
ORIGINAL RESEARCH
published: 18 December 2017
doi: 10.3389/fpls.2017.02152

Frontiers in Plant Science | www.frontiersin.org 1 December 2017 | Volume 8 | Article 2152

Edited by:

Ping Ma,

University of Georgia, United States

Reviewed by:

Xiaowei Wu,

Virginia Tech, United States

Wenxuan Zhong,

University of Georgia, United States

Jingyi Zhang and Honghe Jin

contributed to the review of Wenxuan

Zhong

*Correspondence:

Zoran Nikoloski

nikoloski@mpimp-golm.mpg.de

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Plant Science

Received: 21 September 2017

Accepted: 05 December 2017

Published: 18 December 2017

Citation:

Schwahn K, Beleggia R, Omranian N

and Nikoloski Z (2017) Stoichiometric

Correlation Analysis: Principles of

Metabolic Functionality from

Metabolomics Data.

Front. Plant Sci. 8:2152.

doi: 10.3389/fpls.2017.02152

Stoichiometric Correlation Analysis:
Principles of Metabolic Functionality
from Metabolomics Data
Kevin Schwahn 1, 2, Romina Beleggia 3, Nooshin Omranian 1, 2, 4 and Zoran Nikoloski 1, 2, 4*

1 Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam,

Germany, 2Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany,
3Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria, Centro di Ricerca per la Cerealicoltura e le Colture

Industriali (CREA-CI), Foggia, Italy, 4Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria

Recent advances in metabolomics technologies have resulted in high-quality

(time-resolved) metabolic profiles with an increasing coverage of metabolic pathways.

These data profiles represent read-outs from often non-linear dynamics of metabolic

networks. Yet, metabolic profiles have largely been explored with regression-based

approaches that only capture linear relationships, rendering it difficult to determine the

extent to which the data reflect the underlying reaction rates and their couplings. Here

we propose an approach termed Stoichiometric Correlation Analysis (SCA) based on

correlation between positive linear combinations of log-transformed metabolic profiles.

The log-transformation is due to the evidence that metabolic networks can be modeled

by mass action law and kinetics derived from it. Unlike the existing approaches which

establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-

order dependence between more than two metabolites. By using a paradigmatic model

of the tricarboxylic acid cycle we show that the higher-order dependence reflects the

coupling of concentration of reactant complexes, capturing the subtle difference between

the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis

thaliana and Escherichia coli, we show that SCA can be used to quantify the difference

in coupling of reactant complexes, and hence, reaction rates, underlying the stringent

response in these model organisms. By using SCA with data from natural variation of wild

and domesticated wheat and tomato accession, we demonstrate that the domestication

is accompanied by loss of such couplings, in these species. Therefore, application of

SCA to metabolomics data from natural variation in wild and domesticated populations

provides a mechanistic way to understanding domestication and its relation to metabolic

networks.

Keywords: metabolism, systems biology, maximal correlation, correlation analysis, domestication

INTRODUCTION

Metabolomics profiling technologies are increasingly used for phenotyping of biological systems
to understand the contribution of metabolism to complex phenotypes, including growth and
diseases (Sumner et al., 2003; Schauer and Fernie, 2006; Kaddurah-Daouk et al., 2008). They have
been used to assess the relative and absolute levels of different metabolites after perturbation or
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over time (Fiehn et al., 2000). The resulting metabolic data
profiles manifest the joint effect of the rates of multiple
biochemical reactions interrelated in metabolic networks.
Reaction rates are themselves subjected to different types of
regulation, often carried out by altering the concentration of
metabolites (Koshland, 1970).

Regulation of reaction rates is necessary to ensure that
the activities attributed to different parts of the system are
coordinated. The simplest way to capture the coordination of
reaction rates is through their coupling, whereby the ratio of
the reaction rates is maintained in a narrow range (Millard
et al., 2017), resulting in high positive correlation values between
the coupled reaction rates over different experiments (e.g.,
environments). The principle questions in analyzing the data
from metabolomics technologies are then to determine the
extent to which the metabolite levels reflect the coupling of
the underlying biochemical reactions as well as any differences
in these characteristics between experimental scenarios (e.g.,
comparison of genotypes or treatments).

Despite the apparent non-linearites due to the metabolic
structure and regulation, metabolic data profiles are usually
analyzed by regression-based approaches that can only capture
linear relationships. Ever since the seminal work of Vance
et al. (2002), which used partial correlations to analyze the
dependence between metabolites and reconstruct the reactions
in which they participate, the existing analyses of metabolic
data profiles rely on applying various similarity measures to
given metabolic profiles (Çakir et al., 2009; Krumsiek et al.,
2016). Since correlation, like other similarity measures, results
in bilateral relationships between metabolites, the resulting
metabolite-metabolite relationships have been represented and
analyzed in the framework of metabolic correlation network
analysis (MCNA) (Toubiana et al., 2013). This has led to the usage
of MCNA to compare data from different scenarios based on the
concept of differential networks (Chen et al., 2009; Ideker and
Krogan, 2012). However, the principle question about coupling of
biochemical reactions reflected in the metabolic profiles remains
unresolved.

