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A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene

and recessive loss of function mutations in two multidrug resistant protein type-ABC

transporter genes not only reduce the seed phytic acid levels in soybean, but also affect

the pathways associated with seed development, ultimately resulting in low emergence.

To understand the regulatory mechanisms and identify key genes that intervene in

the seed development process in low phytic acid crops, we performed computational

inference of gene regulatory networks in low and normal phytic acid soybeans using a

time course transcriptomic data and multiple network inference algorithms. We identified

a set of putative candidate transcription factors and their regulatory interactions with

genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed

dormancy.We evaluated the performance of our unsupervised network inferencemethod

by comparing the predicted regulatory network with published regulatory interactions in

Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid

mutants compared to non-mutant lines. These findings provide important hypotheses

on expression regulation of myo-inositol metabolism and phytohormone signaling in

developing low phytic acid soybeans. The computational pipeline used for unsupervised

network learning in this study is provided as open source software and is freely available

at https://lilabatvt.github.io/LPANetwork/.

Keywords: phytic acid, soybean seed development, myo-inositol metabolism, unsupervised machine learning,

gene regulatory network

INTRODUCTION

Seed development is a complex metabolic process, which involves both synthesis and breakdown
of macromolecules for growth and maintenance of the embryo (Weber et al., 2005; Le et al., 2007).
During seed development, glucose-6-phosphaste is converted to myo-inositol, an intracellular
signaling molecule, which is phosphorylated several times to form phytic acid (Raboy, 1997). Seeds
with reduced phytic acid content are commercially more valuable because consumption of low
phytic acid seeds by monogastric animals alleviates mineral deficiency and reduces phosphorus
pollution from animal waste (Raboy, 2007). Mutations that block the phytic acid biosynthesis

Abbreviations: lpa, Low phytic acid; MIPS, myo-inositol phosphate synthase; MRP, Multi-drug resistance protein; DEG,

Differentially expressed gene; RFO, Raffinose family oligosaccharide; ABA, Abscisic acid.
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pathway have been shown to alter the seed metabolite levels in
soybean, rice, maize, and other plant species (Wilcox et al., 2000;
Shi et al., 2003, 2005; Stevenson-Paulik et al., 2005; Raboy, 2007;
Glover, 2011; Jervis et al., 2015). For example, a mutation in
myo-inositol phosphate synthase (MIPS) gene results in reduced
phytic acid, stachyose, raffinose, and elevated sucrose, and low
seed emergence in soybean (Hitz et al., 2002; Saghai Maroof
and Buss, 2008). Other non-biosynthetic pathway genes such
as multi-drug resistance protein (MRP) genes encoding ATP-
binding cassette transporters that are believed to be involved in
the transport of phytic acid to storage vacuoles, are also known
to regulate phytic acid levels and affect seed emergence (Shi et al.,
2007; Nagy et al., 2009; Saghai Maroof et al., 2009; Xu et al., 2009;
Jervis et al., 2015).

Transcriptome analysis is a valuable tool for the
characterization of the regulatory networks that mediate
this complex interaction. The expressions of genes involved
in the metabolic activities in seeds are tightly regulated by
the synergistic action of many transcription factors and other
regulatory genes (Weber et al., 2005; Le et al., 2007). Two
independent studies, one with barley low phytic acid (lpa)
mutant, and another with soybean mips1/mrp-l/mrp-n (‘3mlpa’)
triple mutant have reported the effect of lpa mutations on the
transcriptomic profiles of developing seeds (Bowen et al., 2007;
Redekar et al., 2015). The differential expression of transcription
factor genes such as WRKY and CAMTA (Calmodulin-binding
Transcription Activator), was linked to phytic acid biosynthesis
pathway, suggesting a complex regulatory mechanism (Redekar
et al., 2015). Association ofWRKY transcription factors and Ca2+

binding activity with inositol metabolism was also confirmed by
another independent study with maize low phytic acid breeding
line Qi319 (Zhang et al., 2016). Zhang et al. (2016) also identified
ABC transporter gene candidates associated with low phytic
acid phenotype in maize using co-regulatory network. In this
article, we focus on the discovery of transcription regulatory
networks to further investigate the inositol metabolism in
soybean.

One type of the widely applied method of network inference
is the use of Pearson Correlation Coefficient or related methods
for data analysis (Langfelder and Horvath, 2008; Bassel et al.,
2011; Li et al., 2012). Although such correlation analyses can
cluster genes with similar functions, the resultant networks
do not predict the direction of gene regulation. Many other
approaches, such as mutual information (Faith et al., 2007),
partial correlation (Faith et al., 2007), random forest (Huynh-
Thu et al., 2010), and least angle regression (LARS) (Haury
et al., 2012), have been developed to perform inference of
directed gene regulatory networks. For well-characterized model
organisms such as Arabidopsis, known interactions from ChIP-
chips or ChIP-seq experiments can be used as prior knowledge
in supervised machine learning approaches (Maetschke et al.,
2014; Ni et al., 2016). However, for biological systems where little
prior information is available, such as in soybeans, unsupervised
methods have to be used for network inference. In particular,
three methods including co-expression analysis (Bassel et al.,
2011), decision trees (Zhu et al., 2013) and mutual information
(Gonzalez-Morales et al., 2016) have been successfully applied to

identify functional networks in Arabidopsis and soybean seeds.
With numerous inference methods available, it has been found
that congregating the prediction results from multiple methods
(so-called “community-based method”) improves the prediction
accuracy as compared to any individual method (Marbach et al.,
2012).

