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A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance

to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase

(HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize

seed production field in Nebraska, USA. The objectives of this study were to

determine the effect of soil residual pre-emergence (PRE) herbicides followed by

(fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on

PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net

economic returns. Field experiments were conducted in a grower’s field infested with

PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County,

Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil

plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80–82%

Palmer amaranth control compared to 65 and 39% control with saflufenacil and

pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the

PRE fb POST herbicide programs, 95–98% Palmer amaranth control was achieved

with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied

PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate

plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr

plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine

applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based

on contrast analysis, PRE fb POST programs provided 77–83% Palmer amaranth

control at 3 WAPOST through maize harvest compared to 12–15% control with

PRE-only and 66–84% control with POST-only programs. Similarly, PRE fb POST

programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only

(28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize

yield (13,617 kg ha−1) and net return (US $1,724 ha−1) compared to the PRE-only
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(2,656 kg ha−1; US $285 ha−1) and POST-only (11,429 kg ha−1; US $1,539 ha−1)

programs. The results indicated that effective control of multiple herbicide-resistant

Palmer amaranth can be achieved with PRE fb POST programs that include herbicides

with overlapping residual activity to maintain season-long control.

Keywords: net return, PRE followed by POST, residual herbicides, resistance management, weed management

INTRODUCTION

Palmer amaranth is a summer annual broadleaf weed species
belonging to the family Amaranthaceae that has separate male
and female plants (Sauer, 1957). Palmer amaranth is a prolific
seed producer and if left uncontrolled, a single female plant
can produce as many as 600,000 seeds (Keeley et al., 1987).
Palmer amaranth has the highest specific leaf area (149–261
cm2 g−1), photosynthetic rate (80 µmol CO2 m−2 s−1), and
growth rate (0.10–0.21 cm per growing degree day) out of all
of the Amaranthus species (Horak and Loughin, 2000). Palmer
amaranth can tolerate medium to mild water stress conditions
using osmotic adjustment as a drought tolerance mechanism
(Ehleringer, 1983). Furthermore, Palmer amaranth populations
have been reported resistant to microtubule-, acetolactate
synthase (ALS)-, photosystem (PS) II-, 5-enol-pyruvylshikimate-
3-phosphate synthase (EPSPS)-, 4-hydroxyphenylpyruvate
dioxygenase (HPPD)-, and protoporphyrinogen oxidase (PPO)-
inhibiting herbicides in different states throughout the USA
(Heap, 2017). Palmer amaranth biotypes with multiple resistance
to two or more herbicide sites of action have also been confirmed
(Sosnoskie et al., 2011; Nandula et al., 2012; Heap, 2017). Palmer
amaranth’s aggressive growth habits and prolific seed production
along with its evolution of resistance to different herbicide sites
of action has made it the most problematic crop weed in the
USA (Horak and Loughin, 2000; Berger et al., 2015; Chahal et al.,
2015, 2017; Kohrt and Sprague, 2017).

A PS II- (atrazine) and HPPD-inhibitor-resistant Palmer
amaranth biotype has been reported in a continuous maize
seed production field in south-central Nebraska, USA (Jhala
et al., 2014). While rapid detoxification and increased HPPD
gene expression was reported as the mechanism conferring
resistance to HPPD-inhibitor in the Palmer amaranth biotype
from Nebraska (Nakka et al., 2017), the mechanism of atrazine
resistance in this biotype is unknown. PS II- (atrazine) and
HPPD-inhibitor (mesotrione, tembotrione, or topramezone)
are the most commonly used herbicides for weed control in
maize due to their pre-emergence (PRE) and post-emergence
(POST) activity, broad-spectrum weed control, and crop safety,
particularly in sweet maize, seed maize, and maize for popcorn
(Fleming et al., 1988; Swanton et al., 2007; Bollman et al., 2008).
The evolution of Palmer amaranth resistant to PS II- and HPPD-
inhibitor has reduced the number of herbicide options for Palmer
amaranth control in maize in Nebraska, USA.

The management of herbicide-resistant (HR) Palmer
amaranth requires PRE followed by (fb) POST herbicide

Abbreviations: fb, followed by; PRE, pre-emergence; POST, post-emergence;

WAPRE, weeks after pre-emergence; WAPOST, weeks after post-emergence.

programs with distinct sites of action, herbicide rotation, and
rotation of HR crop traits (Jhala et al., 2014; Crow et al., 2016;
Chahal et al., 2017). The majority of the maize fields in Nebraska
are under glyphosate-resistant (GR) maize production systems
using either single or sequential glyphosate applications for
POST weed control (Jhala et al., 2014; Chahal et al., 2017).
Studies conducted in Nebraska have reported that the PS II- and
HPPD inhibitor-resistant Palmer amaranth biotype is sensitive
to glyphosate applied at the labeled rate because glyphosate
had not been used over the past 8 years while the field was
kept under continuous maize seed production (unpublished
data). Therefore, glyphosate can be considered as one of the
herbicide options for management of PS II- and HPPD inhibitor-
resistant Palmer amaranth in GR maize. In Nebraska, GR weed
species, including common ragweed (Ambrosia artemisiifolia
L.), common waterhemp (Amaranthus rudis Sauer), horseweed
[Conyza canadensis (L.) Cronq.], giant ragweed (Ambrosia trifida
L.), and kochia [Kochia scoparia (L.) Schrad.] have been reported
(Sarangi et al., 2015; Chahal et al., 2017; Ganie and Jhala, 2017a;
Heap, 2017). More recently, GR Palmer amaranth has also been
confirmed in Nebraska (Chahal et al., 2017). In view of the
widespread occurrence of six GR broadleaf weeds in Nebraska,
tank-mixing glyphosate with other site of action herbicides and
rotation of GR maize with other HR crop traits has become
important to diversify the number of herbicide options for
management of HR weeds such as Palmer amaranth (Ganie et al.,
2017; Ganie and Jhala, 2017b).

