(a hollow mouth spear, like a hypodermic needle), which is
highly variable in length and shape. Furthermore, PPNs usually
possess three to five pharyngeal glands that produce secretions,
most of which are emitted thorough the stylet, that assist plant-
nematode interaction (i.e., penetration, internal migration, and
parasitism). Other glands (amphids, phasmids, adanal glands,
and the excretory/secretory system) as well as hypodermis
secretions are important in nematode cross-talk with plants
(Rosso et al., 1999; Haegeman et al., 2012). PPNs can be classified
as: (i) Ectoparasites: the nematode remains outside of the plant
and uses its stylet to feed from the plant root cells; (ii) Semi-
endoparasites: nematodes partially penetrate the plant and feed at
some point during their life cycle; (iii) Migratory endoparasites:
nematodes spend much of their time migrating through root
tissues destructively feeding on plant cells; and (iv) Sedentary
endoparasites: the nematode spends themajority of their life span
sedentary inside the plant tissue establishing a highly specialized
parasitism. Groups iii and iv are the most important in terms
of crop losses. There are four basic types of feeding cells: (i)

non-hypertrophied nurse cells; (ii) single giant cells; (iii) syncytia;
and (iv) coenocytes. This variability of feeding sites may be
related in some way to PPN life style (migratory ectoparasites,
sedentary ectoparasites, migratory ecto-endoparasites, migratory
endoparasites, or sedentary endoparasites). Some species do not
produce stable feeding sites associated with their parasitism,
and in such cases the parasitized cells usually die (i.e.,
Trichodorus, Paratrichodorus, Tylenchorhynchus). Apart from
their co-evolution with plants, the response of plant cells and
roots are closely related to feeding behavior, the anatomy of
the nematode (mainly stylet size, which could reach different
types of cells in the plant), and the secretory fluids produced
in the pharyngeal glands. These secretory fluids are injected
through the stylet into perforated cells where they modify plant
cytoplasm prior to food removal. In some cases, the effect of
nematode parasitism is not only associated with the feeding
site, but it extends to adjacent tissues; for example, in the case
of Meloidogyne spp. or Nacobbus aberrans, the first produce
coenocytes and the second a syncytium, both with similar cell
proliferation around the feeding sites that finally form a root
gall. Nematode mode of interaction with plants is an active
field of research targeting the design of effective new control
strategies. This review intends to describe those plant-nematode
interactions that cause specific alterations in plant cells related to
their feeding habit. Because of the extensive range of PPNs, only
important genera of major groups with specific effects in plants
will be studied.

PLANT MORPHOGENESIS INDUCED BY
NEMATODES

Stem, Leaf, Seed, and Root Gall
Nematodes
These groups of nematodes use films of water to migrate up the
plant stem and are therefore more damaging under wet and cold
conditions. The fourth-stage juveniles penetrate plant trough
buds, petioles, lenticels, or stomata and subsequently move
intercellularly through themiddle lamella. Symptoms in the plant
are leaf or bulb deformities, short internodes, and in some species
true neoplastic tissues similar to galls are formed (Figures 1A–G).
In most hosts, these nematodes induce extensive cell separation,
some necrosis, and hypertrophy (Figures 1B–D,F,G). Usually,
several adjacent cells, not directly penetrated by the nematode
stylet, exhibit cytological features such as a granulated cytoplasm
with hypertrophied nuclei and nucleoli. These cells could
be called nurturing cells and they proliferate amongst pith
parenchyma and vascular bundles in some plants close to the
feeding sites formed by the cavity within the gall (Watson and
Shorthouse, 1979; Vovlas et al., 2015a). Some authors as early
as Goodey (1935), Krusberg (1961), and Watson and Shorthouse
(1979), related this specific plant morphogenesis to the number
of meristematic cells, as cortical parenchyma is associated with
cell separation only, while meristematic cells are more commonly
related with gall formation. The most important species of the
genus Ditylenchus (“stem nematodes”) is Ditylenchus dipsaci
because of its wide range of possible hosts and the damage it
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FIGURE 1 | Morphogenesis caused by stem, leaf, seed and root gall nematodes. Ditylenchus gigas (A–D): (A) Necrotic area on stem (arrowed). (B–D) Cross sections

of parenchymatic tissues of the stem showing under-epidermic cavities surrounded by necrotic cells and nematode body portions (Vovlas et al., 2011; with permission

of John Wiley and Sons). Ditylenchus oncogenus (E–G): (E) Leaf midrib nematode-induced galls, showing different deformation degrees. (F) Longitudinal section of

parenchyma of a stem portion showing sub-epidermal cavities (ca) surrounded by necrotic cells. (G) Cross-section of flower parenchyma showing a nematode (n),

and hypertrophied nuclei (hn) in the attacked cells (Vovlas et al., 2015b; with permission of Cambridge University Press). Anguina tritici (H–J): (H) Healthy (left) and

infected (right) spike and seed galls of wheat. (I,J) Cross-sections of wheat-seed showing severe infection induced by the nematode (n) and the high number of

nematodes inside the grain (Source: N. Vovlas). Root-galls caused by Subanguina radicicola (K) on Poa annua (Source: N. Vovlas). Subanguina moxae (L,M):

Cross-sections of foliar galls from Artemisia sp. showing cavities (ca), nematodes (n), and a layer of nutritious cells (lnc) (Source: N. Vovlas). ca, cavity; ec, epidermic

cell layer; hn, hypertrophied nuclei; lnc, layer of nutritious cells; n, nematode. Scale bars: A,F,H,K = 1,000µm; B,E = 500µm; C,D,G,J = 50µm; I,L,M = 100µm.