In this study, we performed computational inference of
gene regulatory networks in low phytic acid mutants and the
corresponding non-mutant soybean seeds from time course
transcriptomic data. In addition to previously published RNA-
seq data (Redekar et al., 2015), we generated new RNA-seq
data of developing seeds using a pair of soybean isogenic
lines, one carrying the mips1 mutation (‘1mlpa’) and the
other the corresponding wild type allele. We implemented
a computational pipeline for unsupervised gene regulatory
network inference using five different methods: ARACNE
(Margolin et al., 2006), Random Forest (Huynh-Thu et al.,
2010), LARS (Haury et al., 2012), partial correlation (Schafer
and Strimmer, 2005b), and context likelihood relatedness (CLR)
(Faith et al., 2007). To improve computational efficiency and
interpretability of the inferred network, we adopted the widely
used module network approach by which genes were grouped
into co-expression modules and inference of gene regulation
was performed between transcription factors and gene modules
(Segal et al., 2003). We found that many gene modules included
genes with meaningful biological functions and some gene
modules showed genotype-specific expression patterns. We
identified several transcription factors that were differentially
expressed between developmental stages and some of the inferred
regulatory interactions were specifically found in mutants or
non-mutants. Genes involved in phytic acid metabolism and
related metabolic processes were found in multiple modules
and were predicted to be regulated by different transcription
factors. For validation, the predicted interactions were compared
with known regulatory interactions observed in the model plant
species, Arabidopsis thaliana. These findings provide important
hypotheses on expression regulation ofmyo-inositol metabolism,
and phytohormone signaling in developing lpa soybeans.
The computational method for inferring regulatory networks
is freely available at https://lilabatvt.github.io/LPANetwork/.
This method can be used to perform network inference
using time series data from soybean or any other crop
species.

MATERIALS AND METHODS

Genetic Materials
Four soybean experimental lines designated as: (i) 3mlpa,
(ii) 3MWT, (iii) 1mlpa, and (iv) 1MWT were used in this
study (Figure 1). The lpa mutant line, ‘3mlpa’, carrying three
mutations mips1/mrp-l/mrp-n, and its non-mutant sibling line
with normal phytic acid, ‘3MWT’, were derived from crossing
of ‘CX-1834’ (lpa line with two mpr-l/mrp-n mutations on
soybean chromosomes 19 and 3, respectively) with ‘V99-5089’
(lpa line with single mips1 mutation) (Saghai Maroof et al.,
2009). The low phytic acid causing mutations in the parental
lines have been mapped to genes Glyma.11G238800 (MIPS1),
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FIGURE 1 | Experimental design and computational pipeline. Samples used in this study include both published (Redekar et al., 2015) and newly generated data.

Differential expression analysis and clustering analysis were used to produce the initial candidate genes and gene modules. Machine learning algorithms were used to

construct gene regulatory networks.

Glyma.19g169000 (MRP-L), and Glyma.03g167800 (MRP-N)
(Saghai Maroof et al., 2009). Another lpa line, ‘1mlpa’, carrying
a single mips1 mutation on soybean chromosome 11, and its
isogenic sibling line with normal phytic acid, ‘1MWT’, were
derived from crossing of ‘Essex’ (a normal phytic acid line with
no mutations) with V99-5089 (Saghai Maroof and Buss, 2008;
Glover, 2011).

Plant Growth and Tissue Sampling
Four seeds from each of experimental lines—3mlpa, 3MWT,
1mlpa, and 1MWT, were planted in each of 12 pots containing
Metro-Mix R© 360 (Sun Gro) media topped with GardenPro
ULTRALITE soil (Redekar et al., 2015). These plants (48/line)
were grown in growth chambers with 14 /10 h photoperiod,
24◦C/16◦C temperature, 300–400 µE light and 50–60% relative
humidity. Developing seeds were sampled in triplicates for
each experimental line based on seed lengths corresponding
to 2–4mm (S1), 4–6mm (S2), 6–8mm (S3), 8–10mm (S4),
and 10–12mm (S5), respectively. Samples were flash frozen
using liquid nitrogen and stored at −70◦C. High-quality
total RNA (RIN 9–10) was extracted from frozen samples
using RNeasy Plant Mini Kit, with on-column DNase
digestion (QIAGEN). Total of 60 mRNA libraries were
prepared from total RNA samples and sequenced as 100SE
using HiSeq2000 at the Genome Quebec Innovation Center,
Canada.

Sequence Data Processing and Differential
Gene Expression
Reads were aligned to the latest soybean reference genome
(‘Williams 82’ Wm82.a2.v1, downloaded from Phytozome1 with
STAR (version 2.4.2) and number of reads mapped to each
gene was counted using featureCount (version 1.4.6). Differential
gene expression was analyzed using DESeq2 (version 1.8.2)
in R (version 3.2.4). Four genotypes, 3mlpa, 3MWT, 1mlpa,
and 1MWT, were analyzed in this data. For each pair of
mutant and corresponding non-mutant, stage-wise comparison
was performed to identify differentially expressed genes for
each stage (Supplementary Figure 1A) (Redekar et al., 2015).
For each genotype, between-stage comparisons were performed
to identify differentially expressed genes between adjacent
developmental stages (Supplementary Figure 1B). These analyses
were performed using DESeq2 with default parameters. Between-
stage comparisons and stage-wise comparisons address different
type of biological question. Between-stage comparisons find
genes that change between stages, but do not directly identify
genes that are affected by mutations. Stage-wise comparison, on
the other hand, directly finds genes that change between mutant
and non-mutant lines, but does not find genes with interactions.
Differentially expressed genes were the genes with FDR adjusted
p < 0.01 and log2 fold change >1. Differentially expressed genes
and their log2 fold changes are provided as Supplementary Tables

1https://phytozome.jgi.doe.gov/
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1–3. RNA-Seq data used in this study have been deposited into
the NCBI Gene Expression Omnibus (GEO) repository under
accession number GSE101692.