Palmer amaranth has an extended period of emergence
(March–October) in the midwestern and southern USA, making
it difficult to control, specifically later in the crop season
(Keeley et al., 1987). PRE herbicides, also referred to as soil
residual herbicides, are applied to the soil after crop planting
but before emergence for controlling germinating or emerging
weed seedlings. Soil-residual PRE herbicides generally lose their
residual activity in the soil in 30–50 days; however, most
POST herbicides commonly applied in maize have minimal
to no soil residual activity (Jhala et al., 2015; Wiggins et al.,
2015). Moreover, late-emerging Palmer amaranth plants often
escape POST herbicide applications and produce seeds, leading
to the replenishment of the soil seedbank and ensuring weed
infestations for the next several seasons (Keeley et al., 1987).
Therefore, herbicide programs should be focused on season-
long Palmer amaranth control to reduce seed production and
infestation during subsequent crop seasons. Though over-the-
top (broadcast) application of most foliar active POST herbicides
is restricted up to certain maize growth stages (Anonymous,
2017a,b,c), some herbicides such as glyphosate and glufosinate
can be applied with drop nozzles in the later maize stages
extending up to V8–V12 or the 8- to 12-leaf stage and V8–V10
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or the 8- to 10-leaf stage in glyphosate- and glufosinate-
resistant maize, respectively (Anonymous, 2017b,d). However,
the repeated application of herbicides with a single site of action
promote the rapid evolution of HR weeds (Délye et al., 2013).

Several soil-residual PRE herbicides have been registered for
Palmer amaranth control in maize. For instance, acetochlor,
dimethenamid-P, pendimethalin, pyroxasulfone, saflufenacil, or
S-metolachlor applied PRE provided >80% Palmer amaranth
control up to 50 days after application (Johnson et al., 2012;
Cahoon et al., 2015; Janak and Grichar, 2016; Meyer et al., 2016).
In addition, some soil residual herbicides such as acetochlor,
pyroxasulfone, or dimethenamid-P can be applied POST in
maize up to certain growth stages (Anonymous, 2017e,f,g). The
application of overlapping residual herbicides could be used as
an approach for season-long Palmer amaranth control. However,
most soil-applied residual herbicides lack foliar activity and are
unable to control emerged weeds at the time of application.
Therefore, for achieving season-long Palmer amaranth control
and to reduce the evolution of HR weeds, different site of action
soil-residual herbicides can be applied within 2–3 days of crop
planting and in tank-mixture with foliar active herbicides in a
POST application.

The cost of herbicide-resistant weed management programs
that include different site of action PRE and POST herbicides
is usually higher than that of commonly followed weed
management practices that involve the use of a single site
of action POST herbicide such as glyphosate; therefore, most
growers do not consider residual herbicides until they notice
the presence of HR weeds in their fields (Peterson, 1999;
Norsworthy et al., 2012; Edwards et al., 2014). Additionally,
several growers have been avoiding PRE herbicides and relying
on POST herbicides to reduce production costs due to low maize
and soybean [Glycine max (L.) Merr.] commodity prices over
the last few years in the USA; however, avoiding PRE herbicides
allows early-season crop-weed competition, which could result
in a yield penalty (Hall et al., 1992; Schuster and Smeda, 2007).
Therefore, it has become crucial to evaluate the economic benefits
of implementing herbicide resistant weedmanagement programs
to encourage their adoption among growers.

The objectives of this study were to determine the efficacy
of soil-residual PRE herbicides fb residual herbicides in tank-
mixture with foliar active POST herbicides for PS-II- and HPPD-
inhibitor-resistant Palmer amaranth control, crop yield, and net
economic return in GR maize. We hypothesized that season-
long Palmer amaranth control will be achieved with soil-residual
PRE herbicides fb their application in tank-mixture with POST
herbicides.

MATERIALS AND METHODS

Experimental Setup
Field experiments were conducted in 2015 and 2016 in a
grower’s field confirmed with the presence of PS II- and HPPD-
inhibitor-resistant Palmer amaranth near Shickley in Fillmore
County, Nebraska (40.46◦N, 97.80◦E). The level of atrazine
resistance was 9- to 14-fold, while the level of resistance to
mesotrione, tembotrione, and topramezone was 4-, 4- to 6-,

and 14- to 23-fold, respectively, compared to two susceptible
Palmer amaranth populations (Jhala et al., 2014). Soil texture
at the research site was a Crete silt loam (fine, smectitic, mesic
Pachic Udertic Argiustolls) with a pH of 6.5, 26% sand, 57%
silt, 17% clay, and 3.5% organic matter. A GR maize hybrid
(Mycogen 2D351) was seeded at 87,500 seeds ha−1 in rows
spaced 76 cm apart on May 30, 2015 and June 1, 2016. The
experiment was arranged in a randomized complete block design
with four replications and the experimental plots were 3m wide
and 9m long, consisting of four maize rows. Monthly mean air
temperature and total precipitation during the 2015 and 2016
growing seasons and the 30 year average in Shickley, Nebraska
is provided in Table 1.

Herbicide programs in the GR maize included PRE-only,
POST-only, and PRE fb their sequential application in tank-
mixture with POST herbicides, with a total of 15 treatment
combinations including a nontreated control (Table 2). The
herbicide application timings and rates were based on the
label recommendations in maize in Nebraska. Herbicide
programs were applied using a CO2-pressurized backpack
sprayer consisting of a four-nozzle boom fitted with AIXR 110015
flat-fan nozzles (TeeJet Spraying Systems Co., P.O. Box 7900,
Wheaton, IL 60189) calibrated to deliver 140 L ha−1 at 276 kPa.
PRE applications were made within 3 days after planting maize
and POST herbicides were applied when Palmer amaranth was
12–15 cm tall.