Frontiers in Plant Science | www.frontiersin.org 3 November 2017 | Volume 8 | Article 1987

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Palomares-Rius et al. Morphogenesis Caused by Nematodes

causes to plants. Other species that cause crop damage include
D. gigas, D. destructor, D. angustus, and D. africanus. However,
most species within this genus are fungal-feeders in the soil.
Depending on the species, they could infect a broad number of
plants (i.e., Ditylenchus dipsaci) or be specifically associated with
some plants (i.e., D. oncogenus to Sonchus bulbosus or D. gigas
to broad beans) (Vovlas et al., 2015b). Plant responses could
also differ depending on the nematode-species or their specific
host, for example in the species complex group of D. dipsaci,
some hosts (rye and oats) produce an excessive number of tillers
and develop puffy sheaths (Hawn, 1969); in other hosts, leaves
produce small pale-green swellings which contain aggregations
of nematodes (Campbell and Griffin, 1973), deformed leaves or
bulbs as in garlic or onion (Sturhan and Brzeski, 1991), or crown-
canker in sugar beet (Castillo et al., 2007). However, some species
from this complex group (Ditylenchus dipsaci s.l.) are composed
of a number of biological races and populations differing in
host preferences and occur at a different stage of speciation and
reproductive isolation, and probably they could be separated
species (Sturhan and Brzeski, 1991). It has been proposed that
D. dipsaci includes at least seven potential species (Subbotin et al.,
2005): D. dipsaci sensu stricto and six putative species named
as Ditylenchus sp. B from Vicia faba L., Ditylenchus sp. C from
Cirsium arvense (L.) Scop., Ditylenchus sp. D from Pilosella spp.,
Ditylenchus sp. E from Crepis praemorsa (L.) Tausch, Ditylenchus
sp. F from Leontodon autumnalis L., and Pilosella officinarum (L.)
F.W.Schultz and Sch.Bip. and Ditylenchus sp. G from Plantago
maritima L. Some of these have been recently separated as
individual species (i.e., D. weischeri or sp. C and D. gigas or sp.
B; Chizhov et al., 2010; Vovlas et al., 2011).

Seed gall nematodes (Anguina tritici) were the first PPNs
recorded by Needham (1744) in wheat seed-galls. They have a
similar life cycle to Ditylenchus species where they infect aerial
plant organs, with the exception that they feed ectoparasitically
on growing points and leaf bases until they reach the
inflorescence in some species (Siddiqi, 2000). They produce galls
on flowers, seeds, leaves, and roots (Figures 1H–J). Some species
(e.g., Anguina funesta) can transport Clavibacter toxicus attached
to their cuticle to rye grass ears. This bacterium produces
toxins that are poisonous to grazing sheep in infested grass
in Australia (Bird, 1985). In general, Anguina spp. produce
a similar morphogenesis in plants to the galls produced by
Ditylenchus species, with the presence of hypertrophied cells and
hyperplasia in gall tissues. However, they seem more specialized
in comparison to the galls produced in some hosts by D.
dipsaci (i.e., garlic or onion). Galls of seed gall nematodes
usually develop in place of ovules, less commonly in place
of stamens, and rarely on glumes or rachides and are used
for nematode survival and dispersal (Figure 1H; Stynes and
Bird, 1982). These galls show a considerable thickening of
the cell wall of the peripheral outermost layer of cells that
probably have a role in the protection of anhydrobiotic second-
stage juveniles and gall integrity (Figures 1I,J: Stynes and
Bird, 1982; Fattah and Al-Assas, 2010). A cavity is formed
by numerous interconnected cells with irregular shape and
contains several hypertrophied nuclei with several nucleoli,
and a granular cytoplasm (Figures 1I,J). Nematode containing

cells are surrounded by a layer of nutritious cells with several
hypertrophied nuclei, each containing several nucleoli. These
cells could function as a nutrient sink area from the plant
(Skinner et al., 1980; Sobczak et al., 1997). The galls of some
species, such as Subanguina picridis infecting Russian knapweed
(Rhaponticum repens), have a well-defined zone of numerous
nurturing cells and the cells among the nematodes do not
become necrotic (Watson, 1986). Plant mechanisms that support
parasitism and how those cells act as a nutrient sink tissue for
the nematode are important points of study during interaction
analysis.

Other species infect aerial plant parts, such as leaves, stems,
or inflorescences, and usually they only become established in
actively growing undifferentiated tissues. Interestingly, Anguina
spp., Paranguina spp., and Subanguina spp. are parasites of
monocotyledonous plants with a broad range of hosts that
produce one generation per gall with the second-stage juvenile
as the invasive stage (Figures 1L,M).Mesoanguina shows narrow
host specificity, with two morphologically distinct generations
per gall and with their third-stage juvenile as the invasive
stage. Heteroanguina genus parasitize monocots and dicots
producing one generation per gall with their fourth-stage
juvenile as the invasive stage (Chizhov and Subbotin, 1985).
Furthermore, Anguinidae phylogeny obtained using rDNA data
shows an evolutionary specialization apparently related to an
evolutionary trend in gall development: from abnormal swelling
and growth of infested plant organs toward small localized
galls, and from infestation of vegetative parts toward generative
organs (Subbotin et al., 2004). In addition, there are high levels
of co-speciation events between the phylogenies of anguinids
parasitizing Poaceae and their host grasses (Subbotin et al., 2004).