Assuming random fluctuations around a given steady state,
metabolic correlations have been related to the Jacobian of
the system of ODEs that describe the change in metabolite
concentrations (van Kampen, 2007). In a series of studies, this
relation has been employed for reconstructing the Jacobian of
simplified metabolic networks and for comparison of different
treatments (Steuer et al., 2003; Sun et al., 2015; Nägele et al.,
2016). While this approach places metabolic correlations on
strong theoretical basis, it is not applicable for analysis of
instationary data. In another network-driven approach (Hackett
et al., 2016), metabolic profiles have been fitted to steady-state
compatible fluxes [extracted under optimality assumption of the
flux balance analysis (Orth et al., 2010)] with different functional
form for the reaction ratesv

(

x, k
)

. This approach has allowed the
elucidation of novel regulators of reaction rates.

Here we take a principally different approach motivated
by biochemically reasonable assumptions which often hold in
realistic biological scenarios. Since biological systems sense and
respond to environmental perturbations, they achieve normal

functionality in face of these perturbations. To this end, various
feedbacks and mechanisms based on network structure have
evolved to maintain coupling of reaction rates. Based on this idea
and under the assumption that elementary biochemical reactions
can be modeled via mass action kinetics (without neglecting the
effect of enzymes), here we propose a novel means to analyze
metabolic profiles based on the concept of constrained maximal
correlation coefficient. We use this approach to analyze and
characterize the role of metabolites in a network that captures
the reaction rate coupling. First, by using a paradigmatic model
of the tricarboxylic acid (TCA) cycle, we investigate the effect
from departures of the assumption of mass action on the
identified reaction coupling and couplings of reactant complexes.
We then show that Stoichiometric Correlation Analysis (SCA)
can be employed to perform cross-species comparison of the
TCA cycle and amino acid synthesis pathways. In addition,
we demonstrate that the proposed approach can be used to
mechanistically understand the agronomicaly important process
of domestication, here, in the case of wheat as well as in tomato
and strawberry.

MATERIALS AND METHODS

Description of the Approach with the
Underlying Assumptions and Principles
Maximal Correlation

Modern applications, particularly in computational biology,
often consider a large number of variables involved in nonlinear
(pairwise) relationships. The maximal correlation coefficient ρ,
between a pair of random variables W and Z, introduced by
Gebelein (1941) and already extensively studied by Lancaster
(1957) and Rényi (1959), is defined as:

ρ = sup







cov
(

f (W) , g (Z)
)

√

V
(

f (W)
)

V
(

g (Z)
)

∣

∣V
(

f (W)
)

> 0,V
(

g (Z)
)

> 0







,(1)

where the supremum is taken over all functions f of W and g of
Z with finite variances, i.e., V

(

f (W)
)

> 0 and V
(

g (Z)
)

> 0.
Maximal correlation then infers (non-linear) transformations of
two random variables by maximizing their pairwise correlation
(see Figure 1 for illustration). We note that W and Z are
independent if and only if ρ = 0, relating maximal correlation
to mutual information (see Introduction).

There exist efficient algorithms to compute maximal
correlation for both discrete (Breiman and Friedman, 1985)
and continuous (Lancaster, 1957) random variables. Direct
application of these algorithms for calculation of maximal
correlation to time-resolved metabolic profiles is hampered
since: (1) metabolic profiles are quantitative (i.e., continuous
variables), as they capture the content of metabolic pools in
biological systems; therefore, any decision to move to a range of
values (e.g., small, medium, large, as it is done in discretization),
will lead to drastic simplification, and (2) time-resolved
metabolic profiles include relatively few time points, rendering
the calculation of maximal correlation based on contingency
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FIGURE 1 | Representation of the Maximal Correlation. (A) The relationship of the variables W and Z is nonlinear. (B) Employing maximal correlation finds the

functions f and g. These allow the transformation of the data and capture the underlying relationship between the variables W and Z.

table challenging (e.g. Nguyen et al. (2014) analyzed maximal
correlation with at least 100 data points which is still not available
for metabolomics data).

Stoichiometric Correlation Analysis and
the Principle of Metabolic Network
Robustness
Here we define a constrained version of the maximal correlation
coefficient which is motivated by modeling of metabolic
networks and the principles of their operation. A metabolic
network is a collection of metabolites and biochemical reactions
through which they are transformed and/or exchanged with the
environment. For instance, the network on Figure 2A transforms
four metabolites, S1to S4 via three reactions. Each reaction takes a
non-negative linear combination of reactants metabolites, called
substrate complex, and transforms it into a product complex,
i.e., a non-negative combination of product metabolites. The
coefficients in the non-negative linear combination denote the
stoichiometry with which a metabolite enters a reaction as a
substrate and/or product. For instance, in Figure 2A, S1 + S2 is
the substrate complex of reaction r1 and 2S1 + S2 is the product
complex of reaction r3. The difference between the stoichiometry
of the product and substrate complexes defines a reaction vector
stoichiometry gathered in the stoichiometric matrix N. In other
words, the entry αij of the stoichiometric matrix N contains the
molarity (integer number) with which metabolite i is involved as
a substrate or product in the reaction j (Heinrich and Schuster,
1996).