Palmer amaranth control was visually estimated at 3 weeks
after PRE (WAPRE), before POST herbicide programs were
applied, 3 and 6 weeks after POST (WAPOST) herbicide
application, and before maize harvest based on a scale of 0–100%,
with 0% corresponding to no control and 100% corresponding
to plant death. A similar scale was used to assess maize injury
at 1 and 2 weeks after PRE and POST herbicide applications,
with 0% corresponding to no injury and 100% corresponding
to no seed emergence or plant death. Palmer amaranth density

TABLE 1 | Monthly mean air temperature and total precipitation during the 2015

and 2016 growing seasons and the 30 year (year) average at Shickley, Nebraska,

USAa.

Month Mean temperature Total precipitation

2015 2016 30 year

average

2015 2016 30 year

average

___________C_____________ ___________mm_____________

March 7 9 5 12 14 48

April 12 12 11 42 99 68

May 17 16 17 108 200 124

June 23 25 22 264 7 117

July 24 25 25 124 55 86

August 22 23 24 69 147 88

September 22 20 19 104 52 86

October 14 15 12 22 64 59

Annual 12 13 11 908 726 763

aMean air temperature and total precipitation data were obtained from the National

Weather Service and Cooperative Observer Network (2017).
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TABLE 2 | Herbicide products, rates, and application timing for control of Photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant

Palmer amaranth in glyphosate-resistant maize in field experiments conducted in 2015 and 2016 in Nebraska, USAa.

Herbicideb Timing Rate Trade name Manufacturer

(g ae or ai ha−1)

Pyroxasulfone PRE 110 Zidua BASF Corporation, Research

Triangle Park, NC, USA

Topramezone + dimethenamid-P POST 750 Armezon PRO BASF Corporation

Pyroxasulfone fb topramezone +

dimethenamid-P

PRE fb

POST

110

750

Zidua

Armezon PRO

BASF Corporation

Saflufenacil + dimethenamid-P PRE 586 Verdict BASF Corporation

Saflufenacil + dimethenamid-P fb

topramezone + dimethenamid-P

PRE fb

POST

586

750

Verdict

Armezon PRO

BASF Corporation

Saflufenacil PRE 75 Sharpen BASF Corporation

Saflufenacil fb topramezone + dimethenamid-P PRE fb

POST

75

750

Sharpen

Armezon PRO

BASF Corporation

Glyphosate POST 870 Roundup PowerMax Monsanto Company, 800 North

Lindberg Ave., St. Louis, MO, USA

Dicamba + diflufenzopyr POST 157 Status BASF Corporation

Pyroxasulfone + saflufenacil fb

glyphosate + topramezone + dimethenamid-P

+ atrazine

PRE fb

POST

110 + 75

870 + 750 + 560

Zidua + Sharpen

Roundup PowerMax + Armezon

PRO + Aatrex

BASF Corporation

Monsanto Company + BASF +

Syngenta Crop Protection, Inc.,

Greensboro, NC, USA

Saflufenacil + dimethenamid-P fb

glyphosate + topramezone + dimethenamid-P

+ atrazine

PRE fb

POST

586

870 + 750 + 560

Verdict Roundup

PowerMax + Armezon PRO +

Aatrex

BASF Corporation

Monsanto Company + BASF +

Syngenta Crop Protection, Inc.

Saflufenacil + dimethenamid-P fb

glyphosate + diflufenzopyr + dicamba +

pyroxasulfone

PRE fb

POST

780

870 + 157 + 91

Verdict Roundup

PowerMax + Status + Zidua

BASF Corporation Monsanto

Company + BASF + BASF

aae, acid equivalent; ai, active ingredient; fb, followed by; PRE, pre-emergence; POST, post-emergence.
bAll POST herbicide programs were mixed with AMS, ammonium sulfate (DSM Chemicals North America Inc., Augusta, GA) at 2.5% wt/v and NIS, nonionic surfactant (Induce, Helena

Chemical Co., Collierville, TN) at 0.25% v/v. No AMS or NIS were added to PRE herbicides. PRE applications were made within 3 d after planting and POST herbicides were applied

when Palmer amaranth was 12–15 cm tall.

was assessed from two randomly selected 0.25 m2 quadrats per
plot at 3 WAPRE herbicide programs. The Palmer amaranth’s
aboveground biomass was harvested from two randomly selected
0.25 m2 quadrats per plot at 6 WAPOST, oven dried at 65 C
for 3 days, and weighed. Palmer amaranth density and biomass
data were converted into percent density or biomass reduction
compared with the nontreated control (Ganie et al., 2017; Sarangi
et al., 2017):

Biomass/Density reduction (%) =
(C − B)

C
× 100 (1)

where C is the biomass or density of the nontreated control plot
and B is the biomass or density collected from the experimental
plot. At maturity, maize was harvested from the middle two rows
of each plot using a plot combine, weighed, and the moisture
content were recorded. Maize yields were adjusted to 15.5%
moisture content (Ganie et al., 2017).

Economic analysis was performed to evaluate the profit and
risk associated with each herbicide program. Net return from
herbicide programs was calculated using the maize yield from
each replication and herbicide program cost (Bradley et al., 2000;
Edwards et al., 2014):

Net return = Gross revenue −Herbicide program cost (2)

Gross revenue was calculated bymultiplying themaize yield from
each replication for each program by the average grain price
($0.137 kg−1) received in Nebraska at harvest time during the
experimental years (USDA-NASS, 2016). Each herbicide program
cost included the average herbicide cost per hectare obtained
from three agricultural chemical dealers in Nebraska and a
custom application cost of $18.11 ha−1 application−1.