Inference of Gene Regulatory Networks
Expression Clustering, Gene Ontology, and Gene

Function Analysis
Gene expression levels for each gene were normalized using
DESeq2 and summarized as FPKM (Fragments Per Kilo-base
pair per Million reads) values. The gene expression levels (FPKM
values) were averaged across replicates and only differentially
expressed genes were used in the clustering analysis. K-means
clustering (Sherlock, 2000) was performed using R packages, and
the number of clusters (K) was determined using the minimum
Bayesian Information Criteria (BIC) method (Ramsey et al.,
2008). In brief, K was set to be an integer number from 20 to 100
with an incremental step size of 5. For each K-value, k-means
clustering was performed and BIC statistics were computed.
The minimum BIC was achieved with K = 60 (Supplementary
Figure 2). Gene Ontology (GO) annotation of all soybean genes
was downloaded from Soybase2 GO enrichment analyses were
performed for each gene module. Significantly enriched GO
categories were selected using Fisher’s exact test with FDR <0.05
(Supplementary Table 4). Transcription factor annotation was
downloaded from plant TFDB (Jin et al., 2015, 2017). Metabolic
pathway genes were downloaded from the SoyCyc 7.03 database
from the Plant Metabolic Network4 website.

Network Inference Methods
To infer regulatory networks, we adopted the methods of
module networks (Segal et al., 2003). First, genes were grouped
into modules using the k-means clustering method. Second,
differentially expressed transcription factors were used as
putative regulators for network inference. In our data, we
found 60 clusters (gene modules) and 1245 transcription factors
that were differentially expressed in at least one comparison.
The mean expression profile for each of the 60 modules
was computed and the expression levels of 1245 transcription
factors were included to construct an expression matrix with
1305 rows (genes) and 20 columns (five developmental stages
for four experimental lines). Five distinct network inference
algorithms: ARACNE (Margolin et al., 2006), Random Forest
(Huynh-Thu et al., 2010), LARS (Haury et al., 2012), partial
correlation (Schafer and Strimmer, 2005b), and CLR (Faith
et al., 2007), were applied to this expression matrix to infer
putative regulatory interactions between each transcription
factor and gene modules. These methods were chosen because
they represent a diverse set of computational methods for gene
network inference. These methods were selected also because
they were ranked as top performers in a recently published
benchmark of network inference methods (DREAM challenge)
(Marbach et al., 2012). Details of each method, statistical

2https://soybase.org/
3http://www.plantcyc.org/databases/soycyc/7.0
4http://www.plantcyc.org/

analysis of network and network validation are provided as
supplementary text.

RESULTS

Summary of Differential Gene Expression
Analysis
Transcriptome sequencing data from five developing seed stages
of four soybean lines (3mlpa, 3MWT, 1mlpa, and 1MWT) were
analyzed (Figure 1). Stage-wise comparisons were performed
for mutants (3mlpa, 1mlpa) and their corresponding non-
mutants (3MWT, 1MWT), to determine the number of genes
affected by the mutation at each stage (Figure 2). For stage-
wise comparisons, when 1mlpa was compared with 1MWT,
we found fewer than 250 differentially expressed genes in all
time points (Supplementary Figure 2). However, we found more
than 4000 differentially expressed genes between 3mlpa and
3MWT (Supplementary Figure 2). It is expected to have higher
number of differentially expressed genes for comparison between
recombinant inbred lines (3mlpa vs. 3MWT) as opposed to
that between near-isogenic lines (1mlpa vs. 1MWT). Few genes
are differentially expressed in all five stages when comparing
3mlpa vs. 3MWT (Figure 2B). These results suggest that genes
affected by mutations are unique at each developmental stage.
Between-stages comparisons were performed for each genotype
separately (Figure 1, Supplementary Figure 1). Results of the
stage-wise and between-stages differential expression analyses
are provided as Supplementary Tables 1, 2, respectively. For
between-stages comparisons (Supplementary Figure 1B), we
found that hundreds of genes are differentially expressed
when comparing adjacent developmental stages (Supplementary
Figure 2). However, there are few genes differentially expressed
across all stages. For example, in 3mlpa mutant, only 2
genes are differentially expressed between any two adjacent
stages (Figure 2A). We found 1643 genes that are differentially
expressed between developmental stages and found in all four
genotypes in this study (Figure 2C), suggesting these genes are a
core set of genes that change expression between developmental
stages and are not affected by the genotypes. We determined
the number of differentially expressed genes in each of the
comparisons (Supplementary Figure 2). Interestingly, the highest
numbers of differentially expressed genes were found in two
comparisons: between stage 1 and stage 2 for 1MWT and for
3MWT (3MWT S2 vs. S1 and 1MWT S2 vs. S1) suggesting
that non-mutant plants have a high number of differentially
expressed genes in the early stages of seed development than
mutants.

The two sets of low-phytic acid causing mutations (mips1
and mrp-l/mrp-n) interrupt the phytic acid biosynthesis and
transmembrane transporter activity, ultimately reducing the
seed emergence potential in our mutant lines. We were,
therefore, interested in studying the behavior of genes associated
with phytic acid metabolism, abscisic acid (ABA) and auxin
signaling and metabolism, and transmembrane transport. The
log2 fold change for significantly differentially expressed genes
that belonged to this category is summarized in Supplementary
Table 3.
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FIGURE 2 | Venn diagrams. S1, S2, S3, S4, and S5 represent five developmental stages. (A) Number of genes differentially expressed between consecutive stages in

3mlpa seeds. (B) Number of genes differentially expressed for each stage when comparing 3mlpa to 3MWT seeds. (C) Number of genes differentially expressed for

different genotypes for between stage comparisons.