These perturbations in leaf tissues are similar to those
occurring in compatible interactions with some mites that
produce galls. The first reaction of a cell is probably the
production of a callous related to the puncturing action of
the feeding nematode; this has been documented in gall cells
produced by some mites (Stynes and Bird, 1982). Usually
the punctured cells die, but in a compatible interaction, the
surrounding cells, which become a nourishing tissue, are
activated by the continuous feeding of the nematode and
cell division occurs. These cells are characterized by a dense
cytoplasm, small vacuoles, and enlarged nuclei and nucleoli
(Westphal and Manson, 1996) and seem to be activated by
the continuous feeding of nematodes as cells are killed by the
feeding process and new cells are incorporated into this layer.
Recently, the interaction of Ditylenchus gallaeformans, which
induces galls on the inflorescences of Miconia albicans and
Miconia ibaguensis, has been studied in detail (Ferreira et al.,
2017). This interaction showed that instead of flowers, the axes
of the galled inflorescences are surrounded by emergences with
nutritive tissues lining the larval chambers. The nutritive tissues
of these galls have totipotent cells, originating new tissues with
dermal, ground, and vascular tissues providing these galls with
indeterminate growth. Furthermore, the new development for
these types of nematodes, D. gallaeformans induces a long-
distance impact on fruits, which have an increased number of
carpels. Ferreira et al. (2017) suggest that such long-distance
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effects may compensate for the damage of the galls inducing
mechanisms by favoring, at least partially, its host plant fitness.

Subanguina radicicola is the only known anguinid that
parasitizes roots. It induces galls on the roots of several grasses,
barley, and rye and occurs widely in Europe (Siddiqi, 2000). Galls
have a small size (less than 5 mm long). They can be found
either on the root apex or along the root axis, and sometimes the
infected plants have numerous lateral roots (Figure 1K; Vovlas,
1983). In the case of S. radicicola, large cavities are formed in the
root cortex, but collapsed and enlarged cells are also found in the
endodermis, pericycle, and vascular parenchyma. Those changes
cause asymmetry of the central cylinder, provoking abnormal
functioning of the root and a reduction in plant growth (Vovlas,
1983).

Root Nematodes
Plant Ectoparasites

Plant ectoparasites comprise a broad range of nematode families.
The feeding habit of these nematodes, their secretions, the
population densities, the type of cell selected, and the time
of interaction within these cells are important factors in the
development of different cell and root structures.

Trichodorid nematodes preferably feed on epidermal cells
in the elongation regions of rapidly growing roots; they tend
to aggregate at the root’s apex and stop root growth through
gregarious feeding (Wyss, 2010). Usually, they induce abnormal
growth of lateral roots and the proliferation of branch roots
(Agrios, 2005). Severely infected roots show a smaller root
system than non-infected plants, with the presence of fewer
roots exhibiting short, stubby, swollen root branches (Figure 2A;
Agrios, 2005). Meristematic activity and root growth stop
because of the physical feeding effect, and this causes a rounded
tip to develop that exhibits differentiation of stellar tissue almost
to the apex of the root (Pitcher, 1967); however, cells already
formed enlarge abnormally and cause swelling of the root tip
(Figure 2B; Agrios, 2005). Other PPNs with similar patterns of
ectoparasitic feeding on epidermal cells do not produce the effects
caused by Trichodorids, probably because they do not aggregate
at specific zones on the root.

Longidorids are large nematodes (up to 12 mm long) that are
equipped with long stylets, which allow them to feed deep within
plant roots. These nematodes usually feed on root tips, reaching
the differentiated vascular cylinder with their long stylets, but
they could infect other parts of the root (Figures 2C,D; Cohn,
1970). Two genera have been studied in more detail, Xiphinema
and Longidorus. Both produce galls in the tips by arresting root
growth, but with different internal modified cells. Xiphinema
spp. induce large hypertrophied multinucleated cells (from
two to eight nuclei; Figures 2E,F), while Longidorus spp. form
hypertrophied uninucleate cells (Wyss, 2010). In both cases, these
cells are highly active metabolically, with typical hypertrophy,
amoeboid-shaped nuclei, increased cytoplasmic density, and
abundance of mitochondria, plastids, and rough endoplasmic
reticulum (Wyss et al., 1980; Griffiths and Robertson, 1984,
1988). Xiphinema index females initially feed in the transition
zone between the root apex and cell elongation (Weischer and
Wyss, 1980). The odontostyle is inserted through three to four

cell layers before feeding starts, and can penetrate to a depth
of up to eight cell layers (Weischer and Wyss, 1976). These
parasitized cells become necrotic and surrounded by slightly
enlarged binucleate cells (Figure 2F: Wyss et al., 1980; Bleve-
Zacheo and Zacheo, 1983). The binucleate cells grow to large
multinucleate cells by means of synchronous mitoses without
cytokinesis and are indispensable for nematode reproduction
(Figures 2E,F; Rumpenhorst and Weischer, 1978; Wyss, 1978;
Staudt and Weischer, 1992). Once the gall is formed, it becomes
attractive to more individuals (Wyss, 2010), probably because of
the plant nutrient sink effect. Interestingly, one specific group
of species within the genus Xiphinema (X. americanum group)
usually does not induce galls at the tips but instead clusters
of short stubby lateral roots are formed (Siddiqi, 1973). In
Longidorus, a similar process is induced; differing in several
points: (i) the feeding habit is at root tips, transforming them into
terminal galls (Wyss, 2010); (ii) the initial feeding in one cell also
removes the contents of neighboring cells by the production of
cell wall holes through dissolution (Robertson et al., 1984); and
the initial hypertrophy of individual uninucleate cells is followed
by hyperplasia with synchronized cell division and a posterior
hypertrophy of these cells (Griffiths and Robertson, 1984). There
is still a big question over the putative influence of the different
feeding habits in the induction of hypertrophied uninucleate
or multinucleated cells, both avoiding cycles of cytokinesis.
The feeding habits between Xiphinema and Longidorus probably
differ as Longidorus results in a greater uptake of cytoplasm
as necrotic cells are frequently found around the odontostyle.
Furthermore, the role of effectors could be important in this root
interaction, but information on this point is lacking.