Statistical Analysis
Data of Palmer amaranth control estimates, density and
aboveground biomass reduction, maize yield, gross return, and
net return were subjected to ANOVA using the PROCGLIMMIX
procedure in SAS version 9.3 (SAS Institute Inc., Cary, NC
27513). Herbicide programs and experimental years were
considered fixed effects, whereas replications were considered
a random effect in the model. Data were combined over years
when there was no year-by- program interaction. The nontreated
control was not included in the data analysis for control estimates
and percent density and biomass reduction. Before analysis,
data were tested for normality and homogeneity of variance
using Shapiro-Wilks goodness-of-fit and Levene’s test in SAS. To
meet the normality and homogeneity of variance assumptions of
ANOVA, all data, except maize yield, were arc-sine square root
transformed before analysis; however, back-transformed data
are presented with mean separation based on the transformed
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data. Where the ANOVA indicated herbicide program effects
were significant, means were separated at P ≤ 0.05 with Tukey-
Kramer’s pairwise comparison test to reduce type I error for
the series of comparisons. Pre-planned single degree-of-freedom
contrast analysis was accomplished to compare the relative
efficacy of PRE-only, POST-only, and PRE fb POST herbicide
programs for Palmer amaranth control, biomass reduction,
maize yield, and net return.

RESULTS

Year-by-herbicide programs interaction was not significant for
Palmer amaranth control, density and biomass reduction, maize

yield, gross return, and net return; therefore, data were combined
over two experimental years.

Palmer Amaranth Control
Saflufenacil applied PRE provided 60–69% Palmer amaranth
control compared to 36–42% control with pyroxasulfone at
3 WAPRE; however, saflufenacil plus dimethenamid-P premix
or pyroxasulfone tank-mixed with saflufenacil provided 76–
85% Palmer amaranth control at 3 WAPRE (Table 3). Palmer
amaranth control with PRE herbicides applied alone declined
to ≤28% later in the season. The contrast analysis suggested
that saflufenacil plus dimethenamid-P as well as pyroxasulfone
plus saflufenacil provided 80–82% control compared to 65 and

TABLE 3 | Control of photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor-resistant Palmer amaranth with PRE and/or POST residual

herbicides in glyphosate-resistant maize in field experiments conducted in Nebraska, USA in 2015 and 2016a.

Herbicide programb Application timing Rate

(g ae or ai ha−1)

Control (%)c,d,e

3 WAPRE 3 WAPOST 6 WAPOST At harvest

Nontreated Control – – 0 0 0 0

Pyroxasulfone PRE 110 42 de 10 h 5 f 0 f

Topramezone + dimethenamid-P POST 750 0 57 de 66 b 23 de

Pyroxasulfone fb topramezone +

dimethenamid-P

PRE fb

POST

110

750

36 e 28 f 39 cd 18 def

Saflufenacil + dimethenamid-P PRE 586 78 abc 19 gf 26 de 28 de

Saflufenacil + dimethenamid-P fb topramezone

+ dimethenamid-P

PRE fb

POST

586

750

80 abc 64 d 73 b 65 bc

Saflufenacil PRE 75 60 cd 8 gh 15 ef 12 ef

Saflufenacil fb topramezone + dimethenamid-P PRE fb

POST

75

750

69 bc 36 ef 58 bc 40 cd

Glyphosate POST 870 0 86 bc 95 a 88 ab

Dicamba + diflufenzopyr POST 157 0 69 cd 91 a 89 a

Pyroxasulfone + saflufenacil fb glyphosate +

topramezone + dimethenamid-P + atrazine

PRE fb

POST

110 + 75

870 + 750 + 560

85 a 98 a 99 a 99 a

Saflufenacil + dimethenamid-P fb glyphosate

+ topramezone + dimethenamid-P + atrazine

PRE fb

POST

586

870 + 750 + 560

76 abc 95 a 99 a 99 a

Saflufenacil + dimethenamid-P fb glyphosate

+ diflufenzopyr + dicamba +

pyroxasulfone

PRE fb

POST

780

870 + 157 + 91

83 ab 98 a 99 a 99 a

Saflufenacil + dimethenamid-P fb glyphosate

+ diflufenzopyr + pendimethalin

PRE fb

POST

780

870 + 157 + 1,060

83 ab 98 a 98 a 98 a

Pyroxasulfone + saflufenacil fb glyphosate +

diflufenzopyr + dicamba + atrazine

PRE fb

POST

110 + 75

870 + 157 + 1,120

79 ab 98 a 99 a 99 a

S.E 4.6 5.4 5.2 6.0

CONTRASTSf

PRE vs. POST – – – 12 vs. 71* 15 vs. 84* 13 vs. 66*

PRE vs. PRE fb POST – – – 12 vs. 77* 15 vs. 83* 13 vs. 77*

POST vs. PRE fb POST – – – 71 vs. 77* 84 vs. 83** 66 vs. 77*

aae, acid equivalent; ai, active ingredient; fb, followed by; PRE, pre-emergence; POST, post-emergence; S.E, standard error.
bAll POST herbicide program were mixed with AMS, ammonium sulfate (DSM Chemicals North America Inc., Augusta, GA) at 2.5% wt/v and NIS, nonionic surfactant (Induce, Helena

Chemical Co., Collierville, TN) at 0.25% v/v. No AMS or NIS were added to PRE herbicides. PRE applications were made within 3 d after planting and POST herbicides were applied

when Palmer amaranth was 12–15 cm tall.
cYear-by- program interaction for Palmer amaranth control was not significant; therefore, data were combined over 2 years. Data were arc-sine square-root transformed before analysis;

however, data presented are the means of actual values for comparison based on interpretation from the transformed values.
d The nontreated control data was not included in the statistical analysis.
eMeans within columns with no common letter(s) are significantly different according to Tukey–Kramer’s pairwise comparison test at P ≤ 0.05.
fSingle degree-of-freedom contrast analysis; *significant (p < 0.05); **non-significant (p > 0.05).
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TABLE 4 | Contrast means for control and density reduction of photosystem (PS)

II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer

amaranth at 3 weeks after pre-emergence herbicide application in

glyphosate-resistant maize in field experiments conducted in Nebraska, USA in

2015 and 2016a.

Herbicide program Control (%) Density reductionb (%)

Pyroxasulfone vs. Saflufenacil 39 vs. 65* 28 vs. 58*

Pyroxasulfone + Saflufenacil vs.