Co-expression Modules Represent Distinct
Functional Categories
We identified 12998 genes that are differentially expressed in
at least one of the comparisons and these genes were used
for K-means clustering analysis to identify co-expressed gene
modules (Figures 1, 3). We found that the optimal number
of clusters (modules) is 60 based on BIC (Supplementary
Figure 3). Average expression levels of all genes in each
module were used to generate a heat map (Figure 3A) and GO
enrichment analyses were performed for each of the modules
(Figure 3B, Supplementary Table 4). The expression modules
can be approximately classified into three main patterns. In
pattern 1, there are 29 modules highly expressed at the early
stage of seed development as shown in upper half of the heat
map (Figure 3A, cluster 24 to cluster 18). In pattern 2, there
are 11 modules highly expressed in the later stage of seed
development as shown by the lower portion of the heat map
(Figure 3A, modules 9 to 47, except for module 14, which
shows high expression at both first and last developmental
stages). In pattern 3, 12 modules showed high expression in the
middle of the developmental stages but low expression levels
in the early and late developmental stages. Genotype-specific
expression patterns were also found by clustering analysis. For
example, modules 24, 57, and 15 are highly expressed in 3mlpa
at the first time point, whereas the expression levels are not
high in the other three genotypes. The modules identified in
near isogenic lines (1mlpa and 1MWT) showed highly similar
expression patterns than those identified in recombinant inbred
lines (3mlpa and 3MWT).

GO enrichment analyses showed that many gene modules
are enriched with genes in specific functional categories
(Supplementary Table 4). For example, genes in modules 22,
49, 53, and 55 are highly expressed during the early stages of
seed development and are enriched with genes with functions
in hormone signaling and responses (Figure 3B, box b). Of
these, several genes showed increased expression in 3mlpa
(S1) while decreased in 1mlpa (S1) when compared with
respective non-mutant lines at stage 1 (Table 1). We also

found that genes in module 42 are highly expressed at the
last stage of seed development and this module is enriched
with genes functioning in seed dormancy, seed germination
and lipid storage (Figure 3B). Genes in module 36 are highly
expressed in the middle stages of seed development and
are enriched with genes in starch and lipid biosynthesis
(Figure 3B, box d). The functional enrichment of genes in
these modules indicates that our clustering analysis can find
genes representing biological functions that are known to
be active at different stages of seed development. We also
found that some modules have genotype-specific expression
patterns. For example, module 7 is highly expressed only
in 3MWT, which is enriched with genes functioning in
photosynthesis, translations, and transcription (Figure 3B, boxes
a,c). This result shows some genemodules have genotype-specific
expression pattern and are enriched with specific functional
genes.

Regulatory Network Interactions
Five different network inference algorithms were used to
infer putative regulatory interactions between regulators and
their targets (Figures 1, 4). Fifty-four interactions between 54
transcription factors and 32 modules were predicted by all
five algorithms (Supplementary Table 5). Some modules were
predicted to be regulated by more than one transcription
factor and no transcription factor was predicted to regulate
two modules. The identified interactions represent highly
stringent predictions and are a very conservative estimation
of all possible interactions since only 0.06% of all 74,700
possible interactions were found to be significant by all five
computational methods. Four hundred six interactions between
348 transcription factors and 60 modules were supported by
four or more methods (Supplementary Figure 4, Supplementary
Table 6), representing a larger number for predicted regulatory
interactions. The network figure includes both directed and
undirected edges (Figure 4). Each directed edge connects a
transcription factor with its targeted gene module. Such edge
represents predicted regulatory interactions. Each undirected

Frontiers in Plant Science | www.frontiersin.org 5 November 2017 | Volume 8 | Article 2029

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Redekar et al. Inference of Transcription Regulatory Network

FIGURE 3 | Clustering and gene function analysis. (A) Gene expression clusters. Color indicates normalized expression levels. Genes were clustered based on the

K-means clustering algorithm. Hierarchical clustering was performed on the rows of the average expression levels for each cluster. Numbers on the right of the

heatmap represent cluster id (CID, 1 to 60). (B) GO functional enrichment analysis. Rows of this heatmap is organized as the same order as the expression clusters.

Each column represents a GO category. Color represents -log10 FDR from enrichment analysis. Some enriched categories were summarized and annotated under

the heat map. The complete set of enriched GO categories is provided as supplementary information.

edge connects a transcription factor to the module this factor
belongs to. These undirected edges reflect the fact that each
transcription factor is also co-expressed with other genes in
the genome and can be assigned to a specific gene module.
The regulatory interactions (directed edges) are further classified
based on the differential expression pattern of the regulatory TFs.
We found 10 TF-module interactions (black arrows) in which
the TFs are differentially expressed between stage comparisons
(Supplementary Figure 1B) in both mutants (3mlpa and 1mlpa)
and both non-mutants (3MWT and 1MWT). These interactions
are not affected by the mutations or genetic backgrounds. We
found 10 interactions (Figure 4, green arrows) in which the TFs
are differentially expressed between stage comparisons for non-
mutants but not in mutants. These interactions are potentially
lost due to the mutations. We also found nine interactions
(blue arrows) that are not present in the non-mutants, but

are present in either one of the mutants, suggesting that
these interactions are gained in the mutants. Finally, we
found 14 interactions (red arrows) that are not present in
either the mutants or the non-mutants, but the TFs are
differentially expressed when comparing 3mlpa to 3MWT at one
or more developmental stages. These interactions are altered
in 3mlpa/3MWT and do not change the trajectory of gene
expression between stages but affect gene expression within
specific stages. We found that many TFs are also connected to
the target modules by undirected edges, indicating that these
genes are co-expressed with their target genes. We also found
several cases where a TF does not regulate its own module
but is regulating other modules, suggesting our method can
find non-linear interactions between TF and target modules.
All the predicted regulatory interactions are provided as a
(Supplementary Tables 5, 6).
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TABLE 1 | Differentially expressed genes from co-expression modules in early stages of seed development.