Some ecto-endoparasites, such as the genera Helicotylenchus,
Hoplolaimus, Rotylenchus, and Scutellonema could invade roots
to feed on cortical or outer stellar cells (Wyss, 2010). Other
authors localized parasitized cells adjacent to protoxylem cells
(Jones, 1978a) and noted that infection could take place anywhere
in the root, with the exception of the root tip (Klinkenberg, 1963).
This type of feeding site is beneficial for the female as, after
feeding in these modified cells, they lay many eggs (Jones, 1978b).
Some species ofHelicotylenchus could feed in a semiendoparasitic
sedentary manner for up to 19 days (Jones, 1978b) even on
woody plant roots, for example in the olive (Figures 2G,H;
Inserra et al., 1979). The nematode feeds in one cell, which
could be enlarged and is surrounded by four or five cells with
an enlarged cytoplasmic volume (Jones, 1978a). The food cell is
highly active with numerous mitochondria, plastids, amyloplast-
like organelles, and rough endoplasmic reticulum (Jones, 1978a).
It is also uninucleate and the plasmalema becomes detached from
the cell wall in different places, the resultant gap contains vesicles
and dense deposits resembling wall fragments. Lipid droplets
and proteinaceous deposits have also been documented in food
cells (Jones, 1978a). Similarly, H. oleae induces a single food
cell in the cortex (Figures 2G,H; Inserra et al., 1979). However,
Helicotylenchus microlobus infecting corn produces a single food
cell in the cortex that is the same size as adjacent cortical
cells, but with a denser cytoplasm and an enlarged nucleus
with a prominent nucleolus (Vovlas and Inserra, 1985). Plant
responses in different hosts, the position of parasitized cells in the
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FIGURE 2 | Morphogenesis caused by ectoparasite root nematodes. Paratrichodorus teres (A,B): (A) Apical-root galls on wheat. (B) Cross-section of apical-root

wheat gall (Source: N. Vovlas). Xiphinema index (C–F): (C, D) Apical-root galls in grapevine. (E,F) Cross-sections showing multinucleate cells with hypertrophied

nucleus (hn) induced by nematode parasitism (Gutiérrez-Gutiérrez et al., 2011; with permission of John Wiley and Sons). Helicotylenchus oleae (G,H): Cross-sections

of olive roots showing the nematode feeding on a parenchymatic feeding cell (fc) with hypertrophied nucleus (hn) (Source: N. Vovlas). fc, feeding cell; hn,

hypertrophied nucleus; n, nematode; st, stylet. Scale bars: A,D = 1,000 µm; B = 200 µm; E = 10 µm; F,H = 20 µm; G = 100 µm.
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different plant tissues, and the nematode species could have an
important role in the different cell features noted in histological
observations.

Plant Endoparasites

Root-knot nematodes (Meloidogyne spp.)
Meloidogyne is a genus including more than 90 species. Only
a few of them are considered as major pests (M. incognita,
M. javanica, M. arenaria, and M. hapla; Jones et al., 2013).
One of their main characteristics is that they are extremely
polyphagous (Moens et al., 2009), especially those species with
a wide geographical distribution, while others are more specific,
for example, M. baetica affecting only the wild olive (Castillo
et al., 2003a). They often reproduce by mitotic parthenogenesis,
with the exception of M. hapla or M. chitwoodi that reproduce
by facultative meiotic parthenogenesis (Berg et al., 2008; Escobar
et al., 2015).

Root-knot nematodes (RKN) initiate a subtle interaction with
their hosts through intercellular migration after sensing chemical
gradients of root diffusates (Teillet et al., 2013). Second-stage
juvenile (J2), the infective parasitic form of RKNs, enter the
elongation zone of the root and, using cell wall hydrolytic
enzymes such as endoglucanases, endoxylanases, pectatelyases,
etc., from their subventral glands secreted into the apoplast
(Perry and Moens, 2011), they reach the vascular cylinder by
entering through the root meristem area. In this way, they
considerably reduce mechanical damage to the plant cells as
compared to other nematode groups, such as cyst nematodes
(CN). Once established, a group of five to eight cells in the
vascular cylinder develop into feeding cells, called giant cells
(GCs) (Figures 3B,D,F,G,H,I; Escobar et al., 2015). This occurs
as a result of refined cross-talk between plant precursor cells
and still unclarified nematode effectors (Cabrera et al., 2015a;
Truong et al., 2015). The precursor cells of the GCs are not
well defined, although pericycle cells are definitely involved
in gall/GC development (Cabrera et al., 2014a). Profuse, and
mostly asymmetric division of vascular cells, partially resembling
the divisions occurring during lateral root formation (Cabrera
et al., 2014a), as well as hyperplasia of the surrounding tissues
(Escobar et al., 2015), increase root girth through the formation
of galls; these are pseudo-organs that function as feeding sites
(Figures 3A,E,C). SomeMeloidogyne species produce small galls
(M. artiellia; M. paranaensis) (Franklin, 1961; Carneiro et al.,
1996) with fewer nuclei but of a larger size, including the
nucleoli, for example, M. artiellia as compared to M. arenaria,
M. incognita, andM. javanica (Figures 3E–I; Vovlas et al., 2005).
Gall size is not phylogenetically related when compared with
the latest phylogenetic relationships of the genus (Ali et al.,
2015). Perhaps, an important component of these different plant
responses is the interaction of plant molecular pathways with the
repertoire of effectors produced by the nematode.