Saflufenacil + Dimethenamid-P

82 vs. 80** 78 vs. 66**

Saflufenacil vs. Pyroxasulfone +

Saflufenacil

65 vs. 82* 58 vs. 78*

aSingle degree-of-freedom contrast analysis; *significant (p < 0.05); **non-significant (p

> 0.05).
bPalmer amaranth density data were converted into percent density reduction compared

with the nontreated control using the formula: Density reduction (%) = (C− B)

C
× 100,

where C is the density of the nontreated control plot and B is the density collected from

the experimental plot.

39% control with saflufenacil and pyroxasulfone applied alone,
respectively, at 3 WAPRE (Table 4).

At 3 and 6 WAPOST, Palmer amaranth control ranged
from 86 to 95% with glyphosate compared to 57–66% and
69–95% control with topramezone plus dimethenamid-P and
diflufenzopyr plus dicamba, respectively. Palmer amaranth
control was reduced to 23% at harvest with a POST-only
application of topramezone plus dimethenamid-P compared
to glyphosate (88%) and dicamba plus diflufenzopyr (89%).
However, ≥95% Palmer amaranth control was achieved
with pyroxasulfone plus safluefenacil, or saflufenacil plus
dimethenamid-P applied PRE fb glyphosate plus topramezone
plus dimethenamid-P plus atrazine, glyphosate plus
diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate
plus diflufenzopyr plus pendimethalin, or glyphosate plus
diflufenzopyr plus dicamba plus atrazine at 3 and 6 WAPOST,
and at harvest (Figure 1; Table 3). Most PRE fb POST
herbicide programs resulted in ≥95% Palmer amaranth
control throughout the season, except pyroxasulfone fb
topramezone plus dimethenamid-P (18–39%), saflufenacil fb
topramezone plus dimethenamid-P (36–58%), or saflufenacil
plus dimethenamid-P fb topramezone plus dimethenamid-
P (64–73%) (Table 3). The contrast analysis indicated that
PRE fb POST programs provided greatest Palmer amaranth
control (77%) compared to POST-only programs (66–71%) at
3 WAPOST and at harvest; however, similar control (83–84%)
was achieved at 6 WAPOST (Table 3). Similarly, POST-only
programs provided 66–71% control compared to <15%
control with PRE-only programs at 3 and 6 WAPOST and at
harvest.

Palmer Amaranth Density and Biomass
Reduction
Palmer amaranth density was reduced by 55–82% with
saflufenacil, pyroxasulfone plus saflufenacil, or saflufenacil
plus dimethenamid-P compared to 27–29% density reduction
with pyroxasulfone at 3 WAPRE. Based on the contrast
analysis, pyroxasulfone plus saflufenacil or saflufenacil plus
dimethenamid-P provided the greatest density reduction

(66–78%) compared to saflufenacil (58%) and pyroxasulfone
(39%) (Table 4).

Saflufenacil or saflufenacil plus dimethenamid-P applied PRE
alone provided 29–56% biomass reduction compared to no
biomass reduction with pyroxasulfone at 6 WAPOST (Table 5).
Glyphosate or dicamba plus diflufenzopyr applied POST alone
resulted in ≥97% biomass reduction compared to 66% biomass
reduction with topramezone plus dimethenamid-P. The PRE fb
POST programs provided 76–99% Palmer amaranth biomass
reduction (Figure 1), except for saflufenacil fb topramezone plus
dimethenamid-P (69%), and pyroxasulfone fb topramezone plus
dimethenamid-P (44%) at 6 WAPOST (Table 5). The contrast
analysis indicated that PRE fb POST programs provided 99%
Palmer amaranth biomass reduction compared to POST-only
(87%) and PRE-only programs (28%) at 6 WAPOST (Table 5).

Maize Injury and Yield
Herbicide injury on maize was negligible (0–6%) and transient
without impact on maize yield (data not shown). The nontreated
control resulted in the lowest maize yield of 1,042 kg ha−1

and was comparable with PRE-only programs including
pyroxasulfone (1,870 kg ha−1), saflufenacil (1,990 kg ha−1), or
saflufenacil plus dimethenamid-P (4,108 kg ha−1). Most of the
PRE fb POST programs resulted in greater maize yield varying
from 16,031 to 17,161 kg ha−1, except for pyroxasulfone
fb topramezone plus dimethenamid-P (5,600 kg ha−1),
saflufenacil fb topramezone plus dimethenamid-P (9,194 kg
ha−1), and saflufenacil plus dimethenamid-P fb topramezone
plus dimethenamid-P (11,450 kg ha−1) (Table 5). Maize yield
with POST-only programs varied from 8,525 to 14,324 kg ha−1

and glyphosate applied alone resulted in a yield comparable
with the highest yielding PRE fb POST programs. The contrast
analysis indicated that PRE fb POST programs provided higher
(13,617 kg ha−1) maize yield compared to POST-only (11,429 kg
ha−1) and PRE-only (2,656 kg ha−1) programs (Table 5).

Economic Analysis
The cost of PRE-only and POST-only herbicide programs varied
from US $61.01 to US $98.11 ha−1 and US $29.79 to US $65.90
ha−1, respectively, compared with $133.00 to $215.64 ha−1

for PRE fb POST programs (Table 6). The gross income and
net returns were in consensus with the yield (Tables 5, 6). The
PRE fb POST herbicide programs including pyroxasulfone
plus safluefenacil, or saflufenacil plus dimethenamid-P applied
PRE fb glyphosate plus topramezone plus dimethenamid-P
plus atrazine, glyphosate plus diflufenzopyr plus dicamba
plus pyroxasulfone, glyphosate plus diflufenzopyr plus
pendimethalin, or glyphosate plus diflufenzopyr plus dicamba
plus atrazine applied POST provided the highest net returns
ranging from $2,023 to $2,246 ha−1 (Table 6). The net returns
with PRE-only programs were <$475 ha−1 compared to $1,123
to $1,965 ha−1 with POST-only herbicide programs, signifying
the importance of POST programs (Table 6). The contrast
analysis suggested that PRE fb POST programs provided the
highest ($1,724 ha−1) net return fb POST-only ($1,539 ha−1),
and PRE-only ($285 ha−1) programs.
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TABLE 5 | Effect of herbicide programs on photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor-resistant Palmer amaranth density reduction

at 3 weeks after PRE, biomass reduction at 6 weeks after POST, maize injury at 2 weeks after PRE, and maize yield at harvest in glyphosate-resistant maize in field

experiments conducted in Nebraska, USA in 2015 and 2016a.