Cluster

ID

GO Term Gene Name Log2 fold change Arabidopsis

homolog

Gene Symbol Description

3mlpa vs.

3MWT-S1

1mlpa vs.

1MWT-S1

22 GO:0048838: release

of seed from dormancy

Glyma.01G153300 3.13805 −2.84401 AT4G19230 CYP707A1 Cytochrome P450, family 707,

subfamily A, polypeptide 1

GO:0009738: abscisic

acid-activated signaling

pathway

Glyma.12G073000 2.67451 −2.55671 AT3G45640 MPK3 Mitogen-activated protein

kinase 3

Glyma.U021800 2.5946 −2.50453 AT3G45640 MPK3 Mitogen-activated protein

kinase 3

Glyma.07G023300 2.96832 −2.24850 AT1G80840 WRKY40 WRKY DNA-binding

protein 40

Glyma.10G082400 1.40473 −1.55483 AT3G11820 SYP121, SYR1,

PEN1

Syntaxin of plants 121

Glyma.08G271900 2.04156 −1.54559 AT1G32640 RD22BP1, JAI1,

JIN1, MYC2, ZBF1

Basic helix-loop-helix (bHLH)

DNA-binding family protein

Glyma.03G138000 0 −1.46586 AT3G57530 CPK32, CDPK32 Calcium-dependent protein

kinase 32

Glyma.05G194100 0 −1.41822 AT3G52430 PAD4 Alpha/beta-Hydrolases

superfamily protein

Glyma.17G126400 1.18340 −1.31950 AT3G48360 BT2 BTB and TAZ domain

protein 2

42 GO:0009845: seed

germination

Glyma.17G086400 1.56707 0 AT3G01570 - Oleosin family protein

49 GO:0009738: abscisic

acid-activated signaling

pathway

Glyma.15G078600 0 −1.84111 AT1G28480 GRX480, roxy19 Thioredoxin superfamily

protein

Glyma.14G066400 0 −1.10638 AT3G11410 PP2CA, AHG3 Protein phosphatase 2CA

53 GO:0009737: response

to abscisic acid

Glyma.13G119500 1.60968 −2.02755 AT3G17510 CIPK1, SnRK3.16 CBL-interacting protein

kinase 1

Glyma.12G186800 2.75115 −1.95635 AT2G27310 F-box family protein

GO:0009738: abscisic

acid-activated signaling

pathway

Glyma.12G186800 2.75115 −1.95635 AT2G27310 F-box family protein

GO:0009733: response

to auxin

Glyma.13G094900 4.14408 −2.26796 AT5G57560 TCH4, XTH22 Xyloglucan

endotransglucosylase/

hydrolase family protein

Validation of Predicted Regulatory
Networks
To validate the results from the computational inference, we
compared the regulatory network as predicted by our methods
with published regulatory interactions observed in the model
plant species,Arabidopsis. We combined three recently published
Arabidopsis genome-wide gene regulatory networks (Sparks
et al., 2016), including 2,914 regulatory interactions between
578 regulators and 717 targets. We mapped soybean genes
to Arabidopsis genome and searched for predicted regulator-
module interactions, which are also found in Arabidopsis.
Among 54 interactions we predicted, five TF-module interactions
and 13 TF-gene interactions from this dataset are also
found in the Arabidopsis regulatory networks (Supplementary
Table 7), providing support for the predicted gene regulatory
networks. This small overlapping is expected because the
current Arabidopsis interaction network (2914 interactions) is

only a tiny fraction of true interactions that happen in-vivo
(see discussion).

Transcription factors regulate their target through binding of
sequence specific motifs in the promoter regions of the target
genes. To further validate the predicted regulatory networks,
we performed promoter motif search. Among many programs
that are available for motif discovery, the MEME suite contains
the most comprehensive sets of programs that allows users to
perform motif discovery, motif search and motif comparison.
We used the MEME program to identify motifs in the promoter
regions of genes in each gene module. We tested the enrichment
of these newly discovered motifs and identified 101 motifs that
are enriched in 36 modules, with each module having one or
more enriched motifs. In our predicted interaction networks,
there are 54 transcription factors that regulate 32 modules.
We found that 21 out of these 32 modules contain one or
more enriched motifs (Supplementary Table 8). These motifs are
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FIGURE 4 | Gene regulatory networks in low phytic acid mutants and non-mutant seeds. Directed edges (with arrowheads) represent predicted regulatory

interactions. Undirected edges (without arrowheads) connect each transcription factor and the co-expression module to which the transcription factor belongs. Black

arrows: the TFs are differentially expressed in between stage comparisons in both mutants (3mlpa and 1mlpa) and both non-mutants (3MWT and 1MWT). Green

arrows: the TFs are differentially expressed in between stage comparisons for non-mutants but not in mutants. Blue arrows: the TFs are not differentially expressed in

the non-mutants but are differentially expressed in either one of the mutants. Red arrows: the TFs are differentially expressed when comparing 3mlpa to 3MWT at one

or more developmental stages. Grey arrows: interactions that do not belong any of the above four categories.

putative binding sites of the 54 transcription factors that are
regulating genes in these modules.

To further validate the results of the motif search, we
compared our newly discovered motifs to a database of motifs
generated by direct sequencing of binding sites of over 400
Arabidopsis TFs. The pattern of these motifs is represented by
position specific weight matrices (PSWM) (Bailey et al., 2009).
This comparison aims at testing whether any of the enriched
motifs are similar to the binding motifs of the genes in the same
gene family in Arabidopsis. For example (Table 2), we found
that a bZIP transcription factor (Glyma.19G244800, whose most
similar Arabidopsis gene is AT5G28770) is regulating module 57
in our predicted network. Our analysis found a GCCACGTmotif
enriched in the promoter regions of module 57 (p < 1.21e-3).
This motif is highly similar to the binding motif (GCCACGT)
of an Arabidopsis bZIP transcription factor (p < 1.82e-10). Four
such examples are shown in Table 2. Among the 21 modules with
enriched motifs in our predicted regulatory networks, we found

that 17motifs are highly similar to the correspondingArabidopsis
motifs in the same TF gene family (Supplementary Table 8),
providing strong support to the validity of our predictions.