The change in the levels of n metabolites, x1, ..., xn can
then be described by an ordinary differential equation (ODE),
dx
dt

= N ∗ v
(

x, k, t
)

where N denotes the stoichiometric
matrix with dimensions m × n, with m the number of
metabolites and n the number of reactions, v denotes the
reaction rate functions, x, the concentrations of the considered
metabolites, k, the parameters on which the reaction rates
depend, and t stands for time (Nägele et al., 2016). Even
in the simple case of mass action kinetics for a network of

bimolecular reactions, the reaction rates, gathered in the time-
dependent vectors, v

(

x, k, t
)

, are described by a non-linear
function (Horn and Jackson, 1972). Metabolic reactions usually
are not spontaneous and are catalyzed by enzymes. Every
enzymatic reaction can in turn be divided into elementary
reactions. Elementary reactions consider the formation and
dissociation of enzyme-substrate complexes and provide the
possibility for modeling variety of regulatory mechanisms (Segel,
1975). Elementary reactions can be effectively modeled with
mass action, since they can be cast to explicitly consider the
action of the enzyme (as in the derivation of the Michaelis-
Menten kinetic). This was the approach taken in the large-
scale model of E. coli (Khodayari and Maranas, 2016) and some
of the subsystems in the models of photosynthesis (Arnold
and Nikoloski, 2011). Therefore, due to the combined effect of
multiple reactions and their regulation, metabolic data profiles
can be regarded as observations from non-linear dynamics of
metabolic networks.

Let xi denote the concentration of a substrate component Si
(i.e., metabolite or enzyme). The rate of reaction jwith a substrate
complex

∑

i αijSi with αij > 0 where αij is the stoichiometry
with which Si enters the substrate complex of reaction j, under

mass action kinetics is then expressed as kj
∏

i x
αij
i , where kj

denotes a rate constant. For instance, the rate of reaction with rate
constant k1 in Figure 2A is given by k1x1x2, since S1 and S2 enter
this reaction as substrates, each with stoichiometric coefficients
of one; similarly, the rate of reaction with rate constant k3 is
given by k3x4, since S4 enters the reaction as a substrate with a
stoichiometric coefficient of one.

To arrive at our approach termed Stoichiometric Correlation
Analysis (SCA) we rely on the observation that metabolic
networks, as part of inter-related cellular systems (e.g.
transcription, translation, and signaling), operate toward
providing robust functionality (Kitano, 2007; Wilson, 2013). We
translate the robust functionality in the ability to ensure coupling
of reaction rates (Millard et al., 2017). To formalize SCA, we
provide the following definitions:
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FIGURE 2 | Illustration of reaction couplings. (A) Network with four components, S1–S4, and three reactions with rate constants k1–k3; (B) A system of ODEs with

mass action kinetics describing the change in concentration of each of the four components. (C) Couplings of reaction rates by invoking the steady-state assumption

for the system of ODEs in (B).

Definition 1: Two elementary reactions, p and q, have
coupled rates under mass action kinetics if for any steady-state
concentration of the participating components, gathered in x,

kp
∏

i x
αip
i

kq
∏

i x
αiq
i

=
kp

kq

∏

i
x
αip−αiq
i = γpq, where γpq is a constant.

For instance, at any steady state for the network in Figure 2A,

whereby the equations in Figure 2B all equal 0, i.e., dxi
dt

= 0,
reactions r1 and r2, r1 and r3, as well as r3 and r2 have coupled
rates (see Figure 2C). We note that the same definition can be
extended to hold in states which are not necessarily equilibrium
points, allowing the treatment of time-series data. We would
like to note that the coupling of reaction rates may lead to
coupling of component concentrations which are not apparent by
directly inspecting the reaction networks. For instance, due to the
coupling of reactions r1 and r2, the concentration of components
x1 and x2 also are coupled, i.e., are proportional to each other.

Since the non-zero stoichiometric coefficients αij are integers
in the set I = {1, . . . , 4} (Basler et al., 2012), given two disjoint
sets Up and Uq of random variables denoting the data profiles for
the metabolites, we next define the stoichiometric correlation.

Definition 2: Given two disjoint sets of random variables
Up and Uq, denoting two sets of metabolic profiles, the
stoichiometric correlation is given by:

sup







cov
(

f
(

Up

)

, g
(

Uq

))

√

V
(

f
(

Up

))

V
(

g
(

Uq

))

∣

∣V
(

f
(

Up

))

> 0,V
(

g
(

Uq

))

> 0







,

(2)

with

f
(

Up

)

=

|Up|
∑

i=1

βiplog (xi) ,βip ∈ I

and

g
(

Uq

)

=

|Uq|
∑

i=1

ηiqlog (xi) , ηiq ∈ I.

If Up and Uq include the random variables corresponding to
the metabolite levels in the substrate complexes of reaction p
and q, respectively, the proposed definition of the stoichiometric
correlation is a direct consequence of Definition 1, where the
functions f

(

Up

)

and g
(

Uq

)

are the logarithm of the rate of the
reactions p and q under mass action kinetics, respectively. The
presence of coupled rates in mass action for reactions p and q,
after taking the logarithm, leads to stoichiometric correlation of
value one for Up and Uq. This observation pinpoints the main
principle on which SCA relies.

If there exist multiple vectors β and η , yielding the same value
of the stoichiometric correlation, we consider the one of smallest
magnitude ||β + η2||. Therefore, stoichiometric correlation can
be regarded as constrained maximal correlation, where the
constraints pertain to the limited set of values that the entries of β
and η are allowed to take following the stoichiometry of reactants.
The transformation used in the constrained maximal correlation
is explicitly non-linear, since the function f involves logarithms.