Herbicide programb Application timing Rate

(g ae or ai ha−1)

Density

reductionc,d,e,f
Biomass

reductionc,d,e,f
Maize yielde,f

(kg ha−1)

3 WAPRE (%) 6 WAPOST (%)

Nontreated Control – – 0 0 1,042 f

Pyroxasulfone PRE 110 27 bc 0 1,870 ef

Topramezone + dimethenamid-P POST 750 0 66 bcde 8,525 cd

Pyroxasulfone fb topramezone +

dimethenamid-P

PRE fb

POST

110

750

29 bc 44 def 5,600 de

Saflufenacil + dimethenamid-P PRE 586 67 ab 56 bcde 4,108 ef

Saflufenacil + dimethenamid-P fb topramezone

+ dimethenamid-P

PRE fb

POST

586

750

88 a 76 abcd 11,450 bc

Saflufenacil PRE 75 55 ab 29 ef 1,990 ef

Saflufenacil fb

topramezone + dimethenamid-P

PRE fb

POST

75

750

60 ab 69 cde 9,194 cd

Glyphosate POST 870 0 98 a 14,324 ab

Dicamba + diflufenzopyr POST 157 0 97 a 11,440 bc

Pyroxasulfone + saflufenacil fb

glyphosate + topramezone + dimethenamid-P

+ atrazine

PRE fb

POST

110 + 75

870 + 750 + 560

74 a 99 a 16,044 a

Saflufenacil + dimethenamid-P fb

glyphosate + topramezone + dimethenamid-P

+ atrazine

PRE fb

POST

586

870 + 750 + 560

49 ab 99 a 17,161 a

Saflufenacil + dimethenamid-P fb

glyphosate + diflufenzopyr + dicamba +

pyroxasulfone

PRE fb

POST

780

870 + 157 + 91

59 ab 99 a 17,114 a

Saflufenacil + dimethenamid-P fb

glyphosate + diflufenzopyr + pendimethalin

PRE fb

POST

780

870 + 157 + 1,060

64 ab 99 a 16,031 a

Pyroxasulfone + saflufenacil fb

glyphosate + diflufenzopyr + dicamba +

atrazine

PRE fb

POST

110 + 75

870 + 157 + 1,120

82 a 99 a 16,346 a

S.E 19 11 1,082

CONTRASTSg

PRE vs. POST – – – 28 vs. 87* 2,656 vs. 11,429*

PRE vs. PRE fb POST – – – 28 vs. 99* 2,656 vs. 13,617*

POST vs. PRE fb POST – – – 87 vs. 99* 11,429 vs. 13,617*

aae, acid equivalent; ai, active ingredient; fb, followed by; PRE, pre-emergence; POST, post-emergence; S.E, standard error.
bAll POST herbicide programs were mixed with AMS, ammonium sulfate (DSM Chemicals North America Inc., Augusta, GA) at 2.5% wt/v and NIS, nonionic surfactant (Induce, Helena

Chemical Co., Collierville, TN) at 0.25% v/v. No AMS or NIS were added to PRE herbicides. PRE applications were made within 3 d after planting and POST herbicides were applied

when Palmer amaranth was 12–15 cm tall.
cData were arc-sine square-root transformed before analysis; however, data presented are the means of actual values for comparison based on interpretation from the transformed

values.
dPercent density and biomass reduction data of non-treated control were not included in analysis. Palmer amaranth density and biomass data were converted into percent density or

biomass reduction compared with the nontreated control plots using the formula: Biomass/Density reduction (%) = (C− B)

C
× 100, where C is the biomass or density of the nontreated

control plot and B is the biomass or density collected from the experimental plot.
eYear-by-program interaction was not significant; therefore, data were combined over 2 experimental years.
fMeans within columns with no common letter(s) are significantly different according to Tukey–Kramer’s pairwise comparison test at P ≤ 0.05.
gSingle degree-of-freedom contrast analysis; *significant (p < 0.05).

DISCUSSION

The results indicated that PRE programs with multiple sites
of action, including saflufenacil plus dimethenamid-P premix
or pyroxasulfone tank-mixed with saflufenacil provided higher
control (80–82%) compared to saflufenacil or pyroxasulfone
applied alone (39–65%) at 3 WAPRE. Similarly, Kohrt and
Sprague (2017) reported 75% Palmer amaranth control with

saflufenacil applied alone and 80–97% control when saflufenacil
was tank-mixed with pyroxasulfone at 45 DAPRE in a 3-year field
study in Michigan. Janak and Grichar (2016) also reported >95%
Palmer amaranth control with saflufenacil plus dimethenamid-
P at 95 DAPRE in maize production fields in Texas. Similarly,
Aulakh and Jhala (2015) reported 96% common waterhemp
control with saflufenacil plus dimethenamid-P at 15 DAPRE in
soybean in Nebraska.
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FIGURE 1 | Control of Photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth with (A) pyroxasulfone +

saflufenacil followed by (fb) glyphosate + topramezone + dimethenamid-P + atrazine, and (B) saflufenacil + dimethenamid-P fb glyphosate + diflufenzopyr +

pendimethalin compared to (C) nontreated control at 3 weeks after post-emergence.

TABLE 6 | Cost of herbicide programs for controlling photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth and net

income from maize yield in glyphosate-resistant maize in field experiments conducted in Nebraska, USA in 2015 and 2016a.