Regulatory Network Changes and Genes in
Phytic Acid Metabolic Pathways
To understand the connections between transcription regulation
and metabolic pathways that were altered in the 3mlpa and
1mlpa mutant lines, we downloaded the metabolic pathway
annotation from the SoyCyc 7.0 database. We mapped genes
in myo-inositol metabolism, stachyose metabolism and sucrose
metabolism to different gene modules, because these metabolites
are altered as a result of lpa mutations (Supplementary Table 3).
We found that there were 64 genes involved in these metabolic
pathways, which mapped to 34 gene modules (Supplementary
Table 3). Twelve of the 64 genes were involved in stachyose
(or raffinose family oligosaccharides (RFOs)) biosynthesis and
eight were associated with inferred gene regulatory networks
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(Figure 5). In module 29, which is up-regulated in the first
stage of seed development, two genes (Glyma.02G303300
and Glyma.14G010500, both encoding raffinose synthase /
seed imbibition protein 1) were found to be regulated by
a bZIP transcription factor (Glyma.02G131700). This bZIP
transcription factor is homologous to ABF1 (ABA response
element-binding factor 1) in Arabidopsis, providing a potential
connection between ABA response and stachyose biosynthesis
(Figure 5). Some of the enzymes involved in myo-inositol
biosynthesis are regulated similarly in mutant and non-mutant
lines. For example, inositol-polyphosphate 5-phosphatase
(Glyma.20G170500) and inositol-phosphate phosphatase
(Glyma.09G011100) are found in module 16. Genes in this
module are up-regulated during mid-stages of seed development.
Module 16 is predicted to be regulated by two transcription

factors, a bHLH transcription factor (Glyma.13G040100) and
a C2H2 transcription factor (Glyma.13G327500). The bHLH
transcription factor is homologous to SPCH, which regulates
stomatal lineage specification during embryo development
(Danzer et al., 2015). Some regulatory interactions are only
found in non-mutants. For example, genes from module 40 are
predicted to be regulated by Glyma.17G085600, a MYB-related
transcription factor, and this module contains two genes related
to myo-inositol biosynthesis (Glyma.07G107000 encoding
inositol-polyphosphate 5-phosphatase and Glyma.05G180600
encoding inositol-1-phosphate synthase). This module is
highly expressed in the early stage of seed development and
the MYB-related transcription factor is similar to RSM1 in
Arabidopsis, which has been found to be related to auxin
signaling in early morphogenesis (Hamaguchi et al., 2008).

TABLE 2 | Motifs enrichment analysis.

TF name TF family Target module

name

ATH TF name Motif enrich

adj p-value

MEME motif DAP-seq motif Motif similarity

p-value

Glyma.19G244800 bZIP 57 AT5G28770 1.21E-03 1.82E-10

Glyma.03G042700 WRKY 55 AT2G38470 1.14E-03 4.14E-05

Glyma.05G110700 bHLH 35 AT4G37850 6.20E-03 8.09E-05

Glyma.17G101000 Dof 3 AT3G47500 3.79E-04 8.87E-05

“ATH TF name” is Arabidopsis transcription factor gene homologous to the soybean transcription factor gene. “Motif enrich adj p-value” is the enrichment p-value for each of the motif

found in the promoter regions of predicted gene modules. “DAP-seq motif” is the most similar motif from DAP-seq database. “Motif similarity p-value” represents the significance of

similarity between the motifs found in promoters in the gene modules and the DAP-seq motifs. All significantly enriched motifs and their corresponding DAP-seq motifs are provided in

Supplementary Table 8.

FIGURE 5 | Schematic diagram of regulation of inositol pathway in low phytic acid soybean mutants. Black arrows represent the flow of myo-inositol in multiple

pathways in non-mutant plants. Red solid arrows with mips1 label represent mutation in the rate-limiting first step of inositol pathway, catalyzed by myo-inositol

phosphate synthase. Red dashed double arrows represent mutation in MRP-type ABC transporters (mrp-l/mrp-n) that block the last step in the inositol pathway,

which is the movement of phytic acid to storage vacuoles. The myo-inositol pathway is blocked in single mutant (mips1 or 1mlpa) at the first step, and in triple mutant

(mips1/mrp-l/mrp-n) at both first and last steps. Blue triangles represent predicted positive regulation in non-mutants. Red triangles represent predicted gene

regulations in both single and triple mutants. For example, a bZIP transcription factor (Glyma.02G131700) is homologous to the well-known ABF1, and is involved in

ABA signaling. This transcription factor is predicted to positively regulate raffinose synthase in non-mutant genotypes. A DOF transcription factor (Glyma.17G101000)

is predicted to regulate inositol phosphatase in mutants. This enzyme is involved in breakdown of inositol pathway intermediates to form myo-inositol. A MYB

transcription factor (Glyma.13G309200) is predicted to regulate myo-inositol transporter in mutants.
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Several target genes associated with regulation of phytic
acid biosynthesis pathway matched with those discovered in
co-expression network of developing maize kernel with low
phytic acid content (Zhang et al., 2016). These predictions
provide genotype-specific, testable hypotheses that may connect
gene expression patterns with putative regulatory TFs and
hormone regulations during different seed developmental
stages.