Clearly, the reverse direction also holds and can be used

to draw hypotheses about the couplings in reaction rates and
substrate complexes in a given metabolic network. To this
end, we focus on the statistically significant stoichiometric
correlations larger than a threshold value of 0.8 (to account for

effects of noise and small deviations from coupling of reaction

rates, per Definition 1). Note that since Up and Uq are disjoint
sets of random variables denoting the data profiles of metabolites,
the entries of β and η are positive. For instance, given several

steady-state measurements for the components in network on
Figure 2A, the stoichiometric correlations with Up = {S1, S2}
and Uq = {S4} is one with coefficients in β and η equal
to one. Similar conclusions can be drawn for all components
involved in the coupled reaction rates given in Figure 2C. The
two definitions provide the basis for SCA: Since majority of

reactions in real-world metabolic networks are mono- or bi-
molecular (i.e., include one or two substrates), we determine the
stoichiometric correlation, per Definition 2, between any two
disjoint subsets of random variables of cardinality at most two.

The implementation can either be achieved by: (1) solving a non-
linear program with constraints for the coefficients β , η ∈ I or

(2) generating all subsets of at most two variables with different
contribution due to stoichiometry, and determining the Pearson
correlation coefficient only between the disjoint subsets. Since
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the number of available metabolic profiles from time-resolved
studies usually does not exceed 100, the second alternative can be
efficiently implemented with appropriate parallelization (see the
code Schwahn et al., 2017). The significance of the stoichiometric
correlation can be readily estimated by permutation tests after
adjusting for multiple hypothesis testing.

Implementation of SCA
Given a data set of n metabolites over c samples (i.e., each
representing a particular time point in an environment), we
implemented SCA by determining: (1) the Pearson correlation
r(log(xi), log(xj)), for all couples 1 ≤ i 6= j ≤ n of metabolic
profiles, (2) the values for a, b ∈ {1, 2, 3, 4} that maximize the
Pearson correlation between a log(xi)+ b log(xj) and xk for every
triple of metabolic profiles, (3) the values for a, b, c, d ∈ {1, 2, 3, 4}
that maximize the Pearson correlation between a log(xi) +

b log(xj) and c log(xk)+d log(xl) for every quadruple of metabolic
profiles. In addition, we determined the statistical significance for
each of themaximum correlations.We used the R package Hmisc
(Harrel and, 2015) to calculate the correlation and associated P-
values. In addition, we adjusted the P-values using Benjamini-
Hochberg multiple hypotheses testing correction. We considered
stoichiometric correlations with adjusted p-values below α = 0.05
as significant.

The code and one example can be found on GitHub: https://
github.com/KSchwahn/Stoichiometric-correlation (Schwahn
et al., 2017).

Models
Metabolite levels were simulated with three different models
using Michaelis-Menten kinetics (Singh and Ghosh, 2006),
mass action kinetics and extended mass action kinetics with
metabolite-enzyme complexes (Khodayari et al., 2014). The
Michaelis-Menten based model contains 11 reactions and 12
metabolites and simulates the metabolite levels within the TCA
cycle of E. coli growing on glucose. The synthetic reaction
(SYN) and the biomass metabolite (biosyn) were removed, as
a comparable reaction and metabolite were not present in the
other two analyzed models. The modified Michaelis-Menten
model contains therefore 11 metabolites and 10 reactions. All
kinetic parameters remained unchanged. The mass action based
models contain the TCA cycle of the E. coli model of Khodayari
et al. (2014). The solely mass action based model contains 23
metabolites and 22 reactions after splitting each reaction into
a forward and backward reaction. The second model includes
the simulation of metabolite-enzyme complexes based on mass
action kinetics. The model contains 114 irreversible reactions
and a total of 80 metabolites, enzymes and metabolite-enzyme
complexes.

The change of concentration was simulated with each model
over a time course of 1,280min. The initial concentration of
the metabolites, metabolite-enzyme complexes and enzymes was
randomly assigned for each of the 10 repetitions from the range of
the minimum and maximum metabolite concentration reported
in Khodayari et al. (2014). The same set of 11metabolites, present
in eachmodel, was then used for the calculation of stoichiometric

correlations with the SCA approach. All simulations were
performed in MATLAB 2015a (MATLAB, 2015).

Metabolic Data Profiles
We applied SCA to several publicly available metabolomics
data sets, including metabolic profiles from Arabidopsis thaliana
obtained from Caldana et al. (2011) and Escherichia coli from
Jozefczuk et al. (2010). The first consists of data profiles of 92
metabolites over eight conditions measured over 22 time points
with 6 replicates each (light and dark at 4, 21, and 32◦C, as well as
low light at 21◦C and high light at 21◦C; high light was discarded
as it contains less time points), while the second includes 196
metabolites over five conditions measured over 12 time points
with three biological replicates per time point and three technical
replicates each (cold stress, heat stress, oxidative stress, lactose
and control condition).