Herbicide programb Application timing Rate

(g ae or ai ha−1)

Program costc

($ ha−1)

Gross incomed

($ ha−1)

Net returne,f,g

($ ha−1)

Nontreated Control – – 0 145 f 145 f

Pyroxasulfone PRE 110 91.76 260.76 ef 169 f

Topramezone + dimethenamid-P POST 750 65 1,188 cd 1,123 de

Pyroxasulfone fb topramezone +

dimethenamid-P

PRE fb

POST

110

750

156.76 779.76 de 623 ef

Saflufenacil + dimethenamid-P PRE 586 98.11 572.11 ef 474 f

Saflufenacil + dimethenamid-P fb topramezone

+ dimethenamid-P

PRE fb

POST

586

750

133.11 1,595 bc 1,462 cd

Saflufenacil PRE 75 61.01 274 ef 213 f

Saflufenacil fb topramezone + dimethenamid-P PRE fb

POST

75

750

136.01 1,281 cd 1,145 de

Glyphosate POST 870 29.79 1,995 ab 1,965 abc

Dicamba + diflufenzopyr POST 157 65.9 1,594 bc 1,528 bcd

Pyroxasulfone + saflufenacil fb glyphosate +

topramezone + dimethenamid-P + atrazine

PRE fb

POST

110 + 75

870 + 750 + 560

211.18 2,234 a 2,023 ab

Saflufenacil + dimethenamid-P fb glyphosate

+ topramezone + dimethenamid-P + atrazine

PRE fb

POST

586

870 + 750 + 560

144.23 2,390 a 2,246 a

Saflufenacil + dimethenamid-P fb glyphosate

+ diflufenzopyr + dicamba + pyroxasulfone

PRE fb

POST

780

870 + 157 + 91

215.64 2,384 a 2,168 a

Saflufenacil + dimethenamid-P fb glyphosate

+ diflufenzopyr + pendimethalin

PRE fb

POST

780

870 + 157 + 1,060

172.51 2,233 a 2,060 a

Pyroxasulfone + saflufenacil fb glyphosate +

diflufenzopyr + dicamba + atrazine

PRE fb

POST

110 + 75

870 + 157 + 1,120

212.04 2,276 a 2,064 a

S.E. – 150 150

CONTRASTSh

PRE vs. POST – – – – 285 vs. 1,539*

PRE vs. PRE fb POST – – – – 285 vs. 1,724*

POST vs. PRE fb POST – – – – 1,539 vs. 1,724*

aae, acid equivalent; ai, active ingredient; fb, followed by; PRE, pre-emergence; POST, post-emergence; S.E, standard error.
bAll POST herbicide programs were mixed with AMS, ammonium sulfate (DSM Chemicals North America Inc., Augusta, GA) at 2.5% wt/v and NIS, nonionic surfactant (Induce, Helena

Chemical Co., Collierville, TN) at 0.25% v/v. No AMS or NIS were added to PRE herbicides. PRE applications were made within 3 d after maize planting and POST herbicides were

applied when Palmer amaranth was 12–15 cm tall.
cProgram cost includes the average cost of herbicide, AMS, and NIS; and the cost of application (US $18.11 ha−1 application−1 ) from two independent sources in Nebraska.
dGross revenue was calculated by multiplying maize yield for each program by the average grain price received in Nebraska at harvest time during the experimental years ($0.137 kg−1,

USDA-NASS, 2016).
eNet return was calculated as gross income from glyphosate-resistant maize yield minus herbicide program cost.
fData were arc-sine square-root transformed before analysis; however, data presented are the means of actual values for comparison based on interpretation from the transformed

values. Year-by- program interaction was not significant; therefore, data were combined over two experimental years.
gMeans within columns with no common letter(s) are significantly different according to Tukey-Kramer’s pairwise comparison test P ≤ 0.05.
hSingle degree-of-freedom contrast analysis; *significant (p < 0.05); **non-significant (p > 0.05).
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The POST herbicide programs including tank-mixture of
active ingredients with residual activity and multiple sites of
action provided 95–99% Palmer amaranth control compared
to topramezone plus dimethenamid-P (57–70%) (Figure 1;
Table 3). Similarly, Wiggins et al. (2015) reported 95–99%
control of GR Palmer amaranth with glyphosate plus S-
metolachlor plus mesotrione plus atrazine, thiencarbazone-
methyl plus tembotrione plus atrazine, or glyphosate plus
atrazine at 28 DAPOST. However, the unacceptable control
with topramezone plus dimethenamid-P may be attributed to
a high-level resistance (14- to 23-fold) of Palmer amaranth to
topramezone (Jhala et al., 2014). In the same study, Jhala et al.
(2014) reported only 58% control of PS II- and HPPD-inhibitor-
resistant Palmer amaranth with topramezone compared to 99%
control of the susceptible biotypes or 87–99% control of resistant
Palmer amaranth when topramezone was tank-mixed with
atrazine at 21 DAPOST. Although Palmer amaranth was resistant
to PRE and POST applied atrazine or topramezone, the POST
application of glyphosate plus topramezone plus dimethenamid-
P plus atrazine controlled Palmer amaranth ≥95% throughout
the season due to the synergistic interactions of atrazine and
topramezone as well as the presence of glyphosate (Table 3).
Previous studies have reported synergistic interaction when a
PS-II inhibitor such as atrazine is applied in tank-mixture
with an HPPD inhibitor for POST weed control in maize
(Abendroth et al., 2006; Hugie et al., 2008), including control
of atrazine- and HPPD-inhibitor-resistant Palmer amaranth
(Jhala et al., 2014). Similarly, synergistic interaction between
HPPD- and PS II-inhibiting herbicides has been reported
for control of giant ragweed (Ambrosia trifida L.), common
lambsquarters (Chenopodium album L.), velvetleaf (Abutilon
theophrasti Medik.), common waterhemp, and redroot pigweed
(Amaranthus retroflexus L.) (Abendroth et al., 2006; Hugie et al.,
2008; Woodyard et al., 2009a,b). At the physiological level,
atrazine binds at the QB binding site of DI protein of PS II and
inhibits the electron transport during photosynthesis (Fuerst and
Normanm, 1991). On the other hand, mesotrione inhibits HPPD
enzyme synthesis which leads to depletion of plastoquinone
resulting in decreasing electron transport during photosynthesis
and also inhibit carotenoids and tocopherols synthesis (Hess,
2000; Mitchell et al., 2001; McCurdy et al., 2008). Both PS II- and
HPPD-inhibitors block the electron transport in PS II due to their
complementary mode of action and lead to the accumulation of
reactive oxygen species and free radicals that damage the foliar
tissue membranes (Hess, 2000).