DISCUSSION

In this study, we performed computational inference of gene
regulatory networks using data from developing soybean
seeds from two mutants (3mlpa and 1mlpa), with lpa-causing
mutations, and the respective non-mutant siblings (3MWT
and 1MWT). We identified co-expression gene modules with
distinct and genotype specific expression patterns. These gene
modules are also enriched with genes with various functional
categories that are related to different stages of seed development.
We identified transcription factors and their putative targets
using supervised machine learning methods. Some of these
transcription factors are differentially expressed only in non-
mutants or only in mutants, suggesting that their regulations
are lost or gained due to mutations. Many genes that encode
enzymes in the metabolic processes of phytic acid, myo-inositol,
sucrose, and stachyose and related oligosaccharides are found in
these gene modules. Overall, our analysis provides a framework
to connect transcription factors with genes in biological processes
such as phytic acid metabolism, auxin-abscisic acid signaling and
seed dormancy.

Importance of Regulatory Network
Inference
The predicted interactions provide a testable hypothesis for
experimental validation using transgenic plants or ChIP-seq
experiments. The results from this analysis can also be used
to guide interpretation of other genomic mapping experiments
such as genome wide association studies or quantitative trait
loci analyses and to provide guidance for refining candidate
gene lists. Soybean has a complex genome, which encodes
over 4,500 putative transcription factors and over 46,000
coding genes. Although transcriptome data have become widely
accessible for research in soybean and other crop species, it
is still challenging to identify mechanistic connections between
the observed transcriptome data with underlying regulatory
networks. Differential gene expression analyses can be used to
identify candidate genes that change under certain conditions or
in specific mutants. However, in most situations, one still faces
the problem of interpreting a long list of differentially expressed
genes.

Our approach provides one alternative solution to this
problem using well-developed machine learning methods to
infer regulatory interactions. Our method implements the
“community approach,” which has been shown to provide
better performance than any individual method alone. The five
computational methods are based on fundamentally different

statistical and mathematical formulations thus complement
each other and provide a list of highly confident prediction
results. Our approach successfully reduces the total number
of candidate genes from over 10,000 genes that change
in at least one comparison to 54 transcription factors,
providing a much shorter list of key genes that can be
focused on for validation experiments. However, combining
five methods also limited the total number of predicted
interactions (54 predicted interactions), because each method
predicts some interactions that are not predicted by other
methods.

We validated the predicted interactions using Arabidopsis
gene regulatory networks. Arabidopsis is the model plant species,
which provides most gene regulatory network information
among all plant species. Although soybean and Arabidopsis
diverged over 120 million years ago, key genes in metabolic
pathways and signaling networks are conserved in both species
(Jung et al., 2000; Hegeman et al., 2001; Le et al., 2010; Xu
et al., 2011; Leite et al., 2014; Gerrard Wheeler et al., 2016),
which is expected for a physiological process as conserved as
seed development. Therefore, one can expect some regulatory
interactions to be conserved between these two species. In fact,
13 interactions predicted by our method are also found in the
Arabidopsis gene regulatory networks (Supplementary Table 7).
The Arabidopsis genome contains approximately 2200 TFs and
more than 27000 genes (Jin et al., 2015, 2017; Cheng et al.,
2016). There are more than 59 million possible interactions
between these TF and genes. Although the number of biologically
active interactions is probably <1% of all possible interactions,
the total number of true interactions is still far more than the
2914 interactions that were used in this comparison. Therefore,
it is not surprising that we found a small overlap between
the predicted interactions and those identified in Arabidopsis.
As more interactions will be identified in both plant species,
we would expect such overlap to increase. In our analysis,
17 motifs from 21 enriched modules (Supplementary Table 8)
similar to the motifs identified in Arabidopsis orthologous genes,
indicating that the interactions identified in this study are likely
to be conserved between the two species. The actual number of
conserved interactions is likely to be underestimated, because
the regulatory network from Arabidopsis is far from complete.
Nevertheless, our results provide an important first step toward
characterizing gene regulatory networks in soybeans and other
crop species.

One would expect more transcription factors being active
during the seed development process. To observe a larger
number of predicted interactions, we also provide results that
are predicted by four out of five methods (Supplementary
Table 6). This can be further extended to include predictions
from fewer methods. Although aggregating multiple methods
has been shown to outperform individual methods, some
predictions by a specific method can represent interactions that
cannot be detected by other approaches. If a specific target
gene or specific function is of interest, one can also use our
method to generate a ranked list of all predictions for the
target of interest and use predicted regulators as candidate
genes.
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Regulation of myo-Inositol Metabolism in
3mlpa Mutant Line
Myo-inositol is an essential signaling molecule with
multifunctional properties including gene regulation, chromatin
modeling, mRNA transport, signal transduction, cell death,
pathogen resistance, vesicle trafficking, plasma membrane,
and cell wall formation (Martin, 1998; Stevenson et al., 2000;
Chen and Xiong, 2010). It is synthesized in a two-step pathway
(Figure 5), where glucose-6-phosphate is first converted to
inositol monophosphate (IMP), a rate-limiting step catalyzed
by MIPS1 enzyme, followed by dephosphorylation of IMP to
form myo-inositol (Loewus and Murthy, 2000). Upon synthesis,
myo-inositol is utilized in and recycled from multiple metabolic
pathways such as biosynthesis of phytic acid and RFOs (such
as stachyose and raffinose), inositol and phosphatidylinositol
intermediates, auxin-inositol conjugates and glucuronic acid.