We also used the metabolomics data from a recent
evolutionary metabolomics study (Beleggia et al., 2016). The
study identified and quantified 51 metabolites from nine
compound classes in the three taxa of wheat, namely, wild emmer,
emmer, and durum wheat. The metabolites were measured in
kernels of 12 accessions from wild emmer, 10 from emmer, and
15 accessions from durum wheat, whereby the measurements
contain three biological replicates with three technical replicates
each. Like the other data sets used here, the metabolic profiles
in the wheat taxa were assessed by gas chromatography mass
spectrometry. To allow comparability between taxa, we used only
the 22 metabolites, from four compound classes, which were
detected across all accessions.

Moreover, we included metabolomics data from six different
tomato species, namely S. chmielewskii, S. habrochaites,
S. lycopersicum, S. pimpinellifolium, S. neorickii, and S. pennellii
(Schauer et al., 2005). We considered data from the ripe fruit
in this study. These data were included to further test our
assumption about the effect of domestication on reaction
coupling. Altogether, we compared 43 metabolites form the
tomato data. The S. lycopersicum metabolomics measurements
were obtained from the study of Schauer et al. (2006) and contain
108 replicates from the year 2001 and 84 replicates from the year
2003, whereas the remaining data were obtained from Schauer
et al. (2005) and contain six replicates for each of the five species.

To have a more comprehensive comparative analysis
pertaining to domestication, we included further data of wild
strawberry accessions (F. vesca) and a domesticated strawberry
species (F. ananassa) (Ulrich and Olbricht, 2013). Overall, 19
different metabolites had complete measurements to be included
in the analysis. The data set contains measurements from 32
samples of F. vesca and 10 samples of F. ananassa. This data set
in comparison to the other data sets contains specifically the
volatile organic compounds extracted from the strawberry fruits.

RESULTS AND DISCUSSION

Stoichiometric Correlation Analysis with a
Paradigmatic Model of the TCA Cycle
From the derivation of our SCA, it follows that the findings based
on the constrained correlation of metabolic data profiles reflect
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the apparent couplings of elementary reaction rates, assumed to
obey mass action kinetic. In addition, the findings reflect the
additional couplings which cannot be directly related to reaction
rates but are direct consequence of them (e.g., components S1 and
S2 in the network on Figure 2A are coupled due to the coupling
of the rates of reactions r1 and r2). We note that every enzymatic
reaction

∑

i αijSi →
∑

i α
′
ijSi (αij/α

′
ij are the stoichiometry

with which Si enters the substrate/product complex of reaction j,
respectively ) can be rewritten to include the action of an enzyme
∑

i αijSi + E ⇄ SE →
∑

i α
′
ijSi + E (E denotes the enzyme

and SE the substrate-enzyme complex), so that the elementary
reaction can be still modeled with mass action kinetic. Therefore,
SCA can also include the effect of enzyme action. However, while
this approach provides a way to model Michaelis-Menten kinetic
which accounts for enzyme saturation, it does not explicitly
consider the Michaelis-Menten form for the reaction kinetic.

To investigate the effects of the departure from the mass
action kinetic for the considered reactions (with and without
accounting for enzyme action), we considered three models of
the tricarboxylic acid (TCA) cycle. All three models include
the same metabolites, and differ only with respect to whether
or not they include the effect of enzyme action and if they

use mass action kinetic or the more involved functional forms
of the Michaelis-Menthen kinetic. All reactions are considered
reversible, and they are split into irreversible reactions in
the cases in which mass action kinetic was employed. We
used the TCA cycle model embedded in the kinetic model of
E. coli (Khodayari et al., 2014). There are two parameterized
variants for this model, one that includes mass action kinetic
without enzyme action, and the other one which explicitly
considers the formation of substrate-enzyme complexes. In
addition we used a model of the TCA cycle with reversible
Michaelis-Menten kinetic of the reaction rates (Singh and Ghosh,
2006).

To conduct the comparative analysis, we simulated the
models metabolite concentrations with physiologically relevant
randomly chosen initial values. The simulation time ranged from
0 to 1,280min and metabolite concentrations were obtained
at 21 time points identical to those used in the study of
Caldana et al. (2011) (which we employ later in the empirical
analysis). The simulated metabolite concentrations were used to
calculate the stoichiometric correlations for 11 metabolites for
each simulation and model separately. The distribution of the
total number of stoichiometric correlations over 10 repetitions

FIGURE 3 | Distribution of the number of stoichiometric correlations for three models of the TCA cycle. Shown are the distributions of the total number of

stoichiometric correlations at four thresholds 0.8, 0.85, 0.9, and 0.95. The distributions for the mass action simulation are shown in red, the distributions for the

substrate-enzyme complex mass action simulation are shown in blue, whereas the Michaelis-Menten simulation of the TCA cycle is shown in green.
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of the procedure is shown in Figure 3, and all stoichiometric
correlations (pairs, triplets and quadruples) are provided in
Supplemental Table S1.

We found that the total number of stoichiometric correlations
between the models with mass action kinetic was more similar
with the increase in the considered threshold. In fact, at a
threshold of 0.95, the distributions of the total number of
stoichiometric correlations between the mass action models
with and without the consideration of enzyme action largely
overlapped. However, the consideration of reversible Michaelis-
Menten kinetic results, on average, in at least three-fold increase
in the total number of stoichiometric correlations (see Figure 3).
These findings were supported by the results of the empirical
cumulative distribution function (see Figure 4). The distribution
of the Michaelis-Menten simulations are shifted to the right and
show a higher proportion of correlations above 0.8. In addition,
we report the quintiles of the correlation values in Supplemental
Table S2.