The POST-only programs including glyphosate or dicamba
plus diflufenzopyr resulted in 88–95% Palmer amaranth control
and were comparable with the PRE fb POST herbicide programs,
except at 3 WAPOST (Table 3). Jhala et al. (2014) reported
90–99% control of the same Palmer amaranth biotype with
glyphosate, glufosinate, or dicamba at 21 DAPOST in a
greenhouse study. Similarly, Norsworthy (2004) reported 100%
Palmer amaranth control with a single or sequential application
of glyphosate at 5 WAPOST. Likewise, Crow et al. (2016)
reported >87% control of >20 cm tall Palmer amaranth with
dicamba plus diflufenzopyr applied alone or in tank-mixture
with glyphosate, mesotrione, tembotrione, mesotrione plus

rimsulfuron, or tembotrione plus thiencarbazone at 4 WAPOST.
Nonetheless, the dependence on POST herbicides with a single
site of action must be avoided to prevent the evolution of HR
weeds (Chahal and Jhala, 2015; Chahal et al., 2017; Ganie and
Jhala, 2017b). Furthermore, the confirmation of GR Palmer
amaranth in a GR soybean/maize production field in south-
central Nebraska signifies that dependence on a single POST
herbicide program is not a reliable option (Chahal et al.,
2017).

Weed density at the time of POST herbicide application
plays an important role in determining herbicide efficacy and
the number of weeds surviving (Dieleman et al., 1999). Bell
et al. (2015) reported that flumioxazin plus pyroxasulfone
applied PRE in soybean reduced Palmer amaranth emergence
and demonstrated a potential to enhance the efficacy of
POST herbicides and reduce selection pressure by exposing a
lower number of Palmer amaranth plants to POST herbicides.
Similarly, Meyer et al. (2016) reported ≥97% control of Palmer
amaranth and common waterhemp for more than 3 weeks
of applying isoxaflutole plus S-metolachlor plus metribuzin, S-
metolachlor plus mesotrione, or flumioxazin plus pyroxasulfone.
In addition, the application of residual herbicides in a tank-
mixture with a foliar active POST herbicide is obligatory for the
season-long control of Palmer amaranth because of its extended
emergence period that typically begins from early May to late
September (Jha and Norsworthy, 2009; Ward et al., 2013).

Palmer amaranth density and biomass reduction were in
consensus with the visual estimates of Palmer amaranth control
at 3 WAPRE and 6 WAPOST, respectively. Jhala et al. (2014)
and Kohrt and Sprague (2017) reported an agreement between
Palmer amaranth control estimates and biomass reduction with
herbicide programs tested. The PRE fb POST programs resulted
in greater yield compared to a PRE- or POST-only herbicide
program, excluding a POST-only application of glyphosate.
Although higher rainfall was received at the experimental site
in 2015 during the critical period of maize growth from the
V2 to V8 development stages during June and July compared
to 2016 and the 30-year average (Table 1), no difference in
Palmer amaranth control, density and biomass reduction, and
maize yield was observed between the two experimental years.
However, previous studies have reported greater weed control
and maize yield in years receiving higher rainfall compared
to dry years (Whaley et al., 2009; Petcu et al., 2015). A
higher level of Palmer amaranth control in this study with
glyphosate was due to the fact that glyphosate had not been
applied at the research site for the last 8 years because the
field was under continuous maize seed production (Jhala et al.,
2014). Similarly, the economic analysis indicated higher net
returns with PRE fb POST herbicide programs with multiple
herbicide sites of action even though the diversified herbicide
mixtures were more expensive. Bradley et al. (2000) also
reported that PRE fb POST programs including acetochlor
or S-metolachlor applied PRE fb dicamba or glufosinate plus
atrazine applied POST were among the high net income-
producing programs with excellent weed control in maize.
Norsworthy (2004) also reported greater gross profit with
chlorimuron plus metribuzin or sulfentrazone applied PRE
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fb glyphosate compared to glyphosate without PRE herbicide
applications.

CONCLUSION

The evolution of PS II- and HPPD-inhibitor-resistant Palmer
amaranth has become a concern for field maize, maize
grown for popcorn and seed production in Nebraska, USA.
The results of this study suggested that season-long Palmer
amaranth management is possible by including overlapping
residual herbicides in synergistic tank-mixtures of PS II- and
HPPD-inhibiting herbicides. In addition, application of PS
II- and HPPD-inhibiting herbicides in a tank-mixture with
glyphosate, dicamba plus dimethenamid-P, or pyroxasulfone
provided an effective strategy for Palmer amaranth control
due to the synergistic action of atrazine and topramezone;
along with the residual activity of atrazine, dimethenamid-
P, or pyroxasulfone; and glyphosate or dicamba as additional
effective sites of action to reduce selection pressure. However,

Culpepper (2006) emphasized that no single herbicide program
will provide a consistently satisfactory control of Palmer
amaranth for more than a 4- to 5-year period. Therefore, it
has become crucial to incorporate feasible non-chemical weed

control tools including tillage, rotation of different HR cultivars
with conventional crop cultivars, row spacing, and harvest
weed seed control etc., for an integrated HR Palmer amaranth
management.
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