The mips1 mutation in Arabidopsis is associated with
reduction in cellular myo-inositol levels and defects in early
embryogenesis (Meng et al., 2009; Chaouch and Noctor, 2010;
Chen and Xiong, 2010; Donahue et al., 2010). The mips1
mutation in soybean (as in parent V99-5089, 1mlpa of this study)
is associated with decreased levels of phytic acid and RFOs such
as raffinose and stachyose, increased levels of sucrose and low
emergence. The soybean mips1 mutants also displayed normal
RFO phenotype upon application of exogenous myo-inositol
(Hitz et al., 2002). It is likely that, similar toArabidopsis, themips1
mutation in soybean reducesmyo-inositol levels, preventing RFO
biosynthesis in parent V99-5089 (or in 1mlpa), as myo-inositol
is one of the starting substrates in this pathway. Since myo-
inositol is not consumed by synthesis of RFO (it is a necessary
intermediate, but recycled along the pathway), it is possible
that the concentration of myo-inositol is reduced to such a low
level such that synthesis of RFOs is greatly reduced. Sucrose
is consumed in stachyose synthesis; it is therefore possible
that inhibition of this pathway by the absence of myo-inositol
is causing the increase in sucrose levels in V99-5089, due to
accumulation of unused sucrose substrate.

The mrp-l/mrp-n mutations resulted in reduced seed phytic
acid and low emergence, but did not alter the RFOs composition.
In addition, the myo-inositol content in mrp-l/mrp-n mutant
increases during the seed development phase prior to maturation
(Israel et al., 2011). This suggests that in the presence of
mrp-l/mrp-n mutations, the mips1-associated decrease in RFOs
composition is restored, despite the reduced myo-inositol
production due to the mips1 mutation. This supports the
prevalent hypothesis that the lack of transporters in the mrp-
l/mrp-nmutant may trigger hydrolysis of cytoplasmic phytic acid
to form inositol intermediates and myo-inositol, hence elevating
the myo-inositol levels and preventing phytic acid synthesis,
diverting the metabolic pathways to myo-inositol production
(Figure 5). Another possibility is that lack of intracellular myo-
inositol or phytic acid triggers feedback regulation that up-
regulates transporters which can import inositol from the outside
of the seed, hence elevating myo-inositol levels. This is in
agreement with increase in the expression of inositol transporter
genes during early stages of seed development in 3mlpa mutant
(Redekar et al., 2015).

In the present study, the inositol transporter gene
(Glyma.09G011400) is also up-regulated in 1mlpa, a singlemips1
mutant. This common up-regulation of inositol transporter
in mips1 and in mips1/mrp-l/mrp-n mutants suggests that
these mutations are triggering the same signaling pathway
(Figure 5). This inositol transporter gene belongs to module 5
and is predicted to be regulated by a MYB transcription factor
(Glyma.13G309200), which represents a promising target for
experimental validation (Figure 5). These target genes are in
agreement with those identified in developing maize kernel with
low phytic acid content (Zhang et al., 2016).

We identified over 30 genes associated with myo-inositol
metabolism in this network analysis (Supplementary Table 3).
Some of these genes belong to the modules that are only
regulated in mutants. For example, an inositol-polyphosphate
5-phosphatase (Glyma.01G200500) is predicted to be regulated
by a DOF transcription factor (Glyma.17G101000). This enzyme
catalyzes an intermediate step in converting phytic acid to myo-
inositol. The DOF transcription factor is differentially expressed
when comparing 3mlpa with 3MWT at stages 1, 3, and 5 and
is not differentially expressed in any other comparisons. This
observation is consistent with our hypothesis that in 3mlpa
mutant, phytic acid is recycled to produce myo-inositol, which
participates in RFO synthetic pathways.

Regulation of Auxin-ABA Signaling and
Seed Dormancy-Related Genes in lpa

Mutants
A main goal of this work was to elucidate the molecular basis
of negative downstream impacts of lpa mutations. Here we
found one possible component of this: that in soybean these
mutations greatly impact phytohormone pathways. In addition
tomyo-inositol, the importance of phytohormones such as auxin
and ABA, in seed development is well-documented (Locascio
et al., 2014). Auxin is a key hormone through all phases of seed
development including embryogenesis, organ differentiation,
endosperm formation, and seed maturation, whereas ABA is
involved in onset and maintaining seed dormancy, and is active
in the seed maturation and desiccation phases (Locascio et al.,
2014). Cross signaling between auxin and ABA are involved in
regulating seed dormancy and hence germination (Liu et al.,
2013). Hormone signal transduction is controlled by regulating
their biosynthesis, accumulation and distribution in different
sections and stages of developing seeds by factors such as myo-
inositol. The Arabidopsis mips1 mutants have demonstrated
defects in cotyledon development and reduced expression of
basipetal auxin efflux carriers such as PIN1 and PIN2 (Chen and
Xiong, 2010; Luo et al., 2011). The factors regulating cellular
myo-inositol levels might therefore also regulate cross signaling
of auxin and ABA. However, it is still unclear to what extent
auxin-ABA cross signaling is disturbed in lpa-mutants.

In this study, nearly the entire spectrum of the auxin
signaling pathway was identified and was differentially regulated
in 1mlpa and 3mlpa mutants as compared to the corresponding
wild types. We identified 188 auxin-related genes differentially
expressed in one or more comparisons tested in this study
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(Supplementary Table 3). These included genes involved in auxin
metabolism, transport, signal transduction, and transcription
regulation. We also observed 36 genes from the ABA signaling
pathway differentially expressed in one or more comparisons.
The 1mlpa vs. 1MWT comparison identified down regulation
of two ABA catabolism genes in 1mlpa (Glyma.01G153300
and Glyma.09G218600, which remove active ABA), whereas, in
3mlpa vs. 3MWT comparison, these two genes are up-regulated.

In summary, we identified potential candidate genes that
may play a role in regulating inositol metabolism, auxin-
ABA signaling and seed maturation-dormancy in low phytic
acid soybean during seed development. Although follow
up experiments are required to validate these findings, the
comprehensive regulatory network and the computational
analysis pipeline of this study has set the necessary groundwork
for future hypothesis driven investigations.
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