Therefore, in the case of the TCA cycle models, we concluded
that the findings from the assumption that the network is
composed of elementary reactions modeled with mass action do
not differ upon consideration of enzyme action. In these cases,
the couplings corresponding to the stoichiometric correlations
reflect the underlying reaction couplings. In contrast, the usage
of Michaelis-Menten kinetic results in a considerably larger
number of stoichiometric correlations, which cannot be brought
in direct correspondence to the coupling of reaction rates and are
challenging to mechanistically explain.

FIGURE 4 | Empirical cumulative distribution function of stoichiometric

correlations for three models of the TCA cycle. Shown is the Empirical

cumulative distribution of the total number of stoichiometric correlations of

simulations of the TCA cycle. The distribution for the mass action simulation is

shown in red, the distribution for the substrate-enzyme complex mass action

simulation is shown in blue, whereas the Michaelis-Menten simulation is

shown in green.

SCA Demonstrates Differences in the
Stringent Response between E. coli and A.

thaliana
The stringent response is one of the most important regulatory

systems used by bacteria to adapt to environmental stresses.
Upon sensing the environmental change, like nutrient limitation,
the organism starts a series of reactions to redirect its metabolic

fluxes. The stringent response is mediated by guanosine 3′,5′-
bis(pyrophosphate) (ppGpp) whose level is controlled by two

enzymes, RelA and SpoT (Traxler et al., 2008). ppGpp has
overall a large influence on several metabolic pathways and
transcription and translation (Gallant, 1979; Mizusawa et al.,
2008). The effect in metabolism involves the pathways of

nucleotides, glycolytic intermediates, carbohydrotes, lipids and
fatty acid synthesis. It has been reported that there is evidence
that the stringent response is evolutionary conserved from

bacterial to photosynthetic bacterial to higher plants (Sugliani
et al., 2016). Four homologs of these RelA and SpotT have been
identified in Arabidopsis, and their role in green tissues and
flower development has been well characterized (Masuda et al.,

2008; Mizusawa et al., 2008). Since all these plant proteins are
targeted to the chloroplast, it has been suggested that they control
the stringent response in photosynthesizing organisms through
mechanisms that may mimick those in bacteria. However, it
remains unclear to what extent the molecular role of the
homologs in A. thaliana are equivalent to those in E. coli.

To help answer this question, we analyzed the set of

metabolites from the TCA cycle and the amino acid synthesis
pathways from the two model organisms. We used these
metabolites since ppGpp controls transcription and translation,
which is ultimately reflected in the levels of amino acids.

Moreover, a comparative analysis between the two organisms
is only meaningful for the same set of metabolites. Altogether,

we used the publicly available data profiles of three metabolites
from the TCA cycle (i.e., malate, succinate, and fumarate) as well
as 16 amino acid measured over seven and five conditions in
A. thaliana and E. coli (see Materials and Methods).

The degree of coupling for metabolite S can be defined

as the number of stoichiometric correlations above a given
threshold τ in which the metabolite S participated. Based on
the derivation of SCA, a higher degree of coupling on the
same set of metabolites then implies maintenance of more

coupled reaction rates over a set of studied conditions in
one organism in comparison to another. We considered the
significant stoichiometric correlations (p ≤ 0.05, Benjamini-
Hochberg corrected) 0.8, 0.85, 0.9, and 0.95, and compared
them to classical Pearson correlations (Table 1). The quintiles
of correlation values were additionally reported in Supplemental
Table S2.

For the purpose of comparison, at all threshold values and in
both species, we observed a decrease on the number of significant
stoichiometric correlations for pairs of metabolites, compared to
Pearson correlation (i.e.,

∣

∣Up

∣

∣ =
∣

∣Uq

∣

∣ = 1). The reduction in the
number of significant stoichiometric correlations for metabolite
pairs can be explained by the monotonic transformation of
metabolite profiles. We would like to emphasize that the
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TABLE 1 | Overview of the number of significant stoichiometric correlations at the considered thresholds for metabolic profiles of the stringent response in E. coli and

A. thaliana.

Stoichiometric Correlation Pearson Correlation

Threshold Organism Total Pairs Triplets Quadruples Pairs

0.80 A. thaliana 3,419 13 579 2,827 24

E. coli 3,301 9 517 2,775 10

0.85 A. thaliana 2,500 8 398 2,094 18

E. coli 1,921 6 285 1,630 7

0.90 A. thaliana 1,821 6 285 1,530 15

E. coli 597 1 76 520 2

0.95 A. thaliana 1,137 6 188 943 7

E. coli 2 0 0 2 0

The total number of stoichiometric correlations is divided into three groups based on whether they involve pairs, triples, or quadruples of metabolites. Additionally, the number of

significant Pearson correlations found in the dataset is shown.

result does not suggest that metabolites are linearly related,
which would be contrast to what is expected from mechanistic
understanding of metabolism.