Inside the galls, GCs undergo repeated mitosis with partial
cytokinesis and endoreduplication or equivalent processes such
as defective mitosis or nuclear fusion (de Almeida Engler
et al., 2015), leading to DNA amplification, which is thought
to be necessary for GC expansion (Escobar et al., 2015). GCs
expand, increasing their volume more than 60-fold from 3 days

post-infection (dpi) to 40 dpi on average (Cabrera et al., 2015b).
Interestingly, the volume of individual GCs does not always
correlate with the stage of gall development as GCs probably
grow asynchronously. However, the average volume occupied by
all GCs as a pool within a gall, show a strong correlation to that
of the infection stage (Cabrera et al., 2015b), probably because it
is the meaningful functional feeding volume for the nematode.
GCs also become transfer cells with cell wall ingrowths and
irregular thickenings that increase the effective solute exchange
area (Jones and Gunning, 1976; Berg et al., 2008), demonstrating
the molecular signatures of this cell type (Cabrera et al., 2014b).
Hence, they have irregular shapes, with elongated cell protrusions
close to the nematode lip region that can be clearly observed
after 3D reconstruction (Figure 3D; Cabrera et al., 2015b; de
Almeida-Engler et al., 2016).

After the analysis of single isolated GCs inside the galls, the
development of specific techniques combining transcriptomics
and cell biology (see cells within the section; Figure 3) identified
massive changes in gene expression in Arabidopsis, tomato, and
Medicago GCs ( et al., 2003; Ramsay et al., 2004; Fosu-Nyarko
et al., 2009; Barcala et al., 2010; Escobar et al., 2011; Damiani
et al., 2012; Ji et al., 2013; Portillo et al., 2013). Thus, huge
transcriptional changes encompass GC formation, for example,
genes related to secondary metabolism, mostly involved in plant
defense are repressed, at least at early-medium stages of infection.
However, other stress related genes that are induced, such as
those encoding heat-shock proteins, may function as molecular
chaperons aiding protein conformation when GC metabolism
is actively contributing to nematode feeding (Barcala et al.,
2008, 2010). Among the genes with modified expression after
nematode infection, a major group are those related to hormone-
regulated developmental pathways, particularly those associated
to auxin-cytokinin balance, such as LBD16, a transcription factor
from the lateral organ boundary family crucial for gall/GC and
lateral root development (Cabrera et al., 2015b). The irregular
shape of GCs (Figures 1C,E) is also accompanied by changes in
the cytoskeleton and transcriptional changes in different genes
encoding cytoskeletal proteins, such as microtubule-associated
(AtMAP65), actin depolymerizing factors (AtADF2) (Caillaud
et al., 2008; Clément et al., 2009), and those from the actin
and tubulin family (de Almeida Engler et al., 2004), among
others. However, a true dynamic picture of the morphological
and molecular changes occurring during GC development is still
lacking.

Cyst nematodes (Globodera spp. and Heterodera spp.)
Cyst nematodes belong to the subfamily Heteroderinae (Evans
and Rowe, 1998). The genus Globodera spp. and Heterodera spp.
contain most of the agronomically important species, although
species number is far larger in Heterodera (Subbotin et al., 2010)
than in Globodera (Subbotin et al., 2010). Some of these species
could infect woody plants, as is the case for H. mediterranea in
the olive (Castillo et al., 1999). J2, is the infective stage, in a
similar manner to root-knot nematodes, they use their stylet to
inject secretions from the gland cells. In contrast, they migrate
intracellularly destroying cells from the outer layers of the root
due to quick stylet thrusts combined with cell wall degrading
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FIGURE 3 | Morphogenesis in root knot nematodes forming galls. Meloidogyne spp. (A–I): (A) Egg mass (eg) protruding from a gall in a Cucumis sativus root infected

by Meloidogyne javanica. (B) Longitudinal section of a gall from Arabidopsis thaliana showing multinucleate giant cells (*) and anterior region of the nematode (n). (C)

Vascular tissue of a gall with GUS intense signal from an Arabidopsis transgenic marker line. (D) 3D reconstruction of giant cells (*) from Arabidopsis thaliana (Source:

C. Escobar). Meloidogyne artiellia (E–I): (E) Healthy and M. artiellia-infected chickpea roots, showing the prominent adult female covered by the egg mass. (F)

Cross-section of M. artiellia-infected root showing the typical feeding site with giant cells (Palomares-Rius et al., 2011; with permission of Elsevier). (G–I) Detail of

multinucleate giant cells induced by M. artiellia, M. arenaria, and M. javanica in chickpea roots, respectively (Vovlas et al., 2005; with permission of The American

Phytopathological Society). *, multinucleate giant cell; eg, egg-mass; hn, hypertrophied nucleus; n, nematode. Scale bars: A–C,E = 100µm; F–I = 20 µm.

FIGURE 4 | Morphogenesis in cyst nematodes forming syncytia. Heterodera spp. (A–I): Heterodera cruciferae (A–F) Transverse sections of cabbage roots infected

by H. cruciferae showing the semi-endoparasitic adult female (n) inducing the cortical and stellar syncytium (s) with fused syncytial cells with dense cytoplasm and

hypertrophic nuclei (hn) ((Sasanelli et al., 2013); with permission of The American Phytopathological Society). Heterodera daverti (G,H) Cross-sections of white clover

roots showing the semi-endoparasitic adult female (n) inducing the cortical and stellar syncytium (s) with fused syncytial cells presenting dense cytoplasm and

hypertrophic nuclei (hn) (Vovlas et al., 2015a; with permission of Springer). Heterodera filipjevi (I) Detail of syncytial cells in wheat roots showing hypertrophic nuclei (hn)

(Source: N. Vovlas). Scale bars: A = 1,000 µm; B,G,H = 500 µm; C–F,I = 100 µm.

and modifying proteins. Their feeding cells are called syncytia,
derived from one single cell (initial syncytial cell) that increases
its size by fusion of adjacent cells after cell wall dissolution

(Figure 4; Sobczak and Golinowski, 2011). In Arabidopsis,
females of Heterodera schachtii usually develop in syncytia from
procambial or pericycle cells, whereas males develop in syncytia
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from pericycle cells (Golinowski et al., 1996; Sobczak et al.,
1997). The syncytium can eventually be composed of more than
200 cells when it reaches its maximum size (Figure 4; Hussey
and Grundler, 1998). Interestingly, the volume of a syncytium
associated with a female can be 10-times larger than that caused
by a male, and nuclei enlargement through endoreduplication
contributes to this process (Figure 4I; Bohlmann, 2015). These
morphological changes are accompanied by profound expression
and metabolic changes in syncytia. Accumulation of sugars,
starch, and amino acids are common features shared by the GCs
of RKNs and syncytia of cyst nematodes (Siddique and Grundler,
2015).