However, SCA allows the analysis of stoichiometric
correlations due to triples and quadruples of metabolites,
which provides information about the presence of non-linear
relationships via the couplings of reaction rates. For all
considered thresholds, applying SCA with the E. coli data set
resulted in a smaller number of stoichiometric correlations
on triples and quadruples than the data set of A. thaliana
(Table 1). For instance, at a threshold of τ = 0.85, E. coli
yielded 285 significant stoichiometric correlations due to
triples while A. thaliana resulted in 398 such correlations;
similarly, A. thaliana contained three-fold the number of
stoichiometric correlations resulting from quadruple at τ = 0.9
in comparison to E. coli. Therefore, based on these results we
concluded that there was a stronger coupling of reaction rates
of A. thaliana in comparison to E. coli during the stringent
response.

Additionally, we can investigate overlapping pairs, triple and

quadruple for each threshold. The small similarity of SCA
findings was reflected in 65 and 442 stoichiometric correlations

due to triple and quadruple, respectively, shared between the two

species at a threshold value of 0.8 (see Supplemental Table S3).
In line with this observation, the participation of metabolites

in the stoichiometric correlations largely differed between the
two species, as manifested in the lack of association between

the metabolite coupling degrees. For instance, at a threshold

value of 0.85, the metabolites with the largest coupling degrees in

E. coli were: phenylanine, threonine, proline and lysine, while in
A. thaliana they included: isoleucine, leucine, tyrosine and lysine

(see Supplemental Table S4). It must be noted that these results
and interpretations warrant caution since the metabolite profiles
from A. thaliana were obtained from entire Arabidopsis rosette
rather than from isolated chloroplast, which may bias the drawn
conclusions. The analysis can be conducted with compartment-
specific metabolic profiles once they become available.

SCA Shows That Domestication in Wheat
Is Associated with Loss of Regulatory
Couplings
Domestication of tetraploid wheats, Triticum turgidum L., is
an important evolutionary event for the human development.
Emmer (T. turgidum ssp. dicoccum) was domesticated from
wild emmer (T. turgidum ssp. dicoccoides) around 12,000
years ago (Nesbit and Samuel, 1998). Free-threshing tetraploid
wheats (T. turgidum ssp. turgidum) subsequently originated from
emmer, followed by the selection of durum wheat (T. turgidum
ssp. turgidum convar. durum). Therefore, it has been suggested
that the evolution of tetraploid wheats consists of at least two
steps: primary domestication, from wild emmer to emmer, and
secondary domestication, from emmer to durum wheat (Gioia
et al., 2015).

Since important domestication-associated traits (e.g., the
increase in seed size, the loss of dormancy Gepts and Papa,
2002) often necessitate alteration of metabolic process, we asked
if application of SCA to metabolic profiles can be used to
quantify the effect of domestication with respect to loss or gain
of regulatory couplings. To this end, we used recently analyzed
data about the phenotypic variation of primary metabolites in
the kernels from three T. turgidum populations that represent
both the primary and secondary domestication (Beleggia et al.,
2016). Beleggia et al. (2016) determined that there were changes
in content of specific metabolites, particularly amino acids
and unsaturated fatty acids, associated with the primary and
secondary domestication events. The resulting metabolic profiles
of accessions within each taxon were also employed to construct
Pearson correlation networks. Based on various properties of
the correlation networks (e.g., shared correlations, centrality of
metabolites) it was concluded that the difference between wild
emmer and emmer was larger than the difference between wild
emmer and durum wheat. In addition, it was found that durum
wheat contained a larger number of significant correlations,
followed by wild emmer and emmer. Therefore, surprisingly, the
results from Pearson correlation analysis captured contrasting

Frontiers in Plant Science | www.frontiersin.org 8 December 2017 | Volume 8 | Article 2152

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Schwahn et al. Stoichiometric Correlation Analysis

findings in comparison to the evolutionary distance between the
three analyzed taxa.

We applied SCA to contents of 22 metabolites from four
compound classes (i.e., amino acids, sugars, organic acids,
and alcohols) within each population at four threshold values
(see Materials and Methods). These metabolites were selected
based on their presence in every of the analyzed accessions to
allow comparative analysis of the populations without the need
of imputation as well as assumptions about the reasons for
absence of detected metabolite. The number of stoichiometric
correlations due to triples shared between emmer and wild
emmer was the highest, followed by that between durum
and wild emmer (at threshold of 0.8). At a threshold value

of 0.85, both emmer and wild emmer had one overlapping
triple with durum. However, at a threshold value of 0.8,
durum wheat shared more stoichiometric correlations due to
quadruples with wild emmer than emmer. At thresholds of
0.85 and 0.9, durum shared the same number of quadruples
with emmer and wild emmer. In all cases, only stoichiometric
correlations due to quadruples were shared between all three
populations (e.g., stoichiometric correlations at threshold of 0.85,
Supplemental Table S6). Overall, we observed more triples and
quadruples in T. dicoccum and T. dicoccoides in comparison
to T. durum (see Figure 5). The observation was supported by
the quintiles of the correlation values shown in Supplemental
Table S2.

FIGURE 5 | Number of Stoichiometric Correlations of Wheat taxa. Shown is the number of stoichiometric correlations at the four thresholds 0.8, 0.85, 0.9, and 0.95.