Finally, the juvenile will enlarge and undergo several
molts, encompassing the developmental stages J3 and J4,
before reaching the adult stage (Figures 4B,G; Barcala et al.,
2016). Contrary to most RKN species, they reproduce
sexually, the female is fertilized by a free-moving male
and deposits the eggs inside its body; this subsequently
hardens to provide extra protection for eggs and serves as a
resistant cyst (Barcala et al., 2016). Additionally, molecular
techniques, such as microaspiration or laser microdissection
of syncytia (Anjam et al., 2016) combined with transcriptomic
analysis allowed the identification of batteries of genes
differentially expressed in soybean roots by H. glycines (e.g.,
Ithal et al., 2007; Klink et al., 2007, 2010). In Arabidopsis,
expression changes in syncytia indicated a suppression of
plant defenses, similar to those that take place in GCs, for
example, those genes encoding peroxidases or the induction
of genes encoding amino acid transporters (Szakasits et al.,
2009).

Other plant endoparasites
Nematode-induced feeding cells are derived from different plant
tissues depending on the nematode group. In nematodes other
than RKNs and cyst nematodes, they can be induced in the
cortex or in the vascular cylinder and these may vary from a
single feeding cell to several cells forming a feeding site or a
syncytium.

Trophotylenchulus obscurus parasitizes coffee roots and feeds
on a unique cell in the cortex (Figure 5A). This cell has a
similar size to neighboring cells, but with a denser cytoplasm
and enlarged nucleus with a prominent nucleolus; a large vacuole
is formed in senescent nurse cells (Figure 5B; Vovlas, 1987).
However, other members of this genus have other feeding habits,
for example T. floridensis causes the formation of a small number
of discrete nurse cells (three to six) in the stellar parenchyma
with dense cytoplasm and hypertrophied nuclei and nucleoli in
Pinus clausa (Cohn and Kaplan, 1983). However, it can also
form a syncytium of one to six layers of cortical cells located
around the circumference of the root section in a non-cultivated
dicot (Inserra et al., 1988). Tylenchulus semipenetrans induces a
similar feeding site structure to that of T. floridensis, with the
exception that the cells originate from the cortex and the first
feeding cell, into which the lip region of the nematode remains
protruded, appears dead and empty with nurse cells distributed
around it (Figures 5C,D; Wyss, 2010). Syncytia produced by
Verutus volvingentis contain dense cytoplasm, enlarged nuclei

and nucleoli, and are located within the cortex of the root (Cohn
et al., 1984).

Nacobbus aberrans induce slight swelling of the root apex
which is produced by the migratory feeding habits of juveniles,
with a true gall being produced by the adult female (Inserra
et al., 1983). The roots show a rosary of bead-like galls,
variable in size, with accentuated asymmetry, fragmentation of
the stele, hyperplasia of vascular parenchyma, and abnormal
proliferation of lateral roots (Figures 5E,F; Inserra et al., 1983;
Vovlas et al., 2007). Juveniles move intracellularly, creating
necrosis and cavities in the root cortex surrounded by cells
containing dense cytoplasm and hypertrophic nuclei; in some
hosts, they cause damage to the root stela (Inserra et al.,
1983; Vovlas et al., 2007). Inside the gall, females induce a
large syncytium derived from incomplete successive fusions of
adjacent cells (Figures 5G,H; Vovlas et al., 2007). Cells maintain
their individuality in the syncytium, which may involve over 185
cells with dense cytoplasm and hypertrophied nuclei and nucleoli
(Figures 5G,H; Vovlas et al., 2007). Some studies reveal that N.
aberrans s.l. is a complex of species with important differences in
host preference (Lax et al., 2014).

Another genus, related to Heterodera and Globodera, is
the cystoid nematode Meloidodera, which exhibits some
characteristics ofHeterodera andMeloidogyne in its life cycle. The
female of these nematodes does not turn into a cyst and its eggs
are deposited in a small gelatinous matrix or sometimes retained
inside the body. These nematodes induce a GC in the pericycle
with a unique irregular hypertrophied nucleus and a variable
number of nucleoli; hyperplasia takes place in cells adjacent to
the GC (Mundo-Ocampo and Baldwin, 1983a). This GC grows
inside the vascular cylinder and therefore has direct contact with
the vascular system; plasmodesmata are also concentrated in pit
fields, which occur in the thin part of the GC wall adjacent to the
vascular parenchyma (Figure 5M; Mundo-Ocampo and Baldwin,
1983a). GCs induced by Meloidodera spp. vary in shape and size
depending on the nematode and host species as well as stage
of root development at the time of infection (Mundo-Ocampo
and Baldwin, 1983a). Other Heteroderidae, such as Cryphodera
and Sarisodera, produce GCs in a similar way to Meloidodera
(Figures 5I–L; Mundo-Ocampo and Baldwin, 1983b, 1984)
however, Atalodera (Ataloderinae) or the cystoid nematode
Meloidoderita induces a syncytium (Figure 5N; Mundo-Ocampo
and Baldwin, 1983c; Vovlas et al., 2006). These different
nematode genera produce variable interactions with plants and
have scarcely been studied because of their minor importance
as crop pests; however, they are of importance in phylogenic
analysis.

In reniform Rotylenchulus species, only immature females
invade the roots. Two types of plant reaction are induced by
these nematodes: (i) a uninucleate GC (R. macrodoratus), and
(ii) a syncytium (R. borealis, R. macrosoma, R. parvus, and
R. reniformis), both originate from the endodermis (Vovlas et al.,
1985). The syncytium is confined to the pericycle layer of the root
with most of the cells retaining their individuality and effectively
separated from the surrounding cells by a thick cell wall.
However, this response seems to be mediated by characteristics
of the host or root, because uninucleate GCs originating from

Frontiers in Plant Science | www.frontiersin.org 9 November 2017 | Volume 8 | Article 1987

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Palomares-Rius et al. Morphogenesis Caused by Nematodes

FIGURE 5 | Morphogenesis in root nematodes: other root endoparasites (A–N). Trophotylenchulus obscurus (A,B): (A) Nematode (n) parasitizing coffee root. (B)

Cross section of coffee root showing feeding cells (fc) with no evident increase in size and the nematode (Source: N. Vovlas). Tylenchulus semipenetrans (C,D): (C)

Nematode (n) parasitizing citrus root. (D) Cross section showing induced nurse cells (nc) with dense cytosols (Source: N. Vovlas). Nacobbus aberrans (E–H). (E,F)

Tomato roots infected by the nematode showing knobs. (G,H) Cross sections of tomato roots showing the nematode (n) and the induced syncytium (s) (Vovlas et al.,

2007; with permission of Journal of Nematology). Cryphodera brinkmani (I–L): (I) Root segment of pine with the posterior portion of the body of a white female (n)

protruding from the root surface. (J–L) Cross sections of pine roots showing nematode female body (n) embedded in the cortical parenchyma and an uninucleate

giant cell (ugc) with hypertrophied nucleus (hn) (Vovlas et al., 2013; with permission of Springer). (M) Cross section of corn root infected by Meloidodera charis

showing the single nurse cell (nc) (Source: N. Vovlas). (N) Cross section of Mentha aquatica root infected by Meloidoderita kirjanovae showing the syncytial formation

(s) (Vovlas et al., 2006; with permission of Journal of Nematology). Fc, feeding cell; hn, hypertrophied nucleus; n, nematode; nc, nurse cell; s, syncytium; ugc,

uninucleate giant cell. Scale bars: A,I = 500µm; B,G,H,N = 50µm; C,D,J–M = 100µm.
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a cortical cell and extending from the cortex into the stele have
also been observed in thick roots infected by R. macrodoratus or
in different host species by R. borealis (Inserra and Vovlas, 1980;
Vovlas et al., 1985). Nevertheless, in wild and cultivated olives,
both types of cell response can be induced by R. macrodoratus
and R. macrosoma (Castillo et al., 2003b; Van Den Berg et al.,
2016). Rotylenchus reniformis could also parasitize cells in the
cortex, through formation of a connection to the stele, similar
to R. macrodoratus or R. borealis, but this does not appear to be
associated with root diameter. Instead, there appears to be an area
of the root withmultiple infections that might respond differently
to the rest of the root (Razak and Evans, 1976). The cytoplasm
of the feeding cells is dense and granular and surrounds a larger
and irregularly shaped nucleus with a large nucleolus (Razak and
Evans, 1976; Vovlas et al., 1985).

MOLECULAR INTERACTION BETWEEN
NEMATODES AND PLANT EFFECTORS

Hogenhout et al. (2009) defined an effector as “all pathogen
proteins and small molecules that alter host-cell structure and
function.” Nematodes secrete effectors to develop their feeding
cells, to easily up-take the contents of the cytoplasm, and to move
through plant tissues. Those with a more intimate relationship
with plants (parasitizing them, but not killing them), as is the
case for RKN and CN, change plant developmental processes
(mainly by altering the plant phytohormone balance, and the
plant cell wall architecture) and also modulate host stress and
defense responses [regulation of reactive oxygen species (ROS)]
(Lin et al., 2016). They normally use nuclear-targeted, apoplastic,
and cytoplasmic effectors (Gardner et al., 2015). Haegeman et al.
(2012) noted that “the different lifestyles of PPNs are expected
to be reflected in their secretions, which presumably contain
effectors with different functions according to the nematode’s
specific needs.” However, with the exception of a small number of
species where the genome or transcriptome has been sequenced,
the remaining PPNs are practically unexplored. Another point
is the important percentage of nematode-derived sequences
without homologies (pioneer genes) in the databases that need
to be characterized. Effectors are usually secreted from the
pharyngeal glands, the hypodermis, and the amphids. Some of
the effectors found in PPNs have been incorporated in genomes
by horizontal gene transfer from other microorganisms such as
bacteria and fungi (Haegeman et al., 2011a). In this review, we
have concentrated on effectors involved in cellular and tissue
modification in plants. Other extensive reviews in this subject
can be found elsewhere (Haegeman et al., 2012; Favery et al.,
2016; Rehman et al., 2016). Some effectors are involved in the
invasion, migration, and degradation of host tissues. This has
deep implications on the damage provoked to root cells during
the nematode migration in endoparasites. Cellulases, pectate
lyases, polygalacturonases, xylanases, arabinogalactan endo-1,4-
betagalactosidases, and arabinases have been found in many
different species of PPNs (Haegeman et al., 2012). Other effectors
could help in the action of these enzymes, such as expansins,
and they have also been found in a broad range of nematodes

(Haegeman et al., 2012; Nyaku et al., 2014). Many of these
genes are widely present in PPNs and have been introduced
into nematode genomes by horizontal gene transfer from other
microorganisms (Haegeman et al., 2011a).