The bars represent the total number of stoichiometric correlations, pairs, triplets and quadruples for all three wheat taxa. The exact values are shown above the bars.
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This finding implied that the loss of traits due to
domestication and increase in seed size were associated
with an overall loss of reaction couplings reflected in the smaller
number of stoichiometric correlations in durum wheat in
comparison to (wild) emmer (Supplemental Tables S5–S7). The
metabolites involved in the largest number of stoichiometric
correlations above a threshold value of 0.85 in wild emmer
included glycine, threonine, aspartate, serine and glutamate; in
emmer, these metabolites included serine, leucine, threonine,
and glutamate, while in durum wheat they consisted of fructose,
glucose, glutamate, and asparagine (see Supplemental Table
S7). Altogether, the application of SCA identified a shift in
importance of regulatory role of sugars in comparison of organic
and amino acids which is in line with the increase in seed size
due to the need for more cell wall components.

To further validate our results from the three wheat taxa, we
included data of six different tomato species into the analysis.
We compared the domesticated S. lycopersicum (M82) to the
group of the other five species, as their fruits drastically differ
from those of M82 (Schauer et al., 2005). However, it has to
be noted that there is no clear linage from the undomesticated
plants to the M82. Additionally, the combination of the different
tomato species might result in an inclusion of additional noise.
Nevertheless, it is a necessary step to have the needed amount of
replicates per metabolite. Overall, the tomato data set contains
43 metabolites common to the analyzed species. In line with the
results of wheat, we observed fewer stoichiometric correlations
for M82 than for the undomesticated wildtype tomato (Table 2,
Supplemental Table S8). The exception is the threshold of 0.8;

in this case, the M82 has roughly 4,000 more pairs, triples and
quadruples than the wild type tomato. At a threshold value of
0.85 the M82 has still around 300 stoichiometric correlations
more than the wild type species. With increasing threshold,
however, the number of significant stoichiometric correlations
decreases in M82 more than in the wild type. This finding
was reflected in the different quintiles of the correlation values
for the two species (Supplemental Table S2). The metabolites
with the largest number of stoichiometric correlations above
a value of 0.9 in wildtype tomato are erythritol, cysteine,
succinic acid and beta-alanine, while in M82, they include:
leucine, putrescine, dehydroascorbic and sucrose (Supplemental
Table S4).

A very similar scenario was considered with the strawberry
accessions F. vesca (wild) and F. ananassa (domesticated and
commercially available) without direct domestication lineage
between the two species. In contrast to our observations
in wheat and tomato, the domesticated strawberry exhibits
a higher number of stoichiometric correlations above all
thresholds (Table 2, Supplemental Table S9). The reason
for this finding may lay in the different ploidy of the
investigated organisms, namely, F. ananassa is an octaploid
organism, whereas F. vesca is diploid with a rather small
genome.

The application of SCA to metabolomics data from
domestication implies a new principle which underlies this
agronomically and evolutionary important process; namely,
optimizing a given trait could be accomplished by breaking the
existing regulatory mechanisms, reflected in the coupling of

TABLE 2 | Overview of number of significant stoichiometric correlations at different thresholds for the considered tomato and strawberry species.

Stoichiometric Correlation Pearson Correlation

Threshold Organism Total Pairs Triplets Quadruples Pairs

0.80 Tomato wildtype 19,519 8 1,245 18,266 27

M82 23,571 15 1,824 21,732 12

F. vesca 1,346 6 204 1,136 6

F. ananassa 2,374 12 433 1,929 5

0.85 Tomato wildtype 9,291 5 588 8,698 20

M82 9,539 5 688 8,846 4

F. vesca 504 2 73 429 3

F.ananassa 2,075 10 366 1,699 5

0.90 Tomato wildtype 3,741 3 255 3,483 11

M82 1,493 1 112 1,380 0

F. vesca 135 1 22 112 1

F. ananassa 1,153 2 185 966 1

0.95 Tomato wildtype 818 1 76 741 3

M82 21 0 0 21 0

F. vesca 1 0 0 1 0

F. ananassa 423 1 56 366 1

The total number of stoichiometric correlations is divided into three groups based on whether they involve pairs, triples, or quadruples of metabolites. Additionally, the number of

significant Pearson correlations found in the dataset is shown.
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the biochemical reaction rates, which in turn provides a greater
space of possibilities on which selection can operate.

CONCLUSION

Here we proposed a constrained extension to the concept of
maximal correlation, based on the concept of reaction rate
coupling in networks of metabolic reactions. The concept
of reaction couplings forms the core of the stoichiometric
correlation analysis. The constraints in the maximal correlation
are due to the values which the linear combinations of
log-transformed metabolic profiles are allowed to take. SCA
facilitates the comparison of data sets on the same metabolites
between two scenarios with the idea of comparing and
contrasting the degree of coupling. By determining the
stoichiometric correlations of metabolic profiles from the TCA
cycle and amino acid synthesis, we showed that E. coli stringent
response is differently (and less strongly) controlled than that
of A. thaliana. Therefore, while the enzymes underlying the
stringent response are preserved in these two model organisms,
their integration in the metabolic networks may have evolved
different regulatory action. In addition, SCA can be used
to investigate the differences between undomesticated and
domesticated species, and to determine if the difference can be
ascribed to alterations in metabolic couplings brought about
by various regulatory mechanisms. Based on this idea, we
demonstrate that stoichiometric correlations from metabolic
profiles from natural variation in wild and domesticated species
indicate that domestication is associated with loss of regulatory
control. Therefore, our findings provide the basis for future
flux-oriented studies toward mechanistic understanding of this
important evolutionary process.
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