Two different ontogenies of nematode-induced structures are
considered as indicated above: the cell which nourishes the
nematode and the gall. Gall formation in some cases (such as
in RKN) has similarities with nodules induced by endosymbiotic
bacteria. For example, PHANTASTICA and KNOX transcription
factors, the early nodulin gene ENOD40, and the cell cycle
control gene CCS52a are induced in plants during formation
of both nodules and GCs (Favery et al., 2002). Genes encoded
by RKN, similar to NodL, could generate active Nod factors
in nematodes (Haegeman et al., 2012) and be involved in
nodulation. However, these genes have not been found in
the transcriptome of D. africanus and D. destructor, in which
different mechanisms could be used to generate the feeding cells
(Haegeman et al., 2009). In this respect, RKN and CN species
secrete chorismate mutase (CM; Doyle and Lambert, 2003); this
enzyme is proposed to deplete levels of the chorismate precursor,
leading to auxin production. There are many nematodes with
different feeding sites employing this enzyme (RKN and CN) or
even migratory endoparasites that do not produce any specific
feeding sites (Haegeman et al., 2011b). In this sense, many
differentially expressed genes or the activation of promoters
related to auxin (e.g., Cabrera et al., 2014b; Olmo et al.,
2017) and ethylene signaling have been observed during the
plant-nematode interaction [and in a lesser extent related to
giberelic acid (GA), cytokinins, and abcisic acid (ABA)] (Gheysen
and Mitchum, 2009; Li et al., 2009; Goverse and Bird, 2011).
Moreover, auxins and cytokinins have been found in H. schachtii
and M. javanica secretions by using mass spectrometric analysis
(De Meutter et al., 2003, 2005). Furthermore, the role of
alterations in the plant hormonal regulation during the feeding
site formation became more complex since the discovery in the
RKN and CN secretions of proteins that canmimic plant peptide-
hormones. One of them is the CLAVATA-like elements (CLE),
described initially as plant factors promoting cell differentiation
in root and shoot apical meristems (class A; Whitford et al.,
2008). Several of these peptides have been found in nematode
secretions and in their genomes (RKN and CN; Gao et al., 2001;
Abad et al., 2008; Opperman et al., 2008). Other plant peptide
hormones, such as C-terminally Encoded Peptide (CEP)-like
sequences, are present in M. incognita and M. hapla but are
absent in cyst nematodes (Goverse and Bird, 2011). However,
their specific role in the formation of the feeding site is not
clearly demonstrated. A multigene phylogenetic analysis of N.
aberranswith respect to PPNs of all groups confirms its proximity
to both CN and RKN (Eves-Van Den Akker et al., 2014).
Interestingly, three CLE-like peptides have been identified in the
N. aberrans transcriptome, two of them contain putative signal
peptides andwere significantly up-regulated during the sedentary
biotrophic phase. However, no CEP-like peptides were identified
in the N. aberrans transcriptome (Eves-Van Den Akker et al.,
2014). In this sense, the unique features of CEP-like peptides in
Rotylenchus reniformis (syncytium forming nematodes) expand
the importance of these effectors in: (i) increasing host nitrate
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uptake, whilst (ii) limiting the size of the syncytial feeding site
produced. However, these CEP domains evolved de novo in
R. reniformis (Eves-Van Den Akker et al., 2016). The presence
of CLE genes with greater expression in sedentary phases of
R. reniformis have also been studied (Wubben et al., 2015).
Recently, the genome of R. reniformis has been sequenced and
more important data linking groups of sedentary nematodes
and effectors could be explored in the future (Nyaku et al.,
2014). Some effectors have been found in many nematodes,
such as the transthyretin-like proteins (TTL; Gao et al., 2003;
Furlanetto et al., 2005; Jacob et al., 2007; Bellafiore et al.,
2008; Jones et al., 2009; Haegeman et al., 2012), which could
target the brassinosteroid signaling pathway, a main mechanism
for hormonal regulation in plants that greatly impact plant
development (Wei and Li, 2016), but this remains to be proven
(Haegeman et al., 2012).

It is established that all PPNs inject effectors before up-take
of cytoplasm. Even nematodes that undergo a short feeding
process with the plant, create modifications of the cytoplasm and
nuclei (i.e., Trichodorids, migratory ectoparasites, or migratory
endoparasites; Wyss, 2010). Their mode of action could be
to manipulate host transcription as an important strategy for
counteracting plant defense responses (Jaouannet and Rosso,
2013; Quentin et al., 2013). However, many aspects of the
plant-nematode interaction mediated by nematode effectors
that interfere with the plant/cell development remains to be
elucidated.

CONCLUSIONS

This review highlights the diversity of plant morphogenesis
induced by PPNs. Their complexity increases with an increase
in PPN sedentary nature and therefore their requirement for
a sustained food supply for nourishment to complete their
biological cycle. Interestingly, such PPNs are the most successful
parasites and produce relevant economic losses affecting different
crops (i.e., RKNs and CNs). This fact has biased the profuse
knowledge of PPN interaction to be mainly centered on two
genera (Meloidogyne and Globodera). However, a general trend

that takes place in most plant-nematode interactions is the
induction and development of feeding cells that exhibit a

dense cytoplasm along with nuclear alterations such as a large
nucleolus. These findings suggest that nuclear changes must
be crucial to sustain nematode feeding, together with a dense
cytosol, which is a sign of high metabolic activity. Yet, the
size of feeding cells seems more variable, for example the
GCs of RKNs can increase to more than 60-fold their volume,
whereas Trophotylenchulus obscurus induces a single cell with
no prominent size increment in comparison to surrounding
cells.

In this review, we have described a scenario where a plethora
of some interesting plant-nematode interactions in nature have
not yet been clearly or deeply studied, they are mere histological
descriptions with scarce or no molecular studies of the affected
tissues. This makes impossible to compare mechanisms of
feeding cell induction or the processes contributing to their
maintenance within the plant and therefore it is not currently
possible to establish a general and clear picture of commonalities
between different feeding sites formed by different
PPNs